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LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES
EQUATIONS WITH SLIP BOUNDARY CONDITIONS

HYEONG-OHK BAE, KYUNGKEUN KANG, AND MYEONGHYEON KIM

ABSTRACT. We present regularity conditions for suitable weak solutions
of the Navier-Stokes equations with slip boundary data near the curved
boundary. To be more precise, we prove that suitable weak solutions
become regular in a neighborhood boundary points, provided the scaled
mixed norm Lz:‘g with 3/p +2/q¢ = 2, 1 < g < oo is sufficiently small in
the neighborhood.

1. Introduction

We study the regularity problem for suitable weak solutions (u,p) : @ x I —
R3 x R to the Navier-Stokes equations in three dimensions,

u—Au+ (u-Viu+Vp=f, divu=0 in Qr=QxI,

where u is the velocity field and p is the pressure. Here f is an external force and
Q is a bounded domain with C? boundary. After the existence of weak solutions
was proved by Leray [18] and Hopf [11], regularity problem has remained open.
It has been known that weak solutions become unique and regular in Q x [0,T)
if the following additional conditions are imposed on weak solutions:

2
q
In this direction, lots of significant contributions have been made so far (refer
to e.g. [6, 7, 8,9, 13, 15, 21, 22, 30, 32, 33, 35, 36)).

For the partial regularity theory, after Scheffer’'s works in a series of pa-
pers [23, 24, 25, 26], Caffarelli, Kohn and Nirenberg [4] proved that the one-
dimensional parabolic Hausdorff measure of possible singular set is zero for
suitable weak solutions of the Navier-Stokes equations. The extension up to
boundary was shown in [28] (see also [29]). In [5], the estimate of size of a

=1, 3<p<oo.

3
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possible singular set was improved by a logarithmic factor. The following local
regularity criterion was proved in [4] and crucially used for partial regularity:
there exists € > 0 such that if suitable weak solution u satisfies

1
lim sup —/ |Vu(y, s)|2 dyds < e,

r—0 T

z,r

then u is regular in a neighborhood of z (refer to [27] for flat boundary and
[29] for curved boundary). This regularity criterion was improved in terms of
scaled mixed norm regarding velocity field in [10, Theorem 1.1]. On the other
hand, in [9], the following regularity criteria was proved near the flat boundary:

3 2
<e, —+-=2, 2<qg<oo.
La(t—r23,t) p q
In [14], the following local regularity criteria was proved near the curved
boundary in case of homogeneous boundary conditions:

1
1 lim su —H ul|;p
1) timsup ol

li —(+E-0 H <
1r:1_%lpr ||U||Lp(gz,r) La(t—r2,t) = €,
3 2 3
1§_+_§2; 2<¢1§007 (p,q)?é<—,00>
P q 2

For the case of slip boundary conditions, the existence of the weak or strong
solutions was studied by Solonnikov, S¢adilov [34], Maremonti [20] and Ttoh,
Tani [12]. Some regularity results for weak solutions were showed in [3] for the
stationary case. Bae, Choe and Jin [2] proved the following: Suppose (u,p)
is a suitable weak solution. There exists a positive constant ¢ such that if
u € LP9(Q;) for some (p, q) satisfying 2+2 < 1with ¢ > 3, orifu € L>*(Q;)
with [|u]| s gi) < €0 for some small g, then

5+o

30
sup [u| < N (/ |u|3d:cdt> +N
QF Qf
5

for some positive constant N depending on &g.

The main objective of this paper is to establish the regularity criteria (1)
for the Navier-Stokes equations with ship boundary conditions near the curved
boundary.

To be more precise, we study suitable weak solutions of the following Navier-
Stokes equations in three dimensions

) up—Au+ (u-Viu+Vp=f, divu=0 in Qr=Qx1I,
u-n=0, n-T(up) -7=0 on 90 x I,

where u is the velocity field, p is the pressure, n is the outer unit normal vector,
7 is the unit tangent vector and T'(u, p) is a stress tensor, which is given as

1 1
T(u,p) = 5 (Vu + (VU)T) — p(sij = 5 (ai’uj* + ajui)i,jzl,w — péij.
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Here f is an external force and € is a bounded domain with C? boundary.
Suitable weak solution will be defined in Definition 2.1 in next section. The
existence of suitable weak solutions with slip boundary conditions was proved
in [2] for the case of half space. In Appendix, we provide the existence of
suitable weak solutions for the bounded domains as in [4].

We prove that suitable weak solution u becomes Holder continuous near
regular curved boundary, provided that the scaled mixed LP'¢-norm of the
velocity field w is sufficiently small (the proof will be given in Section 3). More
precisely, our main result reads as follows:

Theorem 1.1. Let u be a suitable weak solution of the Navier-Stokes equations
in ) with extra force f € My, for some v >0, Q,, = QN B, for somer >0
and By, = {y € R® : |y —x| < r}. Assume further that Q is any domain
with C? boundary satisfying Assumption 2.1. Suppose that (x,t) € O x I. For
every pair p,q satisfying

2

+-=2, 1<qg< oo,

3
p
there exists a constant € > 0 depending on p, q, v and Hf||M27 such that, if

the pair w, p is a suitable weak solution of the Navier-Stokes equations (2)
satisfying Definition 2.1 and

<€
La(t—r2t)

. —1
hrgfgpr HHUHLP(QE,T)

then u is reqular at z = (x,t).

2. Preliminaries

In this section, we introduce notations, define suitable weak solutions, and
derive equations (5) changed by flatting the boundary. For notational conve-
nience, we denote for a point z = (2/,x3) € R with 2’ € R?

Bor={yeR®:|ly—z|<r}, Dyp,={yeR’:|y—a|<r}.

For z € Q, we use the notation Qyr = QN By, for some r > 0. If x =0, we
drop « in the above notations, for instance €0, , is abbreviated to Q,. A solution
u to (2) is said to be regular at z = (z,t) € Q x I if u € L®(Qy x (t —1r2,1))
for some r > 0. In such case, z is called a regular point. Otherwise we
say that u is singular at z and z is a singular point. We begin with some
notations. Let 2 be a bounded domain in R3. We denote by N = N(a, 3, ...)
a constant depending on the prescribed quantities «, 3, ..., which may change
from line to line. For 1 < p < oo, W*P(Q) denotes the usual Sobolev space,
ie, WEP(Q) = {u € LP(Q) : D € LP(Q), 0 < |a| < k}. We write the
average of f on F as f f, that is f, f = ‘—]15‘ J f- We suppose that f belongs
to a parabolic Morrey space Ms (Qr) for some 0 < v < 2 equipped with the
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norm

1
1 5 ? _
1 lass, (@ry = SUP (m /Qz T If] dm) cz=(z,t) € Qp,r >0,
where Q,, = (sz X (tfr2,t)) N Qr. We note that My ~(Qr) contains

L7 (Qr). We make some assumptions on the boundary of Q.

Assumption 2.1. Suppose that Q) be a domain with C?> boundary such that the
following is satisfied: For each point x = (z',x3) € 0N, there exist absolute con-
stant N and ro independent of x such that we can find a Cartesian coordinate
system {y;}3_, with the origin at x and a C* function ¢ : D,, — R satisfying

Qry =QN By ry = {y = (y/ay3) € By Yz > ‘P(yl)}

and

©(0)

0, Vup(0)=0, sup ’Viga‘ < N.
Dy

Remark 2.1. The main condition on Assumption 2.1 is the uniform estimate of
the C2—norms of the function ¢ for each = € 9Q). More precisely, there exists
a sufficiently small ry with r1 < rg, where rg is the number in Assumption 2.1
such that for any r < rq

(3) sup || @llez(p,) < N(L+7+77).
e

Next lemma is related with Gagliardo-Nirenberg in [1, 17] :

Lemma 2.2. Let Q be a domain of R? satisfying Assumption 2.1 and fQ u=0.
For every fixed number r > 1 there exists a constant N such that

—6
lull g, < NIVl lullz’,

where 0 € [0,1],p,q > 1, are linked by 0 = (£ — %)(% - % + 1)~

Next we recall suitable weak solutions for the Navier-Stokes equations (2)
in three dimensions.

Definition 2.1. Let Q C R3 be a bounded domain satisfying Assumption 2.1
and I = [0,T). We denote Q7 = Q x I. Suppose that f belongs to the Morrey
space M ~(Qr) for some v > 0. A pair of (u,p) is a suitable weak solution to
(2) if the following conditions are satisfied:

(a) The functions u : Q7 — R? and p : Q@ — R satisfy
we L®(I; L2(Q)) N L (WY(Q)), peL:(QxI),
V2u, Vp € Ls’tg (Qx1I).

(b) w and p solve the Navier-Stokes equations in Qr in the sense of distri-
butions and u satisfies slip boundary conditions on 02 x I.
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(¢) w and p satisfy the local energy inequality

t
/Q|u(x,t)|2¢(x,t)dz+2/to /Q|Vu(:c,t’)|2¢(z,t’)dzdt’

t
S/tO/Q(|U|2(at¢+A¢)+(|u|2+2p)u.v¢+2f,u¢) dadt!

forallt € I = (0,T) and for all non-negative functions ¢ € C§°(R3xR),
vanishing in a neighborhood of the set 2 x {t = 0}.

Let o € 09Q2. Under Assumption 2.1, we can represent s, », = QN By ry =
{y=(y",y3) € Bug.ro : Ys > ¢(y')} where ¢ is the graph of C? in Assumption
2.1. Flatting the boundary near xg, we introduce new coordinates x = ¢ (y) by
formulas

(4) z=Yy) = (Y1, ¥2, y3 — (Y1, ¥2)) ,

where ¢ is a bijection whose Jacobian is equal to 1. We note that the mapping
y — x = 1(y) straightens out OS2 near zo such that Qg , is transformed onto
a subdomain ¥ (Qy,,,) of R3 = {z € R® : 23 > 0}. We define v = wo 1,
m=poyp~tand g = fory~!in(Qy,,,). Then using the change of variables (4),
in this case, the outer unit normal vector is (0,0, —1) and unit tangent vectors
are (1,0,0), (0,1,0). The equations (2) result in the following equations for v
and T

v —Av+ (v-V)v+Vr =g,

(5) V-v=0 in 1/}(9960717),
v3 =0, 03v1 = Pg,0303,
0309 = Py, 0303 on OP(Qa,,p) N{z3 =0},

where V and A are differential operators with variable coefficients defined by
% = (611 - 90116135612 - (pzzamga als))

6 —~
( ) A= aij(m)a{_’zj + bz(x)amla

x

where a;; and b; are given as
aij(x) = 5ija 0’13(:6) = a3i(x) = Pz bl(z) = 07 1= ]-a 27
and

2 2
agg(l') =1+ Z(sﬁfbi)27 b3(z) = - Z Pz
=1 1=1

As mentioned in Remark 2.1, if we take a sufficiently small r; with r < ro,
then (3) holds for any r < r1. In addition, the followings are satisfied:

1 ~
(7) §|Vv(x,t)| < |Vou(z,t)| <2|Vu(z,t)]  for all 2 € Y(Qzg),2r)s

+ +
Blag),z C ¥V Qao,r) C By a0

(8) ~1/p+ 1/ p+
Y Byae)g) © Qaor SV (By) 2,)
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From now on, we fix o = 0 without loss of generality. We suppose that, as
above, 1) is a coordinate transformation so that v, 7 satisfies (5) in ¥ (€;,).

Remark 2.3. Due to the suitability of u,p (see Definition 2.1), (v, m) solve (5)
in a weak sense and satisfies the following local energy inequality: There exists
ro with ro < rg where rq is the number in Assumption 2.1 such that

) /w(%) (e, 1) £z, t)da + 2/ /w(%) |

/ / |’U| 8t£+A§ + (Jv)* +27) v - VE+2g- vf) dxdt’,

&(z, t')dxdt!

where £ € CSO(BT) with 7 < 79 and & > 0, and V and A are differential
operators in (6).

Next we define some scaling invariant functionals, which are useful for our
purpose. Let Bf = B, N{zx € R® : 3 > 0} and Q;f = B} x (—r%,0). As
defined earlier, we also denote Q, = QN B, and Q, = Q, x (—r2,0). Let rq
and r; be the numbers in Assumption 2.1 and Remark 2.1, respectively. For
any r < 1 and a suitable weak solution (u, p) of (2) we introduce

1
A(r) =~ / fu(y, 5)[? dyds,

r2

1 1
D(r):= sup —/Q lu(y, s)*dy, E(r) ZZ;/ [Vu(y, s)[*dyds,

—r2<t<0 T

r

1
t 4 q
P 3 2
K<r>:—</ (/ |u<y,s>|de) ds> D302 s 1<gen,
t—r2 Q. p q

1 3
€)== [ Ipl.)|dyds.

For a suitable weak solution (v, 7) and B C (€, ), we introduce

—_

=

~ 1 ~ 1

Alr) = — /m [0y, s)Pdyds,  Aa(r) == — /Qj lv— (v),[*dyds,
3 1 2 S 1 < 2
D(r):= sup = [ [|u(y,s)]°dy, E(r):=~ [ [Vu(y,s)|"dyds,

—r2<¢<0 T B:r T Q:r
f{(),g/ | s ")
r) = P\ e U v(y, s)|Pdy s|
~ 1 3 o 1 3
C(r) == |7(y, s)|2dyds, Cau(r) = — |7 — (7),|2 dyds,
= Ja, ™ Ja,
where (v), = fB+ )dy. Next lemma shows relations between scaling in-

variant quantities above
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Lemma 2.4. Let Q be a bounded domain satisfying Assumption 2.1 and x¢ €
0. Suppose that (u,p) and (v, ) are suitable weak solutions of (2) in Q x I
and (5) in 1 (Qy, ) X I, respectively, where ¢ is the mapping flatting the boundary
in Assumption 2.1. Let x = ¢(xg). Then there exist sufficiently small r1 and
an absolute constant N such that for any 4r < ry the followings are satisfied:

1 ~ 1 ~
NE(T) < E(2r) < NE(4r), NA(T) < A(2r) < NA(4r),
CK() < R(2r) < NE(dr),  C(r) < G(2r) < NS(ar),

%D(r) < D(2r) < ND(4r).

Proof. We just show one of above estimates, since others follows similar ar-
guments. For convenience, we denote II, = 9(Q,) x (—=r?,0) and II-! =
P71(Q,) x (=r2,0). As indicated earlier, we take a sufficiently small r; such
that (3), (7) and (8) hold. Then

N N ~ 12 N
E(r)g—/ |Vv|2§—/ 9] g—/
T Jm, T Ju, 2r QF

On the other hand,

~ 1 N N
Blar) < —/ Vo2 < —/ Vuf? < —/ Vul? = NE(4r).
2r QF 2r I, ! 4r Qur

This completes the proof. ([

Vu| = NE(2r).

A‘Q ~

Remark 2.5. We note that f and g have relations as in Lemma 2.4. To be more
precise,

[oten [ en [ uren [ fen [ o
Qr IT, Q3. ) Qar
Therefore, it is direct that ||g||,,, Ly SN 11l 2z, @)

In the sequel, for simplicity, we denote || f][,,, L =My

3. Local regularity near boundary

In this section, we present the proof of Theorem 1.1. We first show a local
regularity criterion for v near the boundary.

Lemma 3.1. Let Q be a bounded domain satisfying Assumption 2.1 and x¢ €
0. Suppose that (v, ) is a suitable weak solution of (5) in () C RY,
where ¢ is the mapping flatting the boundary in Assumption 2.1. Let w = (y,t)
with y = Y¥(xo). Assume further that g € Ms ~ for some v € (0,2]. Then there
exist € > 0 and r1 depending on v, glly,, . such that if Az (r)+ Ci(r) < e for
some r < ri, then w is a regular point.
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The proof of Lemma 3.1 is based on the following, which shows a decay
property of v in a Lebesgue spaces. From now on, we denote ||g||rr, , = m,,
unless any confusion is expected.

Lemma 3.2. Let 0 <0 < % and 8 € (0,7). Under the same assumption as in
Lemma 3.1, there exist €1 > 0 and ry depending on 0, v, B and m, such that

if A3(r) + C3(r) + myr? < ey for some r € (0,71), then
A3 (Or) + 5%(97") < No§“ (ﬁ§ (r) + 5§(7“) + mvrﬂ) ,

where 0 < o < 1 and N is a constant.

Proof. For convenience we denote 7(r) := A3 (r) + C3 (r) + m~r8. Suppose
the statement is not true. Then for any o € (0,1) and N > 0, there exist
Zn = (Tn, tn), T ¢ 0 and &, N\, 0 such that

T(rn) = €n, Az (Orn) + 6'%(97“”) > NbO%,,.

Let w = (y,s) where y = %(m — Zp), s = 5 (t — t,) and we define U, 7,
and G by Ta(w) = 2(0(2) = (0(2))r,), Fnlw) = Era(n(2) — (7(2)r,) and
gn(w) = g(2), respec%ively. We also introduce scailing invariant functionals
Aq(Dy, 0) and C, (7, 0) as follows:

. v . v,
Ay(G0,0) = 9—2/Q+ B — (B)o[Pdw,  Ca(Bn,0) = —/Q+ 7 — (ol .
] 6

The change of variables lead to
snﬁyﬁn(w) =r,Vau(2), enV?
);

£n050n (W) = 1, 20;v(2
(6n)31+(5) =0, (%n)BT(S) =0, sec(-1,0),

B

r

+my— =1,
En

() =l gt + IFall 3 g,

Tn(0) :=A3 (6,,,0) + C3 (7, 0) > CO*,
where m% = [|gn|lar, - On the other hand, v, 7, solve the following system

in a weak sense

o~ /\/\ o~ = o~ o~ = /\/\ 2/\
(11) O0sUp, — AUy, + €70, (U, V)Avn + (On - V)rna, + V7, = ’;Lngm in QF
V- 9,=0 !

(10)

0301, = Qg, 0303 p
030V2,n, = Pqg, 0303 p

where a, = (v(2)), = fp+ v(y, t)dy.
Since 7, (1) = 1, we have following weak convergence:
O =7 in L3QF), 7w —7 inLE(QY),

(0)5: () =0, (@) (s) = 0.

on Bl N {563 = 0} X (*1,0),

U3,n = 0,

(12)
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Then, from (10) and (12),
(1) =A5(1)+Ci(1) < 1.

According to the definition of m., we have

Tn2 ~ Tn2 y—2
. [9nllL2qp) < P
(13)
= Mrn'yfﬁ <r,”#50 asn— .
En

Since |rpa,| be a bound, without loss of generality it may be assumed that:
(14) Tpa, —b inR® and [b < M.
Using (10) and (13), we take

/ (=B - 0, X )dw = / (G - AX + T - (€070 00)VX
Qf Qf
2
0 (rnan) VX + 70 (V- X) + ZL@H - X Ydw
SNM)|IXN s —1,0w22(85))
for all X € C}(—1,0;W22(By)).

Therefore, 90, is uniformly bounded in L? ((—1,0); (W22(B{))) and we
also have

(15) 85, — 8,0 in L2 ((—1,0); (W%(BY))).
From the local energy inequality (9), we obtain for every o € (—1,0)

| wortew sz [ [ (96 edyas

Bf -1JB}

w) < [ [ Lot B nipe, +w)- T
—-1J B

. 2
for all £ € C§°(B,). Recalling (10), (13) and (14), we deduce from (16) the
bound

~ 2 S 112
(17> Se(eE?sz)E’O)HUH(S)HL2(BS+/4) + ”vv"“LQ(Q;M) < N(M)
The Gagliardo-Nirenberg inequality and (17) yield estimate

(18) HU"HL%(%J < N(M).

Using the standard compactness arguments and (15), (17) and (18), we con-
clude following convergence:

(19) Uy =0 in L3(QF,)-
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Next we observe that v and 7 solve the following perturbed Stokes system
00— AG+VaR=0, divi=0 inQ}
with

~ 83’1)1 = (,01183?}3

—0, v v BN {x3=0}) x (—1,0).
U3 DsT = oo Dy on (BiN{zs=0}) x (-1,0)

Indeed, by the Holder’s inequality, we have

O - V), < N||V© Vol 1
(B - V)2 L3 (B Mz sy ) oall, (Bs)
1
~ ~ 3 2
<N|vs H D Bnll?
- e 17 s onle o
2
<NV
L2(B})
Therefore,
(20) (O - V)0 93 <N.
" RFAE IR

Moreover, v,, and 7,, solves the following problem:

o~ A/\ A/\ o~ = o~ o~ = 2/\
05Uy, — AV, + VT, = —0rn (U, - VIO, — (Up, - V)rpay, + ’;Lngn in OF
V-0, =0 ' mYs/6
=

with

R .= 5 5\°
Tgn = 0, 03010 = Pz, 03V3.n on (B5/6 N{zs = O}) X ( <6) ,0) .

030V2,n, = Qg,03U3 p

Due to the local boundary estimate for the Stokes system in Lemma 4.2, we
have the following estimate for v, and 7,;

1050w |

3 + HV/TF"

Q’E + 273
LE2(Qf)s) L3

(@n : 6) B

@)

2
r ~
4 +——nll 2.3

< N{ e,r 9.3
( - @) En L5 (QF )

<N (]— + enrn) s
where we used (10), (13), (17) and (20). Thus, we get
93

Av,, V7, € Ly (QI/E))'

According to estimates of the perturbed stokes system near boundary in [29], ©
is Holder continuous in pr with the exponent . Then, by Hélder continuity
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of ¥ and strong convergence of the L3-norm of 9,,, we obtain
(21) A(D,,0) = A®©,0),  A3(3,0) < N,6O°,

where N1 is an arbitrary constant.
Let B' be a domain with smooth boundary such that B4/5 cB'c B;)F/G,

and Q' = B x (—(5/6)2,0). Now we consider the following initial and
boundary problem of v,,, 7,

OsTn — ATy, + Vip = —£nrn(0n - V)0p — (On - VTl + G . =+
~ in@ ,
V-v,=0

Tl (5) =0, (Fa)e(s) =0, s € (— (2) ,o> ,
(%)2,0],
Tp =0 on§+x{s<%>2}.

Using the global estimate of perturbed Stokes system (see [29, Lemma 3.1]),
we get

0301 = 030 —
3V1,n = Pz,03VU3,n on OB x

U3, =0 _ _
3,m T 03Uz = P, 03T3 .5

190,33 oy 17203 e oz bty

LS.
+ ||7T71H 5/6)2 0) Wl’%(EJr))
(22) < Ne,rp (’Un -V)op, Ly%’ﬁ( L +N H(Un -V)rpan Ly%;%@+)
+ N_ n
1921 5.2 1,

< N(l—l—gnrn—i—r,ﬂ ﬁ).

Next, we define v,, = U, — Uy, T = T — Tn. Then it is straightforward that
v, and 7, solve

Ostn — AV, + V7, =0, divi, =0 in QT,

~ - aEUI,n = 90118323,71 on (B+ N {1.3 — 0}) %

Ol

V3, =0, ~
3,m 0302, n, = Pg,0303 p
Vonll o s +H§% 93 <N +eprn+r""0),
" MLy @iy MLy @iy (L+ e+ ra0)
and we obtain
H@ﬂ <N+ enrp +177P).

(Q3/4
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. _ 4N\
Next, let Cy (7, 0) = § (f392 (fB+ |V%|%dy) ’ ds) . By the Poincaré inequal-
6

ity, we have
~2
3

7 (7, 0) < No (él(ﬁn,e) n 61(%n,9)) .

We note that Cy (7, 0) goes to zero as n — oo because of (22). On the other
hand, using the Holder inequality, we have

0
s (1]
-62 \JBS

Summing up, we obtain

2
3

9 6
V%‘ dy) ds < NO*(1 + eprp + Tn'yfﬁ).

(23)  liminf i (7, 0) < lim Nob™(1+ entm + 17 ~F) < No6%.
Thus, we obtain from (10) that

N6® < N6 + limint O (8).

n—o0

Consequently, if we take a constant N in (10) bigger than 2(N; + Nz) in (21)
and (23), this leads to a contradiction, since

2(N1 + NQ)GO‘ S NO“ S hrgmen(G) S (N1 + Ng)ea.
This deduces the lemma. O

Since Lemma 3.2 is the crucial part of the proof of Lemma 3.1, we present
only a brief sketch of the streamline of Lemma 3.1.

Proof of Lemma 3.1. We note that due to Lemma 3.2 there exists a positive
constant o < 1 such that

A5 (r) + C5 (r) < NO“ (g%(p)+6%(p)+m7r5), r<p<r,
where r; is the number in Lemma 3.1. For any x € B:/2 and for any r < r1/4,
let B(r) := A% (r) + C2(r). By Lemma 3.2, we obtain

B(fr) < NO“B(r) < NO'T*B(r).
Thus, we have
B(6%r) < N (67)" B(r).

~1 ~
In case of p = 0%r, we get A3 (p) < B(p) < Np't®. Next we consider the case
that 6%r < p < 0¥~ 1r. For the scaled L3- norm of v,

~1 1 B _2 (1 ° _2 1
A3 (0Fr) = (W /Q+ |U|3> <073 <? /Q+ |U|3> =0"5A45(p).
ok r

P
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In the same way, we get C'3 (0%r) < §~3C3 (p) and therefore
N

-~ 2 = 2 a 5 2 5 Ita
B(p) < 03 B(6"r) < NOF (0¥)' ™ B(r) < NO5 B(r) (’2) < Nptte,

r

Thus, we can show that /AL% (r) < Nrlte where N is an absolute constant
independent of v. Holder continuity of v is a direct consequence of this esti-
mate, which immediately implies that v is also Holder continuous locally near
boundary by the Morrey & Campanato lemma. This completes the proof. [

Next lemma is an estimate of the pressure.
Lemma 3.3. Suppose 0 < 2r < p. Then
~ ~ 3 3 ~
@) G0 =N (2) (Ao + o0 md) 48 (1) 8
Proof. Define v* = (v, v3,v%) by

o (1) = vi(z,t)  if x5 >0,
BTV Yoyt ) ifas <0,

(1) va(z,t) if zg >0,
(% x? = .
2 va(z*,t) if 5 <0,

() vs(x,t) if 3 >0,
vs(z,t) = i
3 —vz(z*,t) if 25 <0,

V/\\Ihere zt = (‘Ttha _:EB) = (ylayQa —Ys3 + (P(yl,yQ)) We consider ﬂ-*a _(U* :
V)v*, g* as the even-even-odd extension. Then, we construct (v*,7*) as the
solution of the Stokes system in R? x (0,7):

(25) vf — Av* 4Vt = —(v- Vvt + ¢

with initial data v*(z,0) = v§(z).
Let ¢(z) > 0 be standard cut-off function such that 0 < ¢ <1, ¢ =1in B,,
¢ = 0 outside on Bg. The divergence (:= V) of (25) gives in R® x (0,T)
—Ar* =V -V*®@v*)=V-g*
in the sense of distribution. Let

m1(x,t)

N / prr {6 VW = (07),) ® (0" = (0"),)] 6 —
R

s dm|x — y|

<

(9"6)} (v D)y,

Then, by Calderon-Zygmund and potential estimates,

, 1 ‘
%/ |7r1|%dx§ —2/ |7r1|%d:c
P° JB, r~Jg,
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N N " N o "
<5 [ W= ) Pdr 4 —pt </ lg |2dw>
™ JB r B,

P

]

We set o (2, ) := m*(2,t) — m(x,t). It is direct that Amy = 0, V- v* = 0 in
B and thus we get

%/ |7r2|%dx§NL3/ |7r2|%dz
= JB, P~ By

§NL3/ |7T*|%d1'+NL3/ |7r1|%d:c.
p”JB, P JB,

Integrating the first term of the right side in (26) in time, and using
0 p% 9 % 3 3 3~ 3
/ = / lg"Pdz | dt < Nv=3 g F 3,
_p2 T B,
we obtain

1 : 1 , ,
™ JQ. r* Ja,
’ 3
<N (B) (/ |’U* _ (U*)p|3dl‘dﬁ + pg(7+1)m$>
T Bp

+N<f>/ 7% |2 dudt.
p B

P

(26)

This completes the proof. (I
We estimate the scaled L3-norm of suitable weak solutions.

Lemma 3.4. Under the same assumption as in Lemma 3.1. Let p, q be satisfied
% + % =2 and 1 < q < oo, there exists r1 such that for any r < r

~

(27) Ay(r) < N (D) + B(r)) K(r).

Proof. Using the Hélder inequality, we obtain

[ o= dy
< (/. |v|2dy)é () - (v)r|6dy>é(1_;) (/. |v|pdy)i
TR NSRRI

1 1—1 1
([, b’ (f, 5 (f o)
B B B

|~

IN
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N ( / |v|2dy) ( / |v|pdy) "
B B

where general Sobolev imbedding is used. Integrating in time, we get

[ o= )P

E1 0 e :
< N( sup / |v|2dy) ! / (/ |Vv|2dy) (/ |v|pdy) dt
—r2<t<0J BY —r2 \J Bt B

T

0 1
+N( sup / |v|2dy)/ (/ |v|pdy)pdt
—r2<t<0J B;f —r2 N B
1 . 1-1 0 4 2
< N( sup / |v|2dy) ! (/ |Vv|2dydt) ! (/ (/ |v|pdy) pdt>
—r2<t<0J B Qi —r2 N B
0 a :
N 2d Pdy)” dt
N [ ) ([ ) o)

where Holder inequality is used. Dividing both sides by r2, we have
A,(r) < N (D3 ()B' =5 (K (1) + DK (1)) .
For the first term, applying Young’s inequality, we deduce the lemma. (I

Next we observe that for 0 < 2r < p

(28) A < () A+ v (2) A

Indeed, it is straightforward via the Holder inequality that obtain

Ay <N [ o=@+ 0 Pys < N () ) + (%) a0

Remark 3.5. From local energy inequality (9), we obtain

B(5)+B(5) =5 (A10)+ A0+ DCe) +7 [ lgPaw),
(29) < N (AR () + A() + A)ECG) + 7 2m2)
(1 +A(r) +C(r) + r27+2m§) .

Now we are ready to present the proof of Theorem 1.1.
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Proof of Theorem 1.1. Let 4r < p. We consider A(r)+C(r). Due to (28), (24),
(27) and (29), we obtain

i)+ 60 < N ((;> n (;) f<<p>> (A(p) + C(p))

2 2
T = r 3 3
+N <;) (1+p"m2)K(p) + N (;) pz0Tm2,

We choose 6 € (0,1/4) such that C§ < 1/4 where N is an absolute constant

—(r+1)
in the above inequality. Now we fix rp < min {1 L L(ﬁ)z/g’}

,m—‘y, Mo \8C such

that K(r) < %min{l,s} for all » < r9. By replacing r, p by 6r and r,

respectively, we obtain

~ ~ 1/~ ~
A(or) +Cor) < 3 (A(r) + C(T)) + Z Vr < 1o
By iterating, we have
. . 1\"* /-~ ~ €
Aot + 06t < (3) (A0)+80) +5. vr<m,

Thus, for k sufficiently large, A(6%r) + C(6*r) < e. By Lemma 3.1, this com-
pletes the proof. O

4. Appendix

In this section, we provide the existence of suitable weak solutions and Stokes
estimates of the Stokes system with slip boundary conditions.

4.1. Existence of suitable weak solutions

Let Q C R? be a bounded domain and I = (0,7T"). We consider the Stokes
system with Slip boundary conditions:
u—Au+Vp=f—(w-V)u, divu=0 in Qr=Qx1I,
(30) u-n=0, n-T(up)-7=0 on 00 x I,
U = Ug at t=0,
where w € C®(Qr), f € L*(Qr) and ug € H?(), v € W;;(QT) = L*(I :
H2()) N HY(I : L?(2)). The Banach space L*(Q2)? admits the Helmholtz
decomposition:
L2(Q)° = J*(Q) & G*(Q),
where
2.y _ A TorL (@ 200 — 1,2
JU) =G, () T, GHQ) ={Vp|pe W (D)},
C5o, () = {u e C(Q)?*|V-u=0in Q},

Wh2(Q) = {p € Li,.(2) | Vp € L*(Q)°}.
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It should be noted that since boundary is C*!-hypersurface, J?(f2) is charac-
terized as

J2Q) ={uec L*(Q)P|V-u=0inQ, u-n=0ondN}.
Let P be a continuous projection from L?(Q)3 onto J2(2) along G?(2). By
using P we shall define the Stokes operator with slip boundary conditions A
. Au = —PAu for u € D(A),
D(A) = J2(Q) N {u € W*2(Q)* |n - T(u,p) -7 = 0}.
Now, we consider operator form of system:
(31) us + Au=P(f — (w-V)v), u(0)=up.

Since A is the generator of an analytic semigroup in L2(Q), solving (31) is
equivalent to show that mapping

F(v) = e g + /t e~ EDAP(F — (w- V)v)ds
0

has a unique fixed point.

Lemma 4.1. Let T € (0,00). There exists a unique solution
u € L2((0,00) : H*(Q)) N H((0,00) : L*(Q))

satisfies
ug + Au = P(f — (w-V)u), u(0) = ug.

Proof. Let F is mapping such that F'(v) = u. Then
w22 0m = IF@ w22 0m)
< N {llwollwz3 gr) + If = (- D)ollzzon |
< N {luollwzs @n + 1 llz2@n) + lloll=@n I Vell 2@ }
Thus, F is well-defined on W;;(QT) For vy,vy € 1/1/2221 (Qr),

IF(00) = FElson < [ [Fe 4V )0~ )

L2(Q)
t
_1
< [ N TP V)0 = 1)
_1
= Nt~ # [ VP((w- V)(v2 — 01))l 12 -
Taking integral on [0, ¢] for small ¢,
[1F(v1) = F(v2)ll p2(0,4:12(02))
<N ¢ VP (@ 9) e = 01))ll o)

L2(0,t)

<

o [P D)2 = 00) a0 200y
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< NVt vz = 01l 20 g2 ) -
We also note that
(F(v1) = F(v2)); = P ((w - V)(v2 — 1))

t
7/ A2em=DAUZP ((w- V) (vg — 1)) ds,
0

and thus, taking L2-norm, we have
[(F'(v1) = F(v2))ell2(0) < [[P((w - V) (v2 = v1))[22(0)

t
_1
+ [ 0t = ) VP D)on  w)lagods.
0
Similarly taking integral on [0, ¢] for small ¢,
[ F'(v1) — F(U2)||H1(0,t:L2(Q)) < N\/gHUz - leLZ(o,t:HZ(Q))-
Therefore,
1F 1) ~ F@a)lwz@ny < NVEI2 — 1l o
Hence, the contraction mapping principle then yields a unique solution u €

1/1/22,’21 (Qr) for small T > 0.
Next, let T* < oo be a maximal time. For T' < T*, a solution u € 1/1/2221 (Qr)
of
us+ Au=P(f — (w-V)u), u(0)=wug

satisfies the following inequality:
HUtHLZ(o,T:LZ(Q)) + |‘V2“HL2(07T:L2(Q))
<N (||f||L2(0,T:L2(Q)) + [[(w - V)ullp20,7:22(0)) + ||u0||W22”21(QT)) :

Let T — T*. Then, left-hand side of (32) is infinity. But, since ||(w -
V)ullz20,7:22(9)) < llwllzoe (@) 1f | 22(0,7:22(0)), Tight-hand side of (32) is uni-
formly finite. Thus, the contraction mapping principle then yields a unique
solution u € W;;(QT) for all time. O

For fixed T' > 0, we consider a suitable weak solution u to Navier-Stokes
equations:

(33) u—Au+ (u-Viu+Vp=f, V-u=0

in Qr with the initial condition u(z,0) = ug € L? satisfying V- up = 0 in a
weak sense. For the existence we follow the steps in [4]. For fixed N > 0, we
set § = T/N. Then we find a sequences (un,pn) such that

un € C(0,T; J2(Q)) N L*(0,T; J(%)),
Oupn + \115(11,]\]) -Vuny — Auy + Vpn = f,

V-uny =0, un(0)=up.
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Here, the retarded mollifier Us is defined by

W)t =57 | 4w<§,§>v — gt~ T)dydt,

where ¢(z,t) € C™ satisfies
0,//1/1d:1:dt =1, and suppy C {(m,t) e <tl<t< 2},

and v* : R? x R — R? is defined by

v* (1) = { g(x,t) if (x,t) € QA xR,

otherwise.

The values of ¥s(v) at time t clearly depend only on the values of v at times
T € (t —24,t—95). For v e L>(0,T;J%(Q)) N L2(0,T;J(£)), it is clear that

V- -Us(v) =0 ae z€Q,

sup / [Us(v)|*(x,t)dx < N ess sup/ |v]?dz,
Q

o<t<T o<t<T

/ Vs (v)|[2dz < N/ |Vo|2dz.
Q Q

Such (uy,pn) exist by Lemma 4.1 inductively on each time interval (md, (m +
)5) 0 < m< N —1.
By & di fQ lulPda = QfQ ug, u)dx, we have

t
/ |uN|2dxds+2//|VUN|2dxds:/|u0|2d:E+2/ /f-uNdxds
Qx{t} 0 Jo Q 0 Jo

for 0 <t < T. Therefore, we have

t t
/ lun|*dxds +/ / |Vuy|?dzds < / luo|*dx +/ | £113;-1d7ds.
Qx{t} 0 Jo Q 0

In particular,

uy stays bounded in L°°(0,T; L*) N L*(0,T; H),

d
N stays bounded in L?(0,T; H; ?)

and hence,
{un} stays bounded in L*(Qr).

From Stokes estimate,

{pn} stays bounded in Lg(QT)-
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Thus, there exist their limits (uy, p+) such that

Strongly in L4(Qr), 2<g¢< %,
un — uy 4 weakly in L2(0,77;J(Q)),
weak-star in L>(0, T; J%(Q2)),

PN — Px  weakly in L%(O,T; J(Q)).

We note that (u,,p,) is a suitable weak solution of the Navier-Stokes equations
(33). The remaining parts of the proof are similar to that of [4].

4.2. Stokes estimates

Here we sketch the local boundary estimate for the Stokes system with slip
boundary conditions in [31]. Let,

(Do) Pu(t) = Z (L4 5)F Feuls)] (1),
Hy?(R, X) = {u € Ly(R, X)|(De)'*u(t) € Lo(R, X)},
lull 272 g ey = Nl x) + 16D 2ull g, x),
where F¢ and F; ! denote the Fourier transform and its inverse formula, re-
spectively. Set
HyaP(RE x Ry) = Hy/*(Roy, Ly(RY)) N Lo(Roy, Wy (RY)),
”“”H;:é“(n&ixm - ||u”H3/2(R+,Lp(Ri)) ol wime))-
Moreover,
Wi(x) = {u e Wi(x)| /X w(w)dz = 0},

o~ o~

W, ) =Wy (@), ¢ =q/a—1, 1<qg<oo,

lelgrg = s el
1 O;gvgﬁ/\ql/(x) valqu,(X)
where [+, -] denotes the duality of Wq_l(:n) and W\ql, ().

Lemma 4.2. Let 1 < p,q < 00, 2r < p and Qf = B} x (—p?,0). Suppose
that v € LIW2P(QF), ve € L{LE(Q)) and m € L{W,P(Q[) such that (v, )
solves the following Stokes system:
(34) { v—Av+Vr=g, V-v=0 in QF,

V3 = 0, 831)1 = 3011831)3, 83’02 = (pxzagvg on Qp N {ZL'g = 0},
where ¢ is given in Assumption 2.1, and 3, V are differential operators in
Section 2. Then (v, 7) satisfies

HUtHLp,q(Qj) + HU||LG((_T2,0)7W§(B7T)) + ||V7T||Lp,q(Qj)

<N (||9||Lp,q(Qp+) + HUHLp,q(Q;) + ||VU||Lp,q(Qp+) + ||7T||Lp,q(Qp+)) :
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Proof. Let & be a standard cut-off function satisfying:
£eCP(R?), 0<&£<1inR?
§=1in B,, & =0 outside on B,

~ c ~
V¢ < P V2| <

c
(p—7)*
Take v = v€, Il = w€. Then,

{ l/t+1/7£l/+§H:G, Vv=d in Ri_xRJr,

(35) vy = 0, 831/1 = hl, 831/2 = hg on 8R§_ X R+7

where R N R N
G =v —2VuVE —vAE+7TVE+Eg, d=wv- V¢,
hi = 01058 + £pa, 0303,  ha = 12038 + £ Pa, O3vs.

Then (35) can be expressed:

(36) vi+v—Av+VIl=G*, V-vr=d* in R3 xRy,
1/3:0, 831/1 :hl, 831/2:h2 on 8Ri XRJ”

where
G'=G+Av-V'Il, d=d-V'y,

A= 8 - A= _2(;0118951953 - 2901281213 + (9011)281313
=+ (5012)281313 - 501111813 - 5012128953,
V' = % -V = (_(leazsa _(Pzzazsao)-

617

Using the maximal estimate for Stokes system with slip boundary [31, Theorem

5.1], we get

HVtHLp,q(]RiX]R” + HV||Lq(]R+,W3(Ri)) + |‘VH|‘LP,Q(]1{ix]R+)
< N<||G*|va<1(]Rix]R+) + Hd*||Lq(]R+,W;1(Ri)) + HdI||Lq(R+,W;1(Ri))
R PR v
Then, the following estimates hold:

|‘A/V|‘Li’vq(]Ri><R+) < CGHVHLQ(M,Wﬁ(]Ri)),

IVl Loara xry) < €l VIl Loara xr,)-
Thus, choosing e small enough, we have

HVtHLM(]Rix]R+) + ||V||Lq(m+,wg(1Ri)) + HVHHLM(]RE’;X]RJF)

< N (16wt + Wl 5+ Wlsncmy

s rywn + 1blagy s, )
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From [31], we get following estimate:

12l agry vyt e yy + el agm, vy ma )y

< N< v Ve v - vg’ )
Lra(R3. ><]R+) La(Ry, W, ' (RY))
§N< v Ve ] +5Hv2(vﬁ§)
LP:a(R3 xRy) Lra(R3 xRy)
v + o v ’
T Vel o waesy TV Loame xry)

”h”Hézé”(Rixm>
<N (||UV£||H;:;/2(RiXﬁ+) + ||5V@V“||H;;;/2<mixm>)
< N (I0V €l tm ety + 1D H O s ey + 1078l e s
+ 16V VD] Lo ars xy) + 20l (D2)2 (EVVD) | oo (rt xr.)

+ 60||§V<PVU||Lq(R+,W;(1Ri)))

< N (I0V €l u ety + 1098l ez )+ VTl g e
+eollEVeVullam, wy®s)) + R™% [0eVE[l Lr-ams xr4)
+R? [0Vl oars xmry) + 50||§U||W,?;,}(Ri><]1{+)> :
Thus, we obtain

0l LooRs iy — B Z0VEN Loars iy + 10EN Laqry 2B )
— e[| V3(v- 6f)||Lm(1RE’;x1R+) + ||V(W§)||vaq(]Ri><]R+)
—eollévllwzims wryy — SlEVOVUIlLar, Wi my))

< V(16 amaqu ey + o Flmacus ey + - el pmagy e
+ v §§||LG(IR+,WI}(]RS +[vVE]| . 4(R3 xR4) T 1vVE|l La(r,, W (R2))
T 1EVeVlloams xmr ) + R? ||Uv§||LP-q(]Ri><]R+))-

Therefore, choosing R large enough, ¢ and €y small enough, recalling that £ = 1
on B, and { = 0 outside on B,, and G = v — 2VUV§ — UA§ + 7TV§ + &g,

||Ut||Lp,q(Qj) + ||’U||LLI((_T2,0)7W3(Bj)) + ||V7T||Lp,q(Qj)

<N (”gHLp,q(Q;r) + HUHLP,q(Q;) + ||Vv||Lp,q(Q;) + ||7r||Lp,q(Q;))
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