J. Korean Math. Soc. 37 (2000), No. 5, pp. 871-884

ON REGULARITY OF SOLUTIONS
OF THE DIRICHLET PROBLEM FOR
THE POLYHARMONIC OPERATOR

VLADIMIR KOZLOV

ABSTRACT. Polyharmonic operator with Dirichlet boundary condi-
tion is considered in a n—dimensional cone. The regularity properties
of weak solutions are studied. In particular, it is proved the Holder
continuity of solutions near the vertex of the cone for dimensions
n = 2m + 3,2m + 4, where 2m is the order of the polyharmonic
operator.

1. Introduction

Let G be a bounded polyhedral domain in R™. Consider the Dirichlet
problem

(1) (-A)"U=F ingG,
(2) U =0 ondG, for k=0,...,m—1,

where A is the Laplace operator in R™, m is an integer, m > 2, and v is
the outward normal. .

This problem has a unique solution in the Sobolev space W3*(G) if,
for example, F € C®(G). If n < 2m then it is Holder continuous
by the Sobolev embedding theorem. In [1], Maz’ya and Plamenevskii
proved that for the biharmonic operator (m = 2) the solution is Holder
continuous for all dimensions n. If m > 2 and n = 2m, 2m+1, 2m+2 then
the Holder continuity of U follows from Maz’ya and Donchev [2] (where it

was proved for more general class of domains). One of the results of this
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paper is the Holder continuity of U for dimensions n = 2m + 3,2m + 4.
The main difficulty here lies in investigation of the spectrum of operator
pencils associated with singularities of the boundary. In order to obtain
the pencil corresponding to a boundary singularity one should take the
tangent cone at this point and apply the Mellin transformation to the
operators of the boundary value problem. The essential part of the paper
is devoted to the study of the spectrum of this pencil. Let us introduce
the operator pencil more accurate.

Consider the cone K = {z € R : 0 < 7 < 00, w € O}, where
is a domain on S™!. Here and in what follows, we use the spherical
coordinates (r,w) in R™, where r = |z| and w = z/|z|. We suppose that
S"~1\ Q contains a nonempty open set.

We define the differential operator L on S™! polynomially depending
on A € C by

LM\ u(w) = (—1)m7‘2m“’\Am(r’\u(w)) .
Direct calculations show that it can be written as

m—1

(3) L) =) [ 6+ —2)(A— 27 +n—2)),

7=0

where § is the Laplace-Beltrami operator on S™!.
We introduce the operator pencil

(4) LA : WIQ) — Wy™(9)

by L(A\)u = L(M\)u.
Clearly, the function

N
e (logr)e
(5) U(z) =r* SZO: mus(w) )
where u;, € WM(Q), satisfies
(6) (=A)"U(z) =0 on K,

if and only if Ay is an eigenvalue of the pencil £, uq is an eigenfunction
and uy, ... ,uy are generalized eigenfunctions of £ corresponding to Ag.
Thus the description of solutions (5) to equation (6) is reduced to a
spectral analysis of the operator pencil (4), which is the main our goal.
We state the main result of this paper
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THEOREM 1. (i) The strip

(7) m—2-n/2<RA<m+2-n/2 if 2m<n—4,
(8) —3<RALO0 if 2m=n—3

9) —2<RALO if 2m=n—2

and

(10) m—(n+1)/2<RA<m—-(n-1)/2 if 2m>n-1

contains no eigenvalues of the pencil L.

(ii) Let 2m = n — 3. Then the strip -3 — 1/2 < ®X < 1/2 con-
tains only real eigenvalues of L, the corresponding eigenfunctions have
no generalized eigenfunctions. There is at most one eigenvalue on the
interval (0,1/2] which increases when the domain § decreases.

(iii) Let 2m = n — 2. Then the strip —3 < R\ < 1 contains only real
eigenvalues of L, the corresponding eigenfunctions have no generalized
eigenfunctions. There is at most one eigenvalue on the interval (0, 1]
which increases when the domain ) decreases.

(vi) Let 2m > n—1. Then the stripm—1—-n/2 < RA<m+1—n/2
contains only real eigenvalues of L, the corresponding eigenfunctions
have no generalized eigenfunctions. The eigenvalues on the interval (m—
(n—1)/2,m + 1 —n/2} increase when the domain § decreases.

The case n = 2 and m is arbitrary follows from (3] and [4] where
operator pencils corresponding to general elliptic operators of order 2m
with real coefficients are investigated. The case of biharmonic operator
(m=2) in n-dimensional cone was considered in [5], where one can find,
in particular, almost all results of the above theorem.

As an immediate consequence of Theorem 1 we obtain

COROLLARY 1. The strip
(11) 2m—n—e<RNA<e

is free of eigenvalues of £ if n = 2m, 2m + 1, 2m + 2, 2m + 3, 2m + 4.
Here ¢ is a positive number depending on 2.

The above corollary and regularity results for solutions to elliptic
problems in domains with piecewise smooth boundaries (see [1], [7])
imply the results on Holder continuity formulated at the beginning of
the introduction.
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We note that the estimate (10) for the strip free of spectrum is sharp.
For 2m = n — 1 it is shown in [8] and for 2m > n in [9]. Clearly,
the estimates (10), (8) and (7) for 2m = n — 4 can not be improve for
arbitrary cones. It remains an important question. Is it possible to
improve the estimate (7) for 2m < n — 47 The conjecture here is that
the strip m —n/2 < X < 0 should be free of the eigenvalues of £. It
would lead to the Holder continuity of solutions to (1), (2) for all m and
n. We note that this conjecture is not true for arbitrary elliptic operator
with constant real coefficients (see [10]).

2. Some properties of L

We begin with a positivity property of L.
LEMMA 1. Forevery \=m —n/2+ir, T € R
(12) (L), u) 2 ¢ ([[ullfy ) + AP™)

for all u € W), where ¢ is a positive constant. Here and elsewhere
we use the notation (-,-) for the scalar product in Ly($2).

Proof. (i) Let m = 2k. Then for A\=m —n/2 +ir

LX) = Li(A)Li(A) ,

where i
LN =] (6+ A —-2))(A =25 +n—2)).
7=0
Hence
(13) (LN u) = [[Li(N)ulff 0

The right-hand side can be equal to zero if L;(A)u = 0. Since the order
of Ly is m and u € WI(Q2), we have that v = 0. Relation (13) implies
(12) for large |7|. If |7| < N, where N is a constant then ||L;(A)u||r,0) =
c||ullwy (o) with some positive c depending on N because of ker L;(A) = 0
on W (Q).

(ii) Let m = 2k + 1. Then

—L(A) = 6+ (A —2k)(A— 2k +n = 2)) LN L ()

= (5 (1= n/2)? — ) LWL ()
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which implies
(14) (LA)u,u) = (-6+Q1- n/2)? + %) Li(A\)u, Li(A)u).

The equality L;(A\)u = 0 implies u = 0 because of the boundary condi-
tions for u. Therefore (12) follows from (14).

The above lemma shows, in particular, that the operator (4) is iso-
morphic for A\ = m — n/2. Clearly, the operator

L(N) — L(m —n/2) : W) — Wy ™(Q)
is compact for all A € C. Therefore, the operator (4) is Fredholm for
every \ and hence, the spectrum of £ consists of eigenvalues of finite alge-
braic multiplicity and that the only accumulation point for the spectrum
is infinity.
Direct verification gives
L) =L2m—-—n—\).

This implies, in particular, that the spectrum of £ is symmetric with
respect to the line R\ = m — n/2. Moreover, the numbers A is an
eigenvalue if and only if the number 2m — n — A is an eigenvalue and
they have the same eigenfunctions and generalized eigenfunctions. Thus,
it suffices to study the spectral properties of £ only in the half-plane
RA>m —n/2. |

~ REMARK 2. In the case m < n/2 the assertion of Lemma 1 is true for

arbitrary domain on S™ 1. This follows from the fact that Li(A)u =0
for u € W(S™ V) implies u = 0, which can be verified by going back
to x variable.

3. On the eigenvalues on the line RA =m +1—n/2
LEMMA 2. The number A\ = m + 1 — n/2 + ir, with nonzero real T,
is not an eigenvalue of L.
Proof. (i) Let m =2k + 1 and let A =m +1—n/2 +47. Then
L) =(6+ XA +n— 2))L2()\)L2(X) ,

where

k
L) =] 6+ =2)(A -2 +n~2)).
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Therefore,
(15) S(L(A)u, u) = 2m7||Lo(A)ul| ;@) -

If 7 # 0 and the left-hand side is zero then Ly(A\)u = 0. Using the
Dirichlet boundary conditions for u, we obtain u = 0. The result follows
for odd m.

(ii) Let m = 2k 4+ 2. Then

L) =0+ AA+n—=2))(6 + (A =2k — 2)(A — 2k +n — 4))Ly(M) Ly(N).
Since
(F+XA+n—-2)(0+(A—2k—2)(A—2k +n—4))
= (04 (it +m)’* — (1 -n/2)*) (6 — 7° = (1 — n/2)?),
it follows that
(16)  SELA)u,u) =2mr((—6 + 72 + (1 — n/2)*) La(N)u, Ly(A Ju).

If u is an eigenfunction corresponding to A with 7 7é 0 then Ly(AN)u =10
and hence u = 0. The proof is complete. Al

LEMMA 3. Let Ay =m + 1 —n/2 be the eigenvalue of L and vy be a
corresponding eigenfunction. Then
d

a(L(A)uo,uo)} >0.

Proof. The quadratic form (L(A)ug,uo) is a polynomial with respect
to A and we represent it as

(L(AMug, uwo) = p(o, 1) +irq(o,7) ,

(17)

where ¢ + 47 = A, and p and ¢ are real-valued polynomials with respect
to o and 7. Since

(L, w0) = = (L (Ao, )
we have
(Lo, w0) = ~p(o,7) + al0,7) + Teg(o,7)
X ’ idr ’ dr*Y 7
Using that the left-hand side in the last relation is real, we obtain

d
5 (L(/\)UO, U()) ')\:,\0 = q()\o, O) .
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Thus,

d 1

LW, w)| = ~S(L00)uo,w0)
and inequality (17) follows from positivity (after division by 7) of the
right hand sides in (15) and (16). O

COROLLARY 3. If \y = m+1—n/2 is the eigenvalue of L then it has
no generalized eigenfunctions.

Proof. Let )\ be an eigenvalue and ug be a corresponding eigenfunc-
tion. Then the equation for a generalized eigenfunction u, is

d
£()\0)u1 = —EXL()\)Uol,\z)\O .

In order to show that it is unsolvable we multiply (in L(2)) both sides
of the equation by uy. Then the left-hand side is equal to zero because
of ug is an eigenfunction and the operator £()) is selfadjoint. But the
right-hand side differs from zero by Lemma 3. This contradiction proves
Corollary. O

4. Eigenvalues of £ in the strip m —n/2 <RAX<m+1—-n/2

Consider the operator pencil £ for real A. Clearly, the operator L()\)
is selfadjoint and semibounded from below. For every A > m —n/2 we
denote by {p;(A)};<1 a nondecreasing sequence of eigenvalues of L£(}),
counted with their multiplicities. Furthermore, we denote by v;(A) an
eigenfunction of £(\) corresponding to u;(A). One can suppose that the
system {vj(A)};<i forms an orthonormal basis in Ly(£2). It is known (see,
for example, [Kato, Ch.VII, Th,1.8]) that the functions p; are continuous
(moreover, piecewise analytic) on [m — n/2,00). From the variational
principle for p;(A) it follows that the functions u; increase when the
domain 2 becomes smaller.

We shall denote by M the index satisfying uy(m +1—n/2) < 0 and
prmi1(m+1—-n/2) > 0. ‘

LEMMA 4. The strip
(18) m-—n/2<RA<m+1—-n/2

contains exactly M eigenvalues of the operator pencil L, counted with
their geometric multiplicities. All these eigenvalues are real and have no
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generalized eigenfunctions. Every function p; has at most one zero on
the interval [m —n/2,m+ 1 —n/2).

Proof. (i) Consider functions pi, ... ,us. By Lemma 1 the operator
L(m — n/2) is positive. Therefore, p;(m —n/2) >0 for all j. If j < M
then y;(m+1—n/2) <0 therefore the function y; has at least one zero,
say Aj, on the interval (m-n/2,m+1-n/2]. Clearly, ), is an eigenvalue
of the pencil £ and v; is an eigenfunction of the pencil corresponding
to A;. Thus, we have proved that the total geometric multiplicity of
eigenvalues situated on the interval (m —n/2,m + 1 —n/2] is greater or
equal to M. Moreover, if one of the functions p;, < M, has more than
one zero on (m —n/2, m+1—n/2] then the total geometric multiplicity
of eigenvalues of £ in the strip (18) is greater than M.

(ii) Consider the family of operator pencils £;(\) = £()) + tI, where
t > 0 and I is the identity operator. Clearly, the set {u;(\) +t};<1 rep-
resents a nondecreasing sequence of eigenvalues of £;()), counted with
their multiplicities. If ¢ is sufficiently big then there are no eigenvalues
of £; in the strip (18).

Now we keep ¢ decreasing. For ¢ > —pu;(m+1—n/2) this strip is still
free of eigenvalues of £;. In fact, from Lemmas 1 and 2 it follows that
there are no eigenvalues on the lines RA = m—n/2 and RA = m+1-n/2
and there are no eigenvalues in the strip (18) for large |3A| hence, by the
Rouché operator theorem (see [12], Sect.XI.9) there are no eigenvalues
in the strip (18) for all t > —py(m + 1 —n/2).

Let t = —p1(m+1—n/2). Then the stripm—n/2 < RA < m+1-n/2
is free of eigenvalues of L;, otherwise by the Rouché operator theorem
the same strip should contain eigenvalues of £; for some ¢ bigger than
—pi(m + 1 —n/2). Let x be a such index that ps(m + 1 — n/2) =
o= pg(m+1-—n/2) = —t and t > —pg1(m +1—n/2). Then the
strip (18) contains exactly one eigenvalue A = m + 1 —n/2 of the penci:
L; of geometric multiplicity x and by Lemma 2 this eigenvalue has no
generalized eigenfunctions. Thus, the total algebraic multiplicity of the
eigenvalues in the strip (18) is equal to their total geometric multiplicity
and equals to k. A € [m —n/2,m+ 1 —n/2). If we take t a little
bit smaller than —uy(m + 1 — n/2) then both lines R\ = m — n/2 and
RA =m + 1 —n/2 are free again of eigenvalues of the pencil £, and by
continuous dependence of eigenvalues on a parameter the total algebraic
multiplicity of eigenvalues of £, in the strip (18) is not greater than k.
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The next time when this total algebraic multiplicity changes will be
for t = —pge1(m +1 —n/2). Let k; be the index such that

perim+1-—n/2) = = peo(m+1-n/2) =—t

and t > —peix,(m + 1 —n/2). Then reasoning as above we conclude

that the total algebraic multiplicity of £; in the strip (18) does not

exceed K + «; for this ¢ and for ¢ which is a little bit smaller that —p,,.

Continuing this procedure we obtain that the total algebraic multiplicity
of Ly = L in the strip (18) is not greater than M.

Finally, combining (i) and (ii), we arrive at the assertions of Lemma.

a

5. Eigenvalues of the pencil £ in the strip m —n/2 < RA <
m+2—-n/2

LEMMA 5. Let m < n/2 — 1. Then the set {A =it +m+2 —n/2},
where T is a nonzero real number, does not contain eigenvalues of the
pencil L.

Proof. (i) Let m=2k+2and A=ir+m+2—-n/2, 7 # 0. Then
L) = +AA+n—=2))(6+ (A —2)(A+n—4)Ls(A\)Ls(N),

where
k+1
L) =] (6 + (A —2/)(A = 2j +n — 2)).
j=2
Since

S((6+AA+n-2)(6+ (A —2)(A +n — 4))u, v)

- 4m7’((5~T2+m2—%—+n—2)u,u),

it follows that

2

S(LA)u, u) = 4m7((6 — 7° +m? — % +n = 2)L3(A)u, Ls(A\)u).

The operator —6 + 72 — m? + "72 —n + 2 is positive if m < n/2 — 1.
Therefore, the left hand side can be zero only if Ls(A\)u = 0. But this
implies u = 0 because of u € WJ*(Q2).
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(ii) Consider the case m = 2k + 1. Then
—L() = (+xA+n—-2))- (§+(A-2)(A+n—4))
(6 4+ (A = 2(k + 1)) (A — 2k + n — 4)) Ly(A) Ly (),

where
k
La(Y) = [T + (A = 2)((A = 27) +n - 2)).
5=2
After simple calculations, we get
(19)

%((5+,\(,\+n—2)) (6+(A—=2)(A+n—1)) (0+(A—2(k+1))(A—2k-+n—4))w, v)

= 4m7‘((5—72—(1—n/2)2+m2*1)v, ((5—7‘2——(1—n/2)2)v).
Let w = (6 — 7% — (1 — n/2)*)v. Then |Jw)|ry0) < (1 — n/2)%(|v|| (-
Using this estimate together with the Cauchy inequality, we obtain
2
2 m -1 2
l(waw + (m*® — 1)U)| < (1 - m)”wnmn) .

Since m < n/2 — 1, the left-hand side of the last equality is positive and
(19) implies

~l%£)\u,u >0 foruEW"‘Q, u # 0.
T 2
The proof is complete. O

In the same way as Lemma 3, 4 and Corollary 3, one can prove

LEMMA 6. Letm < n/2—1 and let \g = m+2—n/2 be the eigenvalue
of £ and uy be a corresponding eigenfunction. Then
d

(20) E\' (L()\)Uo, UO) })‘ < 0.

=X

COROLLARY 4. If \g = m+2—n/2 is the eigenvalue of L then it has
no generalized eigenfunctions.

Let M be the maximal index j such that u;(m +2 —n/2) < 0.
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LEMMA 7. Letm <n/2 —1. Thestripm—n/2 <RA<m+2-n/2
contains exactly M eigenvalues of the operator pencil L, counted with
their algebraic multiplicities. All these eigenvalues are real and have no
generalized eigenfunctions. Every function p; has at most one zero in
the interval [m — n/2,m +1 —n/2].

6. On real eigenvalues of the pencil £

Denote by A = A(2) the real eigenvalue of £ which is closest to
and greater than m — n/2. If there are no such eigenvalues of £ on
(m — n/2,00) we put A = oo. Clearly, A is the smallest zero of the
function u; on (m — n/2,00). In the following lemma we give some
properties of A whose proof is quite straightforward.

LEMMA 8. Let A < .

(i) The number A is the smallest number A on (m—n/2,c0) such that
the operator £(\) has non-trivial kernel.

(i) For u € W(Q), u # 0, we denote by R(u) the smallest root of
the equation (L{\)u,w) = 0 on the interval (m —n/2,00). Then

A = inf R(u),

where the infimum is taken over all nonzero u € Wi(Q).

COROLLARY 5. (i) The number A increases when the domain 0 de-
creases. Moreover, A(€0) > A(Q) if Q@ C Q; and Q; \ Q3 is not empty.

(i) If m —n/2 <0 then A > 0.

(iii) If m —n/2 > 0 then A > m —n/2+1/2.

Proof. (i) The monotonicity of A with respect to 2 follows from
Lemma 8(ii). The strict monotonicity is proved in the same way as it
was done in Theorem 7.2 [13].

(ii) By Remark 2 the definition of A without changes can be applied
for all domains in S®1) when m < n/2 . Moreover, Lemma 8 is valid
in this case also. If @ = S™1 then the spectrum of £ consists of the
integers 0,1,... and 2m —n,2m —n —1,.... Therefore, A(SP-D) = 0.
Now, the assertion follows from Lemma 8(ii).
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(iii) Let Ky be the complement of a small closed circular cone and let
Q) is the intersection of Ko and S® 1. We can suppose that Q C Q.
Clearly, the boundary of Ky is Lipschitz and by Theorem 1 [14] the strip
|RA —m +n/2| < 1/2is free of eigenvalues of the pencil corresponding
Q. This implies A(€p) > m — n/2 4+ 1/2. The result for  follows from
Lemma 8(ii). O

7. Proof of Theorem 1

(i) Let 2m < n —4. We introduce the operator pencil £,(A\) = L(A) +
tl, t > 0. Using Lemma 1 we obtain

(LN)u,w) > ¢ (lullfypa + A +1)

for all A on the line A = m — n/2. This inequality implies that there
are no eigenvalues of £; for |SA| > N, RA € [m —n/2,m + 2 — n/2)
where N is a sufficiently large number. From Lemma 5 and Corollary
5(ii) the pencils £; have no eigenvalues on the line RA = m + 2 — n/2
neither. By the operator Rouché theorem all pencils £; have the same
number of eigenvalues in the strip (7). Since for large ¢ the pencil £; has
no eigenvalues in this strip we conclude that the same is true for L.

The cases 2m = n — 3 and 2m = n — 2 are considered analogously.
Let 2m > n — 2. Then reasoning as in the proof of inequalities (7) and
using Corollary 5(iii) instead of Corollary 5(ii), we obtain the proof in
this case.

(i) By Lemma 7, the strip —7/2 < R®A < 1/2 contains only real
eigenvalues of £ which has no generalized eigenfunctions. By (8), there
are no eigenvalues on the interval [~3,0]. If Q@ = S(~) then the interval
[0,1/2] contains exactly one eigenvalue of £: Ay = 0 of multiplicity 1.
This eigenvalue is the zero of the functions p;. Clearly, this function in-
creases when the domain §2 decreases. Therefore, if S\ is nonempty
then the interval (0,1/2] contains at most one simple eigenvalue which
increases when the decreases.

The proofs of (iii) and (iv) are essentially the same as those of (ii).
a
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