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FRACTIONAL DIFFERENTIAL EQUATIONS WITH

NONLOCAL BOUNDARY CONDITIONS

Agus L. Soenjaya

Abstract. Existence and uniqueness for fractional differential equations

satisfying a general nonlocal initial or boundary condition are proven by
means of Schauder’s fixed point theorem. The nonlocal condition is given

as an integral with respect to a signed measure, and includes the standard
initial value condition and multi-point boundary value condition.

1. Introduction

In the past few years, there have been many studies on the initial value
problem for fractional differential equation{

Dαx(t) = f(t, x(t)),

x(0) = x0,
(1)

where f : R× Rn → Rn, x0 ∈ Rn, 0 < α < 1 and

Dαx(t) =
1

Γ(1− α)

∫ t

0

(t− s)−α x′(s) ds(2)

is the Caputo’s derivative of order α ∈ (0, 1). It is defined to be the usual
derivative when α = 1.

The existence and uniqueness for the above initial value problem have been
proven in [4]. Related papers [2,10] prove the existence and uniqueness for the
initial value problem where the derivative is given in the Riemann-Liouville
sense. Other papers which consider the initial value or boundary value problem
for higher-order fractional derivative include [1, 6–9, 11]. For a comprehensive
study on fractional differential equation and its interpretations, we refer the
reader to [3]. For a physical application of fractional differential equations,
refer to [5].

The purpose of this paper is to study the fractional differential equation for
0 < α < 1 but with a more general integral (nonlocal) condition, which could
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various types of initial value condition, terminal value condition, or multi-
point boundary value condition. More precisely, we will prove the existence
and uniqueness of the solution for the problem on [0, b]:{

Dαx(t) = f(t, x(t)),∫ b
0
x(t) dν = x0,

(3)

where f : [0, b] × Rn → Rn, x0 ∈ Rn, 0 < α < 1, and ν = (ν1, ν2, . . . , νn),
and each νi is a signed measure on [0, b] such that νi[0, b] 6= 0, and νi satisfies
certain bounds.

The above integral boundary condition is quite natural for applications since
the value of physical quantities (velocity, temperature, etc.) is experimentally
just the mean (integral) of measurements taken over a time interval. We are
interested to determine the flow of the system given such integral conditions.

Note that the above integral boundary condition covers many types of com-
mon initial/boundary conditions. For instance, by taking νi to be Delta mea-
sure supported at 0, we recover the results for initial value problem. By tak-
ing νi to be Delta measure supported at b, we recover the terminal bound-
ary condition. If νi are linear combinations of Delta measures supported at
various points, we recover the results for boundary conditions of Cauchy-
Nicoletti or interpolation type such as xi(ti) = di for i = 1, . . . , n, where
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b. Also, by taking νi to be appropriate linear com-
binations of Delta and Lebesgue measures, we can include integrated initial

condition such as x(0) =
∫ b
0
x(t) dt. This list is certainly not exhaustive, and

can include various types of multi-point conditions.
Subsequently, let B = {x ∈ Rn : ‖x − x0‖ ≤ c}, where c is a constant.

Throughout, let ν = (ν1, . . . , νn) in the problem (3) be signed measures on
[0, b], with νi[0, b] 6= 0, satisfying a growth condition: there is a constant C > 0
such that for any t ∈ [0, b],∫ b

t

(s− t)α−1 d|νi|(s) ≤ C(b− t)α−1.(4)

This growth condition is certainly satisfied by the Delta and Lebesgue measure.
We will prove the following main theorems. The first one is the existence of at
least one solution.

Theorem 1.1. Suppose that f : [0, b]×B → Rn satisfies the Carathéodory-type
conditions:

(1) f(t, ·) is continuous on B for each fixed t, and

(2) there is a constant β ∈ (0, α) and a real-valued function g ∈ L
1
β ([0, b])

such that ‖f(t, x)‖ ≤ g(t) for almost every t ∈ [0, b] and all x ∈ B.

Then the problem (3) has at least one absolutely continuous solution on [0, b].

The second one is on existence and uniqueness.
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Theorem 1.2. Suppose that f : [0, b] × B → Rn satisfies the Lipschitz-type
condition:

(1) there is a constant γ ∈ (0, α) and a function h ∈ L
1
γ ([0, b]) such that

‖f(t, x) − f(t, y)‖ ≤ h(t)‖x − y‖ for almost every t ∈ [0, b] and all
x, y ∈ B,

and the following bound on b:

(1 + C)‖h‖
L

1
γ

Γ(α)

(
1− γ
α− γ

)1−γ

bα−γ < 1.

Then the problem (3) has a unique absolutely continuous solution on [0, b].

Proofs of these theorems will be given in the next section.

2. Proofs of the main theorems

First, note that an absolutely continuous function x satisfies the equation
Dαx(t) = f(t, x(t)) if and only if it satisfies the following nonlinear Volterra
integral equation of the second kind for t ≥ t0 (see Lemma 2.1 of [4] or the
discussion in [3]):

x(t) = x(t0) +
1

Γ(α)

∫ t

t0

(t− w)α−1f(w, x(w)) dw.

We will use the above result to prove the main theorems. First, we prove
Theorem 1.1.

Proof of Theorem 1.1. To simplify notation we can normalise ν[0, b] = 1. Note
that x is a solution if and only if

x(t)− x0

= x(t)−
∫ b

0

x(s) dν(s)

=

∫ b

0

x(t)− x(s) dν(s)

=

∫ b

0

(
1

Γ(α)

∫ t

0

(t− w)α−1f(w, x(w))− 1

Γ(α)

∫ s

0

(s− w)α−1f(w, x(w))

)
dw dν(s)

=
1

Γ(α)

(∫ b

0

∫ t

0

(t− w)α−1f(w, x) dw dν(s)−
∫ b

0

∫ s

0

(s− w)α−1f(w, x) dw dν(s)

)

=
1

Γ(α)

(∫ t

0

(t− w)α−1f(w, x) dw −
∫ b

0

∫ b

w

(s− w)α−1f(w, x) dν(s) dw

)
.

Now let the set U := {x ∈ C[0, b] : ‖x− x0‖∞ ≤ d}, which is closed, bounded,
and convex, and the operator T defined on U as:

Tx(t) = x0 +
1

Γ(α)

(∫ t

0

(t− w)α−1f(w, x) dw −
∫ b

0

∫ b

w

(s− w)α−1f(w, x) dν(s) dw

)
.



500 A. SOENJAYA

We will prove that T has at least a fixed point by Schauder’s fixed point the-
orem. First, we will show that Tx ∈ U for any x ∈ U . By Hölder inequality
and the assumptions,

‖Tx(t)− x0‖L∞

≤ 1

Γ(α)

(∫ t

0

(t− w)α−1m(w) dw +

∫ b

0

∫ b

w

(s− w)α−1m(w) dν(s) dw

)

≤ 1

Γ(α)

(∫ t

0

(t− w)α−1m(w) dw + C

∫ b

0

(b− w)α−1m(w) dw

)

≤ 1

Γ(α)

[
C ′‖m‖

L
1
β
‖(b− w)α−1‖

L
1

1−β
w

]
≤ C ′

Γ(α)

(
1− β
α− β

)1−β

bα−β‖m‖
L

1
β

=: d.

Next, note that T is continuous. Suppose that xn → x in C[0, b]. Then

‖Txn − Tx‖L∞ ≤
Cbα

Γ(α+ 1)
sup

w∈[0,b]
‖f(w, xn(w))− f(w, x(w))‖ → 0

as n→∞, by the continuity assumption on f .
Clearly, the family T (U) is uniformly bounded since ‖Tx‖ ≤ ‖x0‖ + d.

Finally, we will prove equicontinuity. For t1 < t2 ∈ [0, b],

‖Tx(t2)− Tx(t1)‖ ≤ 1

Γ(α)

[∫ t1

0

‖((t2 − w)α−1 − (t1 − w)α−1)f(w, x)‖ dw

+

∫ t2

t1

‖(t2 − w)α−1f(w, x)‖ dw

]
≤ 1

Γ(α)

(∫ t1

0

(t2 − w)
α−1
1−β − (t1 − w)

α−1
1−β dw

)1−β

‖m‖
L

1
β

+
1

Γ(α)

∫ t2

t1

(∫ t2

t1

(t2 − w)
α−1
1−β dw

)1−β

‖m‖
L

1
β

≤
‖m‖

L
1
β

Γ(α)

(
1− β
α− β

)1−β (
tα−β2 − (t2 − t1)α−β − tα−β1

)1−β
+
‖m‖

L
1
β

Γ(α)

(
1− β
α− β

)1−β

(t2 − t1)α−β

≤
2‖m‖

L
1
β

Γ(α)

(
1− β
α− β

)1−β

(t2 − t1)α−β ,

which proves equicontinuity of the family T (U) on [0, b]. Therefore, the family
T (U) is pre-compact by the Arzelà-Ascoli theorem. By Schauder’s fixed point
theorem, T has at least one fixed point. This completes the proof. �
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Next, we will prove Theorem 1.2.

Proof of Theorem 1.2. Let the set U := {x ∈ C[0, b] : ‖x−x0‖∞ ≤ d}, and the
operator T defined on U as:

Tx(t) = x0 +
1

Γ(α)

(∫ t

0

(t− w)α−1f(w, x) dw −
∫ b

0

∫ b

w

(s− w)α−1f(w, x) dν(s) dw

)
.

We will show that T is a contraction map on U . For any x, y ∈ U , using the
assumption (c), we get

‖Tx(t)− Ty(t)‖

≤ 1

Γ(α)

(∫ t

0

(t− w)α−1h(w) dw + C

∫ b

0

(b− w)α−1h(w) dw

)
‖x− y‖L∞

≤ 1

Γ(α)

(
‖h‖

L
1
γ
‖(t− w)α−1‖

L
1

1−γ
+ C‖h‖

L
1
γ
‖(b− w)α−1‖

L
1

1−γ

)
‖x− y‖L∞

≤
(1 + C)‖h‖

L
1
γ

Γ(α)

(
1− γ
α− γ

)1−γ

bα−γ‖x− y‖L∞ .

Therefore, T is a contraction when

(1 + C)‖h‖
L

1
γ

Γ(α)

(
1− γ
α− γ

)1−γ

bα−γ < 1

and in this case yielding the unique fixed point x, which solves the problem
(3). �

3. Concluding remarks

We have thus proven the existence and uniqueness of solution to (3) under
certain conditions. By taking the measure ν = δt0 , the Dirac measure sup-
ported at t0, we recover the existence and uniqueness result for the initial value
problem. By taking the measure ν =

∑n
i=1 aiδti with

∑n
i=1 ai 6= 0, we have

the existence and uniqueness result for the problem with Cauchy-Nicoletti or
interpolation-type boundary condition. By taking the measure ν to be a prob-
ability measure, we have the existence and uniqueness result for the problem
equipped with a given mean value (which is widely applicable in practice since
many measurements are actually mean/integral value of some quantities).

The extension of the results to other type of fractional differential equation
involving different types of fractional derivatives will be explored in the future.
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