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THE BOUNDARY HARNACK PRINCIPLE IN HOLDER
DOMAINS WITH A STRONG REGULARITY

HyeJIN KM

ABSTRACT. We prove the boundary Harnack principle and the Carleson
type estimate for ratios of solutions u/v of non—divergence second order
elliptic equations Lu = a;;D;;u + b;D;u = 0 in a bounded domain 2 C
R™. We assume that b; € L™(Q2) and € is a Holder domain of order
a € (0,1) satisfying a strong regularity condition.

1. Introduction

Let Q be a bounded domain in R™, n > 2. We consider second order elliptic
equations in non-divergence form,

(1) Lu:= aijDiju + szlu =0 in Q,

with measurable coefficients a;; and b;. Assume that a;; satisfy the uniform
ellipticity condition with the ellipticity constant v € (0,1]:

(2) A5 = Qjj, V|£|2 < aijfifj < l/_1|€|2 for all f e R".

Throughout this paper, we use notations D; := 0/0z;, D;; := D;D; and the
summation convention over repeated indices is imposed. We denote

(3) S:=5(Q):= / |b|"dzr < 0o,  where b := (by,...,by).
Q

The operator L in (1) is considered as a second order operator acting on the
functions u € W(Q) := W2"(Q) N C(Q), which implies that u, Diu, Djju
belong to the Lebesgue space L™()) for any open set ' C Q' C Q, and
the equality in (1), or inequalities Lu < 0, Lu > 0, are understood almost

everywhere (a.e.) in €.

Definition 1. A domain 2 C R” is called a Hdélder domain of order « for
a € (0,1] if for every z € 99, there exist a neighborhood U of z, an orthonomal
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coordinate system CS, and a function ¥ : R*~! — [—~A, A], which is a Holder
continuous function of order «, i.e.,

4) v (@) -T(@) | <A(z—-g*A1), 7,5€ R and a constant A > 1,

such that QNU = {z = (z1,...,2n) €U 1 2y > ¥(x1,...,25—1) in CS}. Here
a A'b denotes the minimum of a and b and a notation 0f2 is the boundary of an
open set (2 C R”.

In other words, a Holder domain €2 of order « is a set whose boundary is
locally represented by the graph of a Holder function ¥ of order o and the
constant A.

Definition 2. If there exists a constant y € (0,1) such that the Lebesgue
measure

(5) |B-(2)\ Q| > p-|B:] forall zeTl andr >0,

where B,.(z) is a ball of radius r > 0 centered at z € R", then a subset I' C 99
is strongly regular, or satisfies a strong reqularity condition.

Lemma 1.1. Let Q be a Holder domain of order o € (0,1] and z € 9Q. From
(4), there exists a constant K > 1 depending only on o, A and R such that

(6) d(z) < 6(x) < Kd*(x), Vo € Qr(z) := QN Bg(z),

where d(x) = dist(xz,08) is a distance function and 6(z) := x, — U(Z) with
r=(%,7,) €EQCR" I xR.

Proof. First, if d(x) = §(z), then (6) is trivial with K = R'~® because of
d(z) < R for all z € Qr(z).

Next, assume that d(z) < §(x). There exists a point y = (g, ¥(g)) € N
such that d(x) = |z — y| for x = (Z,x,) € Qr(z). So we have

5(x) = |on = V(@)| < |on —V(G)]+[V(Z) - V(F)|
<d@) + Az - g|* A1) < RYd%(x) + Ad*(z).
Thus, in this case K = R'~® + A, depending only on a, A, and R. O

It was shown in [2] that the boundary Harnack principle holds for non—
divergence elliptic equations with a measurable bounded drift b, € L>(f) in
Holder domains of an order o € (0,1] provided a boundary of the domain
satisfies a strong regularity condition. In this paper, we extended the result
in [2] to a measurable unbounded coefficient b; € L™(Q2) to prove the Carleson
type estimate and the boundary Harnack principle.

In [3, 4], under the assumption of a measurable unbounded drift, the bound-
ary Harnack principle with weak regularity condition was proved in the twisted
Holder domains of @ € (1/2,1] by using the interior Harnack inequality and
the growth lemma [7]. And, in [5], more direct proof of the boundary Har-
nack principle for the ratios u/v of positive solutions to (1) was given in John
domains, which are special cases of twisted Holder domains of order o = 1.
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We will use the similar approach to prove the Carleson type estimate and the
boundary Harnack principle in the Hélder domains of e € (0, 1]. Note that the
assumption of b; € L™(Q) is the most possible generalization of the drift coeffi-
cient, as the interior Harnack inequality fails when the assumption b; € L™(Q)
is weakened by b; € L™ ¢(Q)) with an arbitrary small £ > 0 [7].

In fact, the classes of Lipschitz domains and Holder domains of order a = 1
are identical and Safonov proved that the boundary Harnack principle holds for
non—divergence elliptic equations with a unbounded drift in Lipschitz domains
in [S10]. Thus we will prove that the boundary Harnack principle holds for
non—divergence elliptic equations with a unbounded drift in Holder domains of
order o € (0,1). In addition, a strong regularity on €2 is assumed in this paper.

The main purpose of the paper is to prove:

Theorem 1.2 (Boundary Harnack principle). Let Q C Bg,(z), for some z €
Q, be a bounded Hoélder domain of order a € (0,1) and, for yo € 9Q and
0 < 2R < Ry, let T := 0Q N Bagr(yo) be strongly regqular with a constant p in
Definition 2. Let xo € Q with d(xg) > 0 where d(x) := dist(z,0Q) is a distance
function, and u,v € W(Q) such that

u>0, v>0 Lu=Lv=0 a.e inf)

)

and u=0 onI'. Then we have

(7) sup — < N- u(xo),
Qr(yo) V ’U(:L'O)

where the constant N depends only on n,v, S, pu, o, A, R, Ro, and d(x¢).

The rest of the paper is organized as follows. In Section 2, we describe the
growth lemma and the interior Harnack inequality. From the interior Harnack
inequality, we derive the upper and lower estimates for the positive solution of
second order equations (1). Then, by using these estimates and the interior
Harnack inequality, we prove the Carleson type estimates in Holder domains
of & € (0,1). The following Section 3 contains the proof of Theorem 1.2, the
boundary Harnack principle, which is our main theorem in the paper.

Through the paper, N, ¢ (with indices or without) denote different constants
depending only on the prescribed quantities such as n, v, S, etc. The depen-
dence is indicated in the parentheses: N = N(n,v,S,...), c=c¢(n,v,S,...). In
addition, we will use a notation |€2| which is its Lebesgue measure. We also
denote by || the length of a rectifiable curve + in R™.

2. Auxiliary statements

The following two statements, a growth lemma and the interior Harnack
inequality, are main ingredients to prove our results and Safonov proved them
in [7] (Lemma 2.5 and Theorem 3.1).
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Lemma 2.1 (Growth lemma). Let ) be a bounded open set in R™, and let
u€ W(Q), zg € Q, and r > 0 be such that

(8) u>0, Lu>0ae inQ; andu=0 on (9Q) N Bar(z0).

We claim that for an arbitrary constant uy € (0,1), there is a constant B =
Bi(n,v, S, pu1) € (0,1), such that from the estimate for the Lebesque measure

(9) |Br(w0) \ Q| > pa - | By|

it follows

(10) sup u< 1+ sup u.
Qr(xo0) Qa2 (z0)

Theorem 2.2 (Interior Harnack inequality). Let u be a function in W (DBs,),
where Bs, := Bg,(xg) for some xg € R™ and r > 0, and let

u >0 in Bg,; Lu:=a;;Dijju+b;Dyu =0 a.e. in Bg,.
Then
(11)  supu < Ny- iélfu, where Ny = No(n,v,S)>1, S:= / |b|"dx.

BT BST

From this inequality, if u € W(Q), v > 0in Q, and Lu = 0 a.e. in €, then
(12)  Ny'u(y) <wu(z) < Nou(y) for z,y€Q with |z —y| <d(z)/8.

By iterating these inequalities, the following upper and lower estimates for u(z)
can be derived.

Theorem 2.3. Let Q be a Holder domain of order a € (0,1), and let u € W(Q)
be a function satisfying u > 0 in Q, Lu =0 a.e. in Q. Then

(13) u(z) < Nyexp (cd® (z))u(zo) for all z € Q,

(14) u(z) > Ny 'exp (—cd®(z))u(zo) for all z € Q,

with constants N1 = Ny(n,v, S,a, A, R,d(x0)) and ¢ = ¢(n,v, S, o, A, R, d(z))
and xg € Q with 0 < d(xo) < R.

Proof. Let us denote

(15) M = s?zpexp (—cd* Yz))u(z), d(z):= dist (z,09).

Since exp (—cd*~!(z)) — 0 as d — 0T, there exists zy € 2 such that

M = sgp exp (—cd® '(2))u(z) = exp (— cd® ! (20))u(z0).

The constant ¢ > 0 will be specified later. Note that the twisted Holder domains
of order a contain Holder domain of order « ([3, 4]). Thus there exists a
rectifiable curve «y(zg,xo) such that |y(z0,y)| < d(y) + é(y) for y € (20, x0)
(see [3], Lemma 1.3 or Theorem 2.1), and the rectifiable curve y(zo, z¢) is chosen
as a union of subcurves y(w;,w;4+1) such that wy = 2o and |y(w;, wjt1)| < 75
for each j with r; := d(w,;)/8 and r; < r;41.
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Next, with this rectifiable curve y(zo, o), let us assume that d(zo) > 2 .
Then we will show that, if z1 € (20, z¢) with d(z1) = 2d(20) and d(z) < d(z1)
for all z € ¥(z9, 21), then

(16) u(z0) < exp (cod® *(20)) - u(z1).

The constant ¢y will be determined later. Note that, from (6), there exists a
constant K depending only on A, a, and R such that d(z¢) < Kd*(xo) =: Ro.
Since 2d(zp) < d(zg) < Kd*(zg), there is a constant co = ca(A, o, R, d(x0))
such that 1 < cad® 1(2). In addition, since the ball of radius d(z1) cen-
tered at z; touches O at some point z* € 9Q and d(z1) < Kd*(zo) =: Ry,
z1 € Qap,(z*) and |y(z0,21)] < d(z1) + d(z1). So, there is a constant ¢; =
c1(A, ay R, d(zg)) such that |v(zo,21)] < c1d®(z1) = 2%1 d¥(20). The curve
v(#0,71) is divided into p subcurves y(w;_1,w;) for 1 < j < p with wy = 2o
and wy, = z1. Then,

(=0, 20l _ , 2%c1d®(20)
o B d(20)/8
< (e2 +2°"2¢y) d* M (20) = e3d* " (20),

(17) p<1+

where ¢3 = c3(A, a, R, d(x0)). Since |wj —wjt1] < r; = d(w;)/8 for each j, the
interior Harnack inequality (11) implies

(18) u(z0) = u(wo) < Nou(wq) < -+ < Niu(w,) = Nfu(z1).
This is equivalent to (16) with ¢g = ¢51n Ny > 0.
Meanwhile, by the definition of M in (15) and the result (16),
M = exp (—cd®* " (20)) u(z0)

(19) < exp (—ed* (20) + cod* ' (20)) u(z1)

<exp(c(2°7' —1)+co)d* " (20)) M.
Since 27! < 1, if we choose a constant ¢ in such a way that ¢(1 —2%71) > o,
the right hand side of (19) is strictly less than M, which is a contradiction.
This implies that d(z1) = 2d(zo) is impossible. Therefore, for this choice of c,
we have d(zg) < 2d(z9). In this case, a point 2 can be still reached from a

point zo in a finite number of steps such that u(z) < exp (co d*~*(20)) - u(zo).
Finally, from the definition of M and (16) with z; = x¢, we get

(20) M < u(zp) < exp (co 2" d* !(z0)) u(zo) := Nyu(o),
(21) u(z) < exp (cd* ' (z)) M < Nyexp (cd*(z)) u(zo).

Since we can approximate u by functions u + ¢, € > 0, we can assume that
u > constant > 0 on €. The proof of (13) was mainly based on the inequalities

(12). Note the inequalities (12) are still valid with v = 1/u. Therefore, the
estimate (13) holds for v(x) which is equivalent to (14). O
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Theorem 2.4 (Carleson Type Estimate). Let 2 C Bg,(2), for some z € Q, be
a bounded Holder domain of order o € (0,1) and, for yo € 00 and 0 < 2R <
Ry, let T := 0Q N Bag(yo) be strongly reqular with a constant p in Definition
2. Assume that u is a function in W(Q2), u > 0 and Lu =0 in Q, and u =0
on I'. Then,

(22) sup  u < Nu(zg),
QQBR(yo)

where the constant N depends only on n,v, S, u, R, Ro, A, o, and d(xo) > 0 for
g € Q.

Proof. Note that I' £ 99 because, if u = 0 on 92 and Lu = 0 a.e. in 2, by the
maximum principle, it implies v = 0 in €2, which contradicts the assumption
u > 0 in Q. Since a point xy can be replaced by any other interior point in
Q by the interior Harnack inequality with an appropriate replacement of the
constant N, we assume that xo € Qgr(yo) := QN Br(yo)-

Let us denote

(23) My :=supexp (—daA(:I:)) ~u(x), where do(z) := dist (z, (OQ) \ T),
Q
and a fixed constant A satisfies the equality (A + 1)(a — 1) =1 — A. Since

do(z) =0on (OQ)\T and u = 0 on T, for any constant A =2/a—1 > 1, there
exists zg €  such that

(24) My = exp (—dO_A(zo)) -u(zp).

For a small constant 0 < h < dg(z0)/8, which will be specified later, consider
two cases: (i) d(z0) < h, and (ii) d(z) > h.

Consider the first case. Since d(zp) < h < do(20)/8, there is a point z* € T

such that d(zo) = |20 —2*| < h. Since I satisfies the strong regularity condition
(5) and Bh(z*) - th(Z()),

[Ban(20) \ Q) = [Bn(2") \ Qf = p|Bn| = 0| Ban|, where pig = 27" € (0, 1).
By the growth lemma,

(25) u(z0) < sup  u<pPr- sup  u=Pu(z),
Qﬁth(Zo) QﬁB4h(ZU)

where 81 = B1(n,v, S, 1) € (0,1) and 21 € QN Byp(20). Thus we have
My = exp (—daA(zo)) u(zo)
(26) < exp (—dy " (20)) - Bru(z1)
< exp [dO_A(zl) - daA(zo)] - 1 M.

By the triangle inequality, for z; € QN IBan(20), do(20) < 4h+ do(z1) and the
condition h < dy(20)/8,

dg*(21) — dy ™ (20) < (do(z0) — 4h) ™" — dg*(20)
(27) < 4hA (do(z0) — 4h) 47!
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<24T3RA L dg A (2).
Now, fix a constant e1 = e1(n,v, S, a, u, Rg) > 0 such that 5y et < 1, and

choose

. 1 €1
(28) h = h0d64+1(z0), where hg :mm{@’M}'

From this choice of h and (27), it guarantees h < do(z0)/8 and it gives us a
contradiction My < S1e°t My < My. Therefore, d(zo) < h is impossible.
Assume that d(zo) > h. By Theorem 2.3 and d®~'(zp) < h$ ™ dy ™ (20),

(29)  u(20) < Nyexp (cd* !(z0)) u(wo) < Nyexp (ch§™* dé_A(zo)) u(zxo).
Let ¢; := chg‘_l, which depends only on the prescribed quantities n, v, S, «,
A, R, Ry, d(xo), and p. Therefore,
My = exp (—dO_A(zO)) u(z0) < Nyexp [e1 di=(z0) — dO_A(zO)] u(zo)
(30) = Njexp [daA(zo) (c1 do(20) — 1)] w(zo)
< Njexp (cf) u(xp).
The last inequality follows from the elementary inequality ci1dp(zo) < 1+

(cldo(zo))A. Let Ny := Nyexp (cf') < oo. Since do(z) > R in QN Br(yo),
we have

(31)  wu(z) <exp (daA(x)) - My < exp (R™*) Mo < Naexp (R™*) u(zo).
Finally, u(z) < Nu(zo) for all z € QN Bg(yo), where N = Ny exp (R~*) and

the constant N depends only on n,v, S, i, R, Ro, A, a, and d(zg). The proof is
complete. ([

3. Proof of boundary Harnack principle
Finally, we will prove Theorem 1.2 in this section.

Proof of Theorem 1.2. Without loss of generality, we assume that 0 < R < 1,
yo = 0, and u(zg) = v(xg) = 1. In addition, we also assume zg € Qgr(yo).
Under these assumptions, we denote

(32) pr:=2"F3R, Ry:=R-+4pp, hp:= sop}v/a for k=0,1,...,

where € is a small positive constant, which will be specified later. We also
denote,

(33) Ty == Qr, N{d(x) < by}, Ty = Qg N {hgs1 < d(z) < hi}.
First, we will show the following:

(34) u(z) < Nyu(zo) for o € Ty := Q3p/o N {d(zx) < ho},

where N; depends only on g, n, v, S, u, R, Ro, A, a, and d(zo). Assume that

g0 < 271/, This assumption implies

(35) 2/0cg <1< pi M fork=0,1,2,....
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Note that €9 < 27! and hg := Eopé/a < gopo < R/16. For each x € Ty, there
is a point z* € 9§ such that |z — z*| = d(z) < h¢. By the triangle inequality,

R 3R
(36) |2*| < |zF —z|+ x| < TREEY and x € Qp,,(2") C Qapy (2°) C Q2p.

According to Carleson type estimate in Theorem 2.4 with yo = z* and R = hy,
u(z) < Nyu(zg) for an arbitrary point x in Ty, where N7 depends on ¢ and
the prescribed constants n, v, S, u, R, Ro, A, a, and d(xg). Therefore, the
proof of (34) is complete.

Second, we will show

(37) w(z) := Nv(x) —u(z) >0 for z € Qr := QN Bg,

which is an equivalent form of (7) with an assumption u(zg) = v(zg) = 1.
From Theorem 2.3, we have

(38) u(z) < Nau(xo) and v(x) > Ny v(ze) in QN {d(z) > h},

where h is a positive constant and the constant Ns depends only on n, v, S,
a, A, d(zo), and h. These inequalities imply

w(@) _ \ou@o)
< N. f QNA{d(x) > ho}.
(39) 0@ =N o) or z € QN{d(z) > ho}
In addition, by (38), for z € Qr N {d(z) > ho},
(40) w(z) > N-Ny' =Ny >0, if N> N

Here the constant Ny depends on n, v, S, «a, A, d(xo), €9, and R.

The remaining part of Qp, i.e., Qg N {d(x) < ho}, is covered by the union
of sets T,j since R < Ry < 3R/2 for k = 0,1,2,.... Thus we will show that
w(z) > 0 in T,:r for each k. To prove this, we will show the stronger inequality:

(41) My, :=infw > sup (~w), =:my, fork=0,1,2,...,
Tt Tk
where (—w), = max{—w,0}. To prove (41), we use the principle of mathe-

matical induction. In the basis case k = 0, by (34) and (38) with h = hy, we
have

(42) My>N-Ny' =N >Ny >mg  if N >2N,N.
Suppose the estimate (41) is true for some k > 0. Then,

w> Mg >0 on T_,:r,

w=Nv>0 on Qg N{d=0}.

Since Qg, N{d(x) = hgy+1} C T_,j, the open set Oy, := T N{w < 0} is contained
in Qp, N{d(z) < hiky1} and w = 0 on IO, N, . For fixed k, a function m(R)
is defined by

(43) m(R) := sup (—w)y for0< R < Ry.

TeNBRr
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By the definition of Ty, mi = m(Rg), and mgy1 = m(Rgy1) since w > 0 on

T+
-
Next, we will show
(44) m(p — 2hi) < Br-m(p) for p € (2hk, Ry],
where a constant 81 € (0,1) depends only on n,v, S, and u. Note that 2k =
2e0py/* < pr since g9 < 271 and 1 < pp V. If m(p — 2hy) = 0, this is

trivial. So let us assume m(p —2hy) > 0. Since the function w satisfies Lw = 0
in O and w = 0 on 00, N B,_2p,, by the maximal principle, there exists
a point zo € O N (0B,—2n,) such that 0 < m(p — 2hy) = —w(2p). Since
O C Qg N {d(:z:) < hk-‘,—l}, d(ZO) = |ZO — Zl| < hg+1 = 2_1/ahk < hk/2 for
some point z; € 9. Using the strong regularity property (5) with the domain
Q, we have

(45) [ Bny, (20) \ QU = [Bn, j2(20) \ Q| = p|Bp, j2| = - 27" Bn,|.
Note that w = 0 on (00y) N Bg,. By applying the growth Lemma 2.1 to the
function —w in O = T, N {w < 0} with r = hy, and py = p- 277,

(46) —w(z0) < sup (—w)<pBr  sup (—w)< P sup (—w).
OkmBhk(ZO) OkmB‘th(zo) OkﬁBP

Here the last inequality follows because (0Oy) N Bap,(20) C (00) N By,

where a point zg € Ok N (9B,-2pn,). Since m(R) = supr,qp, (~w), =

SupOkﬁBR (_w)Jr)

m(p — 2hk) = —w(zo) < B1 sup (—w) = Gim(p).
0xNB,

The proof of (44) is complete.

Let Ek = R+3pg. Then Ry41 < Ek < Ry and Rk = Ri—pi < Rx—pp-2hy,
where py := [pr/2hi]. Since an integer part [a] > max{1,a/2} > a/2 for any
lo <2/ < 27y, pr = [pr/2ha] >
pr/4h = p,l;l/a/élso. Hence, by iterating (44) py times with p = Ry, we have
(47)

my = m(ék) < m (Ry — pr2hi) < f¥*m (Rg) < exp(—c1 551 p,lcfl/a)mk,
where ¢1 = ¢1(n,v,S,u) = —InB1/4 > 0. Similarly, mp41 < Emy can be

derived, where & := exp(—c; 551 pllc—l/a).

real number a > 1 and h; := Eop,lC

Now we will prove the following:

(48) inf wy > ng inf wg,
+ T+
k41 k

where wy := w+my, and ng, = exp(—0258‘71p,1671/a) with eg = ea(n, v, S, A, o, R)
> 0. Note that each function w;, > 0 and Lw, = 0 in T}, := Qﬁk N{d(x) <

hi}. We will apply the interior Harnack inequality to a function wy in T} to
get the lower estimate for My in terms of My. Choose an arbitrary point
a = (z,y) € Ty, = Qr,yy N {hks2 < d(a) < higs1}, where z € R"™! and
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y € R. Let @ = (x,9), where d(a) = hgt1 = Eopif‘l. Let a rectifiable line
v(a,a) be a vertical line connecting from the point a to the point a. Take
si == (z,y;) € 7v(a,a), where a = sg, @ = sq,, and y; = y + Z;;}) r; with
r; <d(s;)/16 for j =0,1,2,...,qr. Here a constant g, will be specified later.
Note that 27%hp,o < 7o and rj < rjp1 for all j. In addition, from (6) for
a € Sl3r/2, there exists a constant K depending only on a, A, and R such that
é(a) < Kd*(a) = Khf,,. Now, we will have another constrained condition
g0 < K~/ Then, we have

(49) Iv(a,a)] < 6(a) < KeGprir < prr-
Therefore, for each s; € y(a, ),
(50) |SZ| + 8r; < |So| + |5i — So| +8r; < Ri+1 + pr+1 + 2_1hk+1 < E}c

This implies Bg,, (s;) C Tj := Qp, NA{d(z) < hg} for all s;. Since [y(a,a)| <

_ 1 . .
Ke§pryr and |s; — s;—1] > 2 4€0pkf; for all ¢, we can choose a finite number

of points sg, s1,...,5q, € 7(a,a) such that s = a € Tktrl and sq, = a € T,j
with qx < |v(a,a)|/2 *hgre = csg_lp}v—l/a, where a constant ¢ depends on

a, A, and R. Since Bs,,(s;) C T), we can apply the interior Harnack inequality
(2.2) to the function wy in each ball Bs,, (s;):

(51)  wi(@) = wi(sq,) < Nowk(sq—1) < -+ < Ng*wi(s0) = Ng*wy(a).

Therefore, wy (@) < exp(025371pi71/a)wk(a), where ¢p := ¢In Ny > 0 depends

only on n, v, S, a, A, and R. Since a is an arbitrary point in T,:F_H,

(52) in+f wy, < wg(a) < exp(cQag‘flpfl/a) iI+1f W
T,

k k+1

Lastly, let’s assume g < (cl/cQ)l/O‘, where ¢; and ¢y are constants in (47)

and (52), which guarantee that & < mn; for all k. Finally, by taking ¢g =
min{2-Y® K=1% (¢;/co)*/*}, which depends only on n, v, S, A, «, and u,
from (47) and (52), we have

M1 + M < i (Mg + M)
Myy1 +mp > g (Mg +my) .

This implies My+1 — mp+1 > np(Myg — my). Therefore, by the principle of
mathematical induction, (41) is true for all k. In conclusion, the estimate (37)
is true with N = N(gg) := max{NZ,2N5N;}, which depends on n, v, S, u, a,
A, R, Ry, and d(z¢). The proof is complete. O
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