• Title/Summary/Keyword: boundary fixed point

Search Result 166, Processing Time 0.027 seconds

POSITIVE SOLUTIONS TO A FOUR-POINT BOUNDARY VALUE PROBLEM OF HIGHER-ORDER DIFFERENTIAL EQUATION WITH A P-LAPLACIAN

  • Pang, Huihui;Lian, Hairong;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.59-74
    • /
    • 2010
  • In this paper, we obtain the existence of positive solutions for a quasi-linear four-point boundary value problem of higher-order differential equation. By using the fixed point index theorem and imposing some conditions on f, the existence of positive solutions to a higher-order four-point boundary value problem with a p-Laplacian is obtained.

FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

  • Soenjaya, Agus L.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.497-502
    • /
    • 2022
  • Existence and uniqueness for fractional differential equations satisfying a general nonlocal initial or boundary condition are proven by means of Schauder's fixed point theorem. The nonlocal condition is given as an integral with respect to a signed measure, and includes the standard initial value condition and multi-point boundary value condition.

TRIPLE SOLUTIONS FOR THREE-ORDER PERIODIC BOUNDARY VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITY

  • Tan, Huixuan;Feng, Hanying;Feng, Xingfang;Du, Yatao
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.75-82
    • /
    • 2014
  • In this paper, we consider the periodic boundary value problem with sign changing nonlinearity $$u^{{\prime}{\prime}{\prime}}+{\rho}^3u=f(t,u),\;t{\in}[0,2{\pi}]$$, subject to the boundary value conditions: $$u^{(i)}(0)=u^{(i)}(2{\pi}),\;i=0,1,2$$, where ${\rho}{\in}(o,{\frac{1}{\sqrt{3}}})$ is a positive constant and f(t, u) is a continuous function. Using Leggett-Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The interesting point is the nonlinear term f may change sign.

POSITIVE SOLUTIONS OF THE SECOND-ORDER SYSTEM OF DIFFERENTIAL EQUATIONS IN BANACH SPACES

  • Cao, Jianxin;Chen, Haibo;Deng, Jin
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1445-1460
    • /
    • 2010
  • In this paper, a second-order system of multi-point boundary value problems in Banach spaces is investigated. Based on a specially constructed cone and the fixed point theorem of strict-set-contraction operators, the criterion of the existence and multiplicity of positive solutions are established. And two examples demonstrating the theoretic results are given.

FIXED POINT THEOREMS FOR CONDENSING MAPPINGS SATISFYING LERAY-SCHAUDER TYPE CONDITIONS

  • Pulickakunnel, Shaini;Valappil, Sreya Valiya
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.139-145
    • /
    • 2016
  • In this paper, some new fixed point theorems for condensing mappings are established based on a well known result of Petryshyn. We use several Leray-Schauder type conditions to prove new fixed point results. We also obtain generalizations of Altman's theorem and Petryshyn's theorem as well.

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

POSITIVE PSEUDO-SYMMETRIC SOLUTIONS FOR THREE-POINT BOUNDARY VALUE PROBLEMS WITH DEPENDENCE ON THE FIRST ORDER DERIVATIVE

  • Guo, Yanping;Han, Xiaohu;Wei, Wenying
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1323-1329
    • /
    • 2010
  • In this paper, a new fixed point theorem in cone is applied to obtain the existence of at least one positive pseudo-symmetric solution for the second order three-point boundary value problem {x" + f(t, x, x')=0, t $\in$ (0, 1), x(0)=0, x(1)=x($\eta$), where f is nonnegative continuous function; ${\eta}\;{\in}$ (0, 1) and f(t, u, v) = f(1+$\eta$-t, u, -v).

ON A TYPE OF DIFFERENTIAL CALCULUS IN THE FRAME OF GENERALIZED HILFER INTEGRO-DIFFERENTIAL EQUATION

  • Mohammed N. Alkord;Sadikali L. Shaikh;Mohammed B. M. Altalla
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.83-98
    • /
    • 2024
  • In this paper, we investigate the existence and uniqueness of solutions to a new class of integro-differential equation boundary value problems (BVPs) with ㄒ-Hilfer operator. Our problem is converted into an equivalent fixed-point problem by introducing an operator whose fixed points coincide with the solutions to the given problem. Using Banach's and Schauder's fixed point techniques, the uniqueness and existence result for the given problem are demonstrated. The stability results for solutions of the given problem are also discussed. In the end. One example is provided to demonstrate the obtained results