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THE BOUNDARY HARNACK PRINCIPLE IN HÖLDER

DOMAINS WITH A STRONG REGULARITY

Hyejin Kim

Abstract. We prove the boundary Harnack principle and the Carleson
type estimate for ratios of solutions u/v of non–divergence second order
elliptic equations Lu = aijDiju + biDiu = 0 in a bounded domain Ω ⊂

R
n. We assume that bi ∈ Ln(Ω) and Ω is a Hölder domain of order

α ∈ (0, 1) satisfying a strong regularity condition.

1. Introduction

Let Ω be a bounded domain in R
n, n ≥ 2. We consider second order elliptic

equations in non-divergence form,

(1) Lu := aijDiju+ biDiu = 0 in Ω,

with measurable coefficients aij and bi. Assume that aij satisfy the uniform

ellipticity condition with the ellipticity constant ν ∈ (0, 1]:

(2) aij = aji, ν|ξ|2 ≤ aijξiξj ≤ ν−1|ξ|2 for all ξ ∈ R
n.

Throughout this paper, we use notations Di := ∂/∂xi, Dij := DiDj and the
summation convention over repeated indices is imposed. We denote

(3) S := S(Ω) :=

∫

Ω

|b|ndx < ∞, where b := (b1, . . . , bn).

The operator L in (1) is considered as a second order operator acting on the

functions u ∈ W (Ω) := W 2,n
loc (Ω) ∩ C(Ω), which implies that u, Diu, Diju

belong to the Lebesgue space Ln(Ω′) for any open set Ω′ ⊂ Ω′ ⊂ Ω, and
the equality in (1), or inequalities Lu ≤ 0, Lu ≥ 0, are understood almost
everywhere (a.e.) in Ω.

Definition 1. A domain Ω ⊂ R
n is called a Hölder domain of order α for

α ∈ (0, 1] if for every z ∈ ∂Ω, there exist a neighborhood U of z, an orthonomal
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coordinate system CS, and a function Ψ : Rn−1 → [−Λ,Λ], which is a Hölder
continuous function of order α, i.e.,

(4) |Ψ(x̃)−Ψ(ỹ) | ≤ Λ (|x̃− ỹ|α ∧ 1) , x̃, ỹ ∈ R
n−1 and a constant Λ > 1,

such that Ω∩U := {x = (x1, . . . , xn) ∈ U : xn > Ψ(x1, . . . , xn−1) in CS}. Here
a∧ b denotes the minimum of a and b and a notation ∂Ω is the boundary of an
open set Ω ⊂ R

n.

In other words, a Hölder domain Ω of order α is a set whose boundary is
locally represented by the graph of a Hölder function Ψ of order α and the
constant Λ.

Definition 2. If there exists a constant µ ∈ (0, 1) such that the Lebesgue
measure

(5) |Br(z) \ Ω| ≥ µ · |Br| for all z ∈ Γ and r > 0,

where Br(z) is a ball of radius r > 0 centered at z ∈ R
n, then a subset Γ ⊂ ∂Ω

is strongly regular, or satisfies a strong regularity condition.

Lemma 1.1. Let Ω be a Hölder domain of order α ∈ (0, 1] and z ∈ ∂Ω. From

(4), there exists a constant K > 1 depending only on α,Λ and R such that

(6) d(x) ≤ δ(x) ≤ Kdα(x), ∀x ∈ ΩR(z) := Ω ∩BR(z),

where d(x) := dist(x, ∂Ω) is a distance function and δ(x) := xn − Ψ(x̃) with

x = (x̃, xn) ∈ Ω ⊂ R
n−1 × R.

Proof. First, if d(x) = δ(x), then (6) is trivial with K = R1−α because of
d(x) ≤ R for all x ∈ ΩR(z).

Next, assume that d(x) < δ(x). There exists a point y = (ỹ,Ψ(ỹ)) ∈ ∂Ω
such that d(x) = |x− y| for x = (x̃, xn) ∈ ΩR(z). So we have

δ(x) = |xn −Ψ(x̃)| ≤ |xn −Ψ(ỹ)|+ |Ψ(x̃)−Ψ(ỹ)|

≤ d(x) + Λ (|x̃− ỹ|α ∧ 1) ≤ R1−αdα(x) + Λ dα(x).

Thus, in this case K = R1−α + Λ, depending only on α,Λ, and R. �

It was shown in [2] that the boundary Harnack principle holds for non–
divergence elliptic equations with a measurable bounded drift bi ∈ L∞(Ω) in
Hölder domains of an order α ∈ (0, 1] provided a boundary of the domain
satisfies a strong regularity condition. In this paper, we extended the result
in [2] to a measurable unbounded coefficient bi ∈ Ln(Ω) to prove the Carleson
type estimate and the boundary Harnack principle.

In [3, 4], under the assumption of a measurable unbounded drift, the bound-
ary Harnack principle with weak regularity condition was proved in the twisted
Hölder domains of α ∈ (1/2, 1] by using the interior Harnack inequality and
the growth lemma [7]. And, in [5], more direct proof of the boundary Har-
nack principle for the ratios u/v of positive solutions to (1) was given in John
domains, which are special cases of twisted Hölder domains of order α = 1.
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We will use the similar approach to prove the Carleson type estimate and the
boundary Harnack principle in the Hölder domains of α ∈ (0, 1]. Note that the
assumption of bi ∈ Ln(Ω) is the most possible generalization of the drift coeffi-
cient, as the interior Harnack inequality fails when the assumption bi ∈ Ln(Ω)
is weakened by bi ∈ Ln−ε(Ω) with an arbitrary small ε > 0 [7].

In fact, the classes of Lipschitz domains and Hölder domains of order α = 1
are identical and Safonov proved that the boundary Harnack principle holds for
non–divergence elliptic equations with a unbounded drift in Lipschitz domains
in [S10]. Thus we will prove that the boundary Harnack principle holds for
non–divergence elliptic equations with a unbounded drift in Hölder domains of
order α ∈ (0, 1). In addition, a strong regularity on Ω is assumed in this paper.

The main purpose of the paper is to prove:

Theorem 1.2 (Boundary Harnack principle). Let Ω ⊂ BR0
(z), for some z ∈

Ω, be a bounded Hölder domain of order α ∈ (0, 1) and, for y0 ∈ ∂Ω and

0 < 2R ≤ R0, let Γ := ∂Ω ∩ B2R(y0) be strongly regular with a constant µ in

Definition 2. Let x0 ∈ Ω with d(x0) > 0 where d(x) := dist(x, ∂Ω) is a distance

function, and u, v ∈ W (Ω) such that

u ≥ 0, v > 0 in Ω; Lu = Lv = 0 a.e. in Ω,

and u = 0 on Γ. Then we have

sup
ΩR(y0)

u

v
≤ N ·

u(x0)

v(x0)
,(7)

where the constant N depends only on n, ν, S, µ, α,Λ, R,R0, and d(x0).

The rest of the paper is organized as follows. In Section 2, we describe the
growth lemma and the interior Harnack inequality. From the interior Harnack
inequality, we derive the upper and lower estimates for the positive solution of
second order equations (1). Then, by using these estimates and the interior
Harnack inequality, we prove the Carleson type estimates in Hölder domains
of α ∈ (0, 1). The following Section 3 contains the proof of Theorem 1.2, the
boundary Harnack principle, which is our main theorem in the paper.

Through the paper, N, c (with indices or without) denote different constants
depending only on the prescribed quantities such as n, ν, S, etc. The depen-
dence is indicated in the parentheses: N = N(n, ν, S, . . .), c = c(n, ν, S, . . .). In
addition, we will use a notation |Ω| which is its Lebesgue measure. We also
denote by |γ| the length of a rectifiable curve γ in R

n.

2. Auxiliary statements

The following two statements, a growth lemma and the interior Harnack
inequality, are main ingredients to prove our results and Safonov proved them
in [7] (Lemma 2.5 and Theorem 3.1).
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Lemma 2.1 (Growth lemma). Let Ω be a bounded open set in R
n, and let

u ∈ W (Ω), x0 ∈ Ω, and r > 0 be such that

(8) u ≥ 0, Lu ≥ 0 a.e. in Ω; and u = 0 on (∂Ω) ∩B2r(x0).

We claim that for an arbitrary constant µ1 ∈ (0, 1), there is a constant β1 =
β1(n, ν, S, µ1) ∈ (0, 1), such that from the estimate for the Lebesgue measure

(9) |Br(x0) \ Ω| ≥ µ1 · |Br|

it follows

(10) sup
Ωr(x0)

u ≤ β1 · sup
Ω2r(x0)

u.

Theorem 2.2 (Interior Harnack inequality). Let u be a function in W (B8r),
where B8r := B8r(x0) for some x0 ∈ R

n and r > 0, and let

u > 0 in B8r; Lu := aijDiju+ biDiu = 0 a.e. in B8r.

Then

(11) sup
Br

u ≤ N0 · inf
Br

u, where N0 = N0(n, ν, S) ≥ 1, S :=

∫

B8r

|b|ndx.

From this inequality, if u ∈ W (Ω), u > 0 in Ω, and Lu = 0 a.e. in Ω, then

(12) N−1
0 u(y) ≤ u(x) ≤ N0u(y) for x, y ∈ Ω with |x− y| ≤ d(x)/8.

By iterating these inequalities, the following upper and lower estimates for u(x)
can be derived.

Theorem 2.3. Let Ω be a Hölder domain of order α ∈ (0, 1), and let u ∈ W (Ω)
be a function satisfying u > 0 in Ω, Lu = 0 a.e. in Ω. Then

u(x) ≤ N1 exp
(
c dα−1(x)

)
u(x0) for all x ∈ Ω,(13)

u(x) ≥ N−1
1 exp

(
− c dα−1(x)

)
u(x0) for all x ∈ Ω,(14)

with constants N1 = N1(n, ν, S, α,Λ, R, d(x0)) and c = c(n, ν, S, α,Λ, R, d(x0))
and x0 ∈ Ω with 0 < d(x0) < R.

Proof. Let us denote

(15) M := sup
Ω

exp
(
− c dα−1(x)

)
u(x), d(x) := dist (x, ∂Ω).

Since exp
(
−c dα−1(x)

)
→ 0 as d → 0+, there exists z0 ∈ Ω such that

M := sup
Ω

exp
(
− c dα−1(x)

)
u(x) = exp

(
− c dα−1(z0)

)
u(z0).

The constant c > 0 will be specified later. Note that the twisted Hölder domains
of order α contain Hölder domain of order α ([3, 4]). Thus there exists a
rectifiable curve γ(z0, x0) such that |γ(z0, y)| ≤ d(y) + δ(y) for y ∈ γ(z0, x0)
(see [3], Lemma 1.3 or Theorem 2.1), and the rectifiable curve γ(z0, x0) is chosen
as a union of subcurves γ(wj , wj+1) such that w0 = z0 and |γ(wj , wj+1)| ≤ rj
for each j with rj := d(wj)/8 and rj ≤ rj+1.
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Next, with this rectifiable curve γ(z0, x0), let us assume that d(x0) ≥ 2 d(z0).
Then we will show that, if z1 ∈ γ(z0, x0) with d(z1) = 2 d(z0) and d(z) ≤ d(z1)
for all z ∈ γ(z0, z1), then

(16) u(z0) ≤ exp
(
c0 d

α−1(z0)
)
· u(z1).

The constant c0 will be determined later. Note that, from (6), there exists a
constant K depending only on Λ, α, and R such that d(x0) < Kdα(x0) =: R0.
Since 2d(z0) ≤ d(x0) ≤ Kdα(x0), there is a constant c2 = c2(Λ, α,R, d(x0))
such that 1 ≤ c2 d

α−1(z0). In addition, since the ball of radius d(z1) cen-
tered at z1 touches ∂Ω at some point z∗ ∈ ∂Ω and d(z1) ≤ Kdα(x0) =: R0,
z1 ∈ Ω2R0

(z∗) and |γ(z0, z1)| ≤ d(z1) + δ(z1). So, there is a constant c1 =
c1(Λ, α,R, d(x0)) such that |γ(z0, z1)| ≤ c1d

α(z1) = 2αc1 d
α(z0). The curve

γ(z0, z1) is divided into p subcurves γ(wj−1, wj) for 1 ≤ j ≤ p with w0 = z0
and wp = z1. Then,

p ≤ 1 +
|γ(z0, z1)|

r0
≤ 1 +

2αc1d
α(z0)

d(z0)/8
(17)

≤
(
c2 + 2α+3c1

)
dα−1(z0) = c3 d

α−1(z0),

where c3 = c3(Λ, α,R, d(x0)). Since |wj −wj+1| ≤ rj = d(wj)/8 for each j, the
interior Harnack inequality (11) implies

(18) u(z0) = u(w0) ≤ N0u(w1) ≤ · · · ≤ Np
0u(wp) = Np

0u(z1).

This is equivalent to (16) with c0 = c3 lnN0 > 0.
Meanwhile, by the definition of M in (15) and the result (16),

M = exp
(
−c dα−1(z0)

)
u(z0)

≤ exp
(
−c dα−1(z0) + c0 d

α−1(z0)
)
u(z1)(19)

≤ exp
(
c
(
2α−1 − 1) + c0

)
dα−1(z0)

)
M.

Since 2α−1 < 1, if we choose a constant c in such a way that c(1− 2α−1) > c0,
the right hand side of (19) is strictly less than M , which is a contradiction.
This implies that d(z1) = 2 d(z0) is impossible. Therefore, for this choice of c,
we have d(x0) < 2 d(z0). In this case, a point x0 can be still reached from a
point z0 in a finite number of steps such that u(z0) ≤ exp

(
c0 d

α−1(z0)
)
·u(x0).

Finally, from the definition of M and (16) with z1 = x0, we get

M ≤ u(z0) ≤ exp
(
c0 2

1−α dα−1(x0)
)
u(x0) := N1u(x0),(20)

u(x) ≤ exp
(
c dα−1(x)

)
M ≤ N1 exp

(
c dα−1(x)

)
u(x0).(21)

Since we can approximate u by functions u + ε, ε > 0, we can assume that
u ≥ constant > 0 on Ω. The proof of (13) was mainly based on the inequalities
(12). Note the inequalities (12) are still valid with v = 1/u. Therefore, the
estimate (13) holds for v(x) which is equivalent to (14). �



1746 H. KIM

Theorem 2.4 (Carleson Type Estimate). Let Ω ⊂ BR0
(z), for some z ∈ Ω, be

a bounded Hölder domain of order α ∈ (0, 1) and, for y0 ∈ ∂Ω and 0 < 2R ≤
R0, let Γ := ∂Ω ∩ B2R(y0) be strongly regular with a constant µ in Definition

2. Assume that u is a function in W (Ω), u > 0 and Lu = 0 in Ω, and u = 0
on Γ. Then,

(22) sup
Ω∩BR(y0)

u ≤ Nu(x0),

where the constant N depends only on n, ν, S, µ,R,R0,Λ, α, and d(x0) > 0 for

x0 ∈ Ω.

Proof. Note that Γ 6= ∂Ω because, if u = 0 on ∂Ω and Lu = 0 a.e. in Ω, by the
maximum principle, it implies u = 0 in Ω, which contradicts the assumption
u > 0 in Ω. Since a point x0 can be replaced by any other interior point in
Ω by the interior Harnack inequality with an appropriate replacement of the
constant N , we assume that x0 ∈ ΩR(y0) := Ω ∩BR(y0).

Let us denote

(23) M0 := sup
Ω

exp
(
−d−A

0 (x)
)
· u(x), where d0(x) := dist (x, (∂Ω) \ Γ),

and a fixed constant A satisfies the equality (A + 1)(α − 1) = 1 − A. Since
d0(x) = 0 on (∂Ω) \Γ and u = 0 on Γ, for any constant A = 2/α− 1 > 1, there
exists z0 ∈ Ω such that

(24) M0 = exp
(
−d−A

0 (z0)
)
· u(z0).

For a small constant 0 < h ≤ d0(z0)/8, which will be specified later, consider
two cases: (i) d(z0) < h, and (ii) d(z0) ≥ h.

Consider the first case. Since d(z0) < h ≤ d0(z0)/8, there is a point z∗ ∈ Γ
such that d(z0) = |z0−z∗| < h. Since Γ satisfies the strong regularity condition
(5) and Bh(z

∗) ⊂ B2h(z0),

|B2h(z0) \ Ω| ≥ |Bh(z
∗) \ Ω| ≥ µ|Bh| = µ0|B2h|, where µ0 = 2−nµ ∈ (0, 1).

By the growth lemma,

(25) u(z0) ≤ sup
Ω∩B2h(z0)

u ≤ β1 · sup
Ω∩B4h(z0)

u = β1u(z1),

where β1 = β1(n, ν, S, µ) ∈ (0, 1) and z1 ∈ Ω ∩ ∂B4h(z0). Thus we have

M0 = exp
(
−d−A

0 (z0)
)
u(z0)

≤ exp
(
−d−A

0 (z0)
)
· β1u(z1)(26)

≤ exp
[
d−A
0 (z1)− d−A

0 (z0)
]
· β1 M0.

By the triangle inequality, for z1 ∈ Ω∩ ∂B4h(z0), d0(z0) ≤ 4h+ d0(z1) and the
condition h ≤ d0(z0)/8,

d−A
0 (z1)− d−A

0 (z0) ≤ (d0(z0)− 4h)−A − d−A
0 (z0)

≤ 4hA (d0(z0)− 4h)
−A−1

(27)



THE BOUNDARY HARNACK PRINCIPLE 1747

≤ 2A+3hA · d−A−1
0 (z0).

Now, fix a constant ε1 = ε1(n, ν, S, α, µ,R0) > 0 such that β1 e
ε1 < 1, and

choose

(28) h := h0 d
A+1
0 (z0), where h0 = min

{
1

8RA
0

,
ε1

2A+3A

}
.

From this choice of h and (27), it guarantees h ≤ d0(z0)/8 and it gives us a
contradiction M0 ≤ β1e

ε1M0 < M0. Therefore, d(z0) < h is impossible.

Assume that d(z0) ≥ h. By Theorem 2.3 and dα−1(z0) ≤ hα−1
0 d1−A

0 (z0),

(29) u(z0) ≤ N1 exp
(
c dα−1(z0)

)
u(x0) ≤ N1 exp

(
c hα−1

0 d1−A
0 (z0)

)
u(x0).

Let c1 := c hα−1
0 , which depends only on the prescribed quantities n, ν, S, α,

Λ, R, R0, d(x0), and µ. Therefore,

M0 = exp
(
−d−A

0 (z0)
)
u(z0) ≤ N1 exp

[
c1 d

1−A
0 (z0)− d−A

0 (z0)
]
u(x0)

= N1 exp
[
d−A
0 (z0) (c1 d0(z0)− 1)

]
u(x0)(30)

≤ N1 exp
(
cA1

)
u(x0).

The last inequality follows from the elementary inequality c1d0(z0) ≤ 1 +

(c1d0(z0))
A
. Let N2 := N1 exp

(
cA1

)
< ∞. Since d0(x) > R in Ω ∩ BR(y0),

we have

(31) u(x) ≤ exp
(
d−A
0 (x)

)
·M0 ≤ exp

(
R−A

)
M0 ≤ N2 exp

(
R−A

)
u(x0).

Finally, u(x) ≤ Nu(x0) for all x ∈ Ω ∩BR(y0), where N = N2 exp
(
R−A

)
and

the constant N depends only on n, ν, S, µ,R,R0,Λ, α, and d(x0). The proof is
complete. �

3. Proof of boundary Harnack principle

Finally, we will prove Theorem 1.2 in this section.

Proof of Theorem 1.2. Without loss of generality, we assume that 0 < R ≤ 1,
y0 = 0, and u(x0) = v(x0) = 1. In addition, we also assume x0 ∈ ΩR(y0).
Under these assumptions, we denote

ρk := 2−k−3R, Rk := R+ 4ρk, hk := ε0ρ
1/α
k for k = 0, 1, . . . ,(32)

where ε0 is a small positive constant, which will be specified later. We also
denote,

(33) Tk := ΩRk
∩ {d(x) < hk}, T+

k := ΩRk
∩ {hk+1 ≤ d(x) < hk}.

First, we will show the following:

(34) u(x) ≤ N1u(x0) for x ∈ T0 := Ω3R/2 ∩ {d(x) < h0},

where N1 depends only on ε0, n, ν, S, µ, R, R0, Λ, α, and d(x0). Assume that
ε0 ≤ 2−1/α. This assumption implies

(35) 21/αε0 ≤ 1 ≤ ρ
1−1/α
k for k = 0, 1, 2, . . . .
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Note that ε0 < 2−1 and h0 := ε0ρ
1/α
0 ≤ ε0ρ0 < R/16. For each x ∈ T0, there

is a point z∗ ∈ ∂Ω such that |x− z∗| = d(x) < h0. By the triangle inequality,

(36) |z∗| ≤ |z∗ − x|+ |x| <
R

16
+

3R

2
and x ∈ Ωh0

(z∗) ⊂ Ω2h0
(z∗) ⊂ Ω2R.

According to Carleson type estimate in Theorem 2.4 with y0 = z∗ and R = h0,
u(x) ≤ N1u(x0) for an arbitrary point x in T0, where N1 depends on ε0 and
the prescribed constants n, ν, S, µ, R, R0, Λ, α, and d(x0). Therefore, the
proof of (34) is complete.

Second, we will show

(37) w(x) := Nv(x) − u(x) ≥ 0 for x ∈ ΩR := Ω ∩BR,

which is an equivalent form of (7) with an assumption u(x0) = v(x0) = 1.
From Theorem 2.3, we have

(38) u(x) ≤ N2 u(x0) and v(x) ≥ N−1
2 v(x0) in Ω ∩ {d(x) ≥ h},

where h is a positive constant and the constant N2 depends only on n, ν, S,
α, Λ, d(x0), and h. These inequalities imply

(39)
u(x)

v(x)
≤ N2

2

u(x0)

v(x0)
for x ∈ Ω ∩ {d(x) ≥ h0}.

In addition, by (38), for x ∈ ΩR ∩ {d(x) ≥ h0},

(40) w(x) ≥ N ·N−1
2 −N2 ≥ 0, if N ≥ N2

2 .

Here the constant N2 depends on n, ν, S, α, Λ, d(x0), ε0, and R.
The remaining part of ΩR, i.e., ΩR ∩ {d(x) < h0}, is covered by the union

of sets T+
k since R < Rk < 3R/2 for k = 0, 1, 2, . . .. Thus we will show that

w(x) ≥ 0 in T+
k for each k. To prove this, we will show the stronger inequality:

(41) Mk := inf
T

+

k

w ≥ sup
Tk

(−w)+ =: mk for k = 0, 1, 2, . . . ,

where (−w)+ = max{−w, 0}. To prove (41), we use the principle of mathe-
matical induction. In the basis case k = 0, by (34) and (38) with h = h1, we
have

(42) M0 ≥ N ·N−1
2 −N1 ≥ N1 ≥ m0 if N ≥ 2N2N1.

Suppose the estimate (41) is true for some k > 0. Then,

w ≥ Mk ≥ 0 on T+
k ,

w = Nv ≥ 0 on ΩRk
∩ {d = 0}.

Since ΩRk
∩{d(x) = hk+1} ⊂ T+

k , the open set Ok := Tk∩{w < 0} is contained
in ΩRk

∩{d(x) < hk+1} and w = 0 on ∂Ok∩ΩRk
. For fixed k, a function m(R)

is defined by

(43) m(R) := sup
Tk∩BR

(−w)+ for 0 < R ≤ Rk.
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By the definition of Tk, mk = m(Rk), and mk+1 = m(Rk+1) since w ≥ 0 on
T+
k .
Next, we will show

(44) m(ρ− 2hk) ≤ β1 ·m(ρ) for ρ ∈ (2hk, Rk],

where a constant β1 ∈ (0, 1) depends only on n, ν, S, and µ. Note that 2hk =

2ε0ρ
1/α
k < ρk since ε0 < 2−1 and 1 ≤ ρ

1−1/α
k . If m(ρ − 2hk) = 0, this is

trivial. So let us assume m(ρ−2hk) > 0. Since the function w satisfies Lw = 0
in Ok and w = 0 on ∂Ok ∩ Bρ−2hk

, by the maximal principle, there exists
a point z0 ∈ Ok ∩ (∂Bρ−2hk

) such that 0 < m(ρ − 2hk) = −w(z0). Since

Ok ⊂ ΩRk
∩ {d(x) < hk+1}, d(z0) = |z0 − z1| ≤ hk+1 = 2−1/αhk ≤ hk/2 for

some point z1 ∈ ∂Ω. Using the strong regularity property (5) with the domain
Ω, we have

(45) |Bhk
(z0) \ Ω| ≥ |Bhk/2(z0) \ Ω| ≥ µ|Bhk/2| = µ · 2−n|Bhk

|.

Note that w = 0 on (∂Ok) ∩ BRk
. By applying the growth Lemma 2.1 to the

function −w in Ok = Tk ∩ {w < 0} with r = hk and µ1 = µ · 2−n,

(46) −w(z0) ≤ sup
Ok∩Bh

k
(z0)

(−w) ≤ β1 sup
Ok∩B2h

k
(z0)

(−w) ≤ β1 sup
Ok∩Bρ

(−w) .

Here the last inequality follows because (∂Ok) ∩ B2hk
(z0) ⊂ (∂Ok) ∩ Bρ,

where a point z0 ∈ Ok ∩ (∂Bρ−2hk
). Since m(R) = supTk∩BR

(−w)+ =
supOk∩BR

(−w)+,

m(ρ− 2hk) = −w(z0) ≤ β1 sup
Ok∩Bρ

(−w) = β1m(ρ).

The proof of (44) is complete.

Let R̃k := R+3ρk. Then Rk+1 < R̃k < Rk and R̃k = Rk−ρk ≤ Rk−pk ·2hk,
where pk := [ρk/2hk]. Since an integer part [a] ≥ max{1, a/2} ≥ a/2 for any

real number a ≥ 1 and hk := ε0ρ
1/α
k < 2−1ρ

1/α
k < 2−1ρk, pk := [ρk/2hk] ≥

ρk/4hk = ρ
1−1/α
k /4ε0. Hence, by iterating (44) pk times with ρ = Rk, we have

(47)

m̃k := m(R̃k) ≤ m (Rk − pk2hk) ≤ βpk

1 m (Rk) ≤ exp(−c1 ε
−1
0 ρ

1−1/α
k )mk,

where c1 = c1(n, ν, S, µ) = − lnβ1/4 > 0. Similarly, mk+1 ≤ ξkm̃k can be

derived, where ξk := exp(−c1 ε
−1
0 ρ

1−1/α
k ).

Now we will prove the following:

(48) inf
T

+

k+1

wk ≥ ηk inf
T

+

k

wk,

where wk := w+m̃k and ηk = exp(−c2ε
α−1
0 ρ

1−1/α
k ) with c2 = c2(n, ν, S,Λ, α,R)

> 0. Note that each function wk ≥ 0 and Lwk = 0 in T̃k := Ω
R̃k

∩ {d(x) <

hk}. We will apply the interior Harnack inequality to a function wk in T̃k to
get the lower estimate for Mk+1 in terms of Mk. Choose an arbitrary point
a = (x, y) ∈ T+

k+1 = ΩRk+1
∩ {hk+2 ≤ d(a) < hk+1}, where x ∈ R

n−1 and
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y ∈ R. Let â = (x, ŷ), where d(â) = hk+1 = ε0ρ
1/α
k+1. Let a rectifiable line

γ(a, â) be a vertical line connecting from the point a to the point â. Take

si := (x, yi) ∈ γ(a, â), where a = s0, â = sqk , and yi = y +
∑i−1

j=0 rj with

rj ≤ d(sj)/16 for j = 0, 1, 2, . . . , qk. Here a constant qk will be specified later.
Note that 2−4hk+2 ≤ r0 and rj ≤ rj+1 for all j. In addition, from (6) for
â ∈ Ω3R/2, there exists a constant K depending only on α,Λ, and R such that
δ(â) ≤ Kdα(â) = Khα

k+1. Now, we will have another constrained condition

ε0 ≤ K−1/α. Then, we have

(49) |γ(a, â)| ≤ δ(â) ≤ Kεα0 ρk+1 ≤ ρk+1.

Therefore, for each si ∈ γ(a, â),

(50) |si|+ 8ri ≤ |s0|+ |si − s0|+ 8ri ≤ Rk+1 + ρk+1 + 2−1hk+1 < R̃k.

This implies B8ri(si) ⊂ T̃k := Ω
R̃k

∩ {d(x) ≤ hk} for all si. Since |γ(a, â)| ≤

Kεα0 ρk+1 and |si − si−1| ≥ 2−4ε0ρ
1/α
k+2 for all i, we can choose a finite number

of points s0, s1, . . . , sqk ∈ γ(a, â) such that s0 = a ∈ T+
k+1 and sqk = â ∈ T+

k

with qk ≤ |γ(a, â)|/2−4hk+2 = c εα−1
0 ρ

1−1/α
k , where a constant c depends on

α,Λ, and R. Since B8ri(si) ⊂ T̃k, we can apply the interior Harnack inequality
(2.2) to the function wk in each ball B8ri(si):

(51) wk(â) = wk(sqk) ≤ N0wk(sqk−1) ≤ · · · ≤ N qk
0 wk(s0) = N qk

0 wk(a).

Therefore, wk(â) ≤ exp(c2ε
α−1
0 ρ

1−1/α
k )wk(a), where c2 := c lnN0 > 0 depends

only on n, ν, S, α, Λ, and R. Since a is an arbitrary point in T+
k+1,

(52) inf
T

+

k

wk ≤ wk(â) ≤ exp(c2ε
α−1
0 ρ

1−1/α
k ) inf

T
+

k+1

wk.

Lastly, let’s assume ε0 ≤ (c1/c2)
1/α, where c1 and c2 are constants in (47)

and (52), which guarantee that ξk ≤ ηk for all k. Finally, by taking ε0 =
min{2−1/α, K−1/α, (c1/c2)

1/α}, which depends only on n, ν, S, Λ, α, and µ,
from (47) and (52), we have

mk+1 + m̃k ≤ ηk (mk + m̃k) ,

Mk+1 + m̃k ≥ ηk (Mk + m̃k) .

This implies Mk+1 − mk+1 ≥ ηk(Mk − mk). Therefore, by the principle of
mathematical induction, (41) is true for all k. In conclusion, the estimate (37)
is true with N = N(ε0) := max{N2

2 , 2N2N1}, which depends on n, ν, S, µ, α,
Λ, R, R0, and d(x0). The proof is complete. �

Acknowledgement. I would like to thank Professor Mikhail Safonov for his
valuable discussion.



THE BOUNDARY HARNACK PRINCIPLE 1751

References

[1] A. D. Aleksandrov, Uniqueness conditions and estimates for the solution of the Dirichlet

problem, Vestnik Leningrad Univ. 18 (1963), no. 3, 5–29 (in Russian); English transl.:
Amer. Math. Soc. Transl. (2) 68 (1968), 89–119.

[2] R. F. Bass and K. Burdzy, The boundary Harnack principle for non-divergence form

elliptic operators, J. London Math. Soc. 50 (1994), 157–169.
[3] H. Kim and M. Safonov, Carleson type estimates for second order elliptic equations with

unbounded drift, J. Math. Sci. 176 (2011), no. 6, 928–944.
[4] , Boundary Harnack principle for second order elliptic equations with unbounded

drift, J. Math. Sci. 179 (2011), no. 1, 127–143.
[5] , The boundary Harnack principle for second order elliptic equations in John and

Uniform domains, Proceedings of the St. Petersburg Mathematical Society, Volume XV,
pp. 153–176, Advances in Mathematical Analysis of Partial Differential Equations, 2014.

[6] E. M. Landis, Second Order Equations of Elliptic and Parabolic Type, “Nauka”, Moscow,
1997 (in Russian); English transl.: Amer. Math. Soc. Transl., Providence, RI, 1997.

[7] M. Safonov, Non-divergence elliptic equations of second order with unbounded drift, dif-
ferential equations and related topics, 211–232, Amer. Math. Soc. Transl. Ser. 2, 229,
Amer. Math. Soc., Providence, RI, 2010.

Hyejin Kim

Department of Mathematics and Statistics

University of Michigan–Dearborn

Dearborn, Michigan 48128, USA

E-mail address: khyejin@umich.edu


