• Title/Summary/Keyword: bipolar transistor

Search Result 332, Processing Time 0.024 seconds

Thermal Distribution Modeling of IGBT with heatsink areas (히트싱크 면적에 따른 IGBT의 열 분포 모델링)

  • Ryu, Se-Hwan;Hong, Jong-Kyoung;Won, Chang-Sub;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.30-31
    • /
    • 2008
  • As the power density and switching frequency increase, thermal analysis of power electronics system becomes imperative. The analysis provides valuable information on the semiconductor rating, long-term reliability. In this paper, thermal distribution of the Non Punchthroug(NPT) Insulated Gate Bipolar Transistor with heatsink areas has been studied. For analysis of thermal distribution, we obtained results by using finite element simulator, ANSYS and compared with experimental data by thermocam.

  • PDF

Monolithic SiGe HBT Feedforward Variable Gain Amplifiers for 5 GHz Applications

  • Kim, Chang-Woo
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.386-388
    • /
    • 2006
  • Monolithic SiGe heterojunction bipolar transistor (HBT) variable gain amplifiers (VGAs) with a feedforward configuration have been newly developed for 5 GHz applications. Two types of the feedforward VGAs have been made: one using a coupled-emitter resistor and the other using an HBT-based current source. At 5.2 GHz, both of the VGAs achieve a dynamic gain-control range of 23 dB with a control-voltage range from 0.4 to 2.6 V. The gain-tuning sensitivity is 90 mV/dB. At $V_{CTRL}$= 2.4 V, the 1 dB compression output power, $P_{1-dB}$, and dc bias current are 0 dBm and 59 mA in a VGA with an emitter resistor and -1.8 dBm and 71mA in a VGA with a constant current source, respectively.

  • PDF

Electrothermal Analysis for Super-Junction TMOSFET with Temperature Sensor

  • Lho, Young Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.951-960
    • /
    • 2015
  • For a conventional power metal-oxide-semiconductor field-effect transistor (MOSFET), there is a trade-off between specific on-state resistance and breakdown voltage. To overcome this trade-off, a super-junction trench MOSFET (TMOSFET) structure is suggested; within this structure, the ability to sense the temperature distribution of the TMOSFET is very important since heat is generated in the junction area, thus affecting its reliability. Generally, there are two types of temperature-sensing structures-diode and resistive. In this paper, a diode-type temperature-sensing structure for a TMOSFET is designed for a brushless direct current motor with on-resistance of $96m{\Omega}{\cdot}mm^2$. The temperature distribution for an ultra-low on-resistance power MOSFET has been analyzed for various bonding schemes. The multi-bonding and stripe bonding cases show a maximum temperature that is lower than that for the single-bonding case. It is shown that the metal resistance at the source area is non-negligible and should therefore be considered depending on the application for current driving capability.

Reverse-Conducting IGBT Using MEMS Technology on the Wafer Back Side

  • Won, Jongil;Koo, Jin Gun;Rhee, Taepok;Oh, Hyung-Seog;Lee, Jin Ho
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.603-609
    • /
    • 2013
  • In this paper, we present a 600-V reverse conducting insulated gate bipolar transistor (RC-IGBT) for soft and hard switching applications, such as general purpose inverters. The newly developed RC-IGBT uses the deep reactive-ion etching trench technology without the thin wafer process technology. Therefore, a freewheeling diode (FWD) is monolithically integrated in an IGBT chip. The proposed RC-IGBT operates as an IGBT in forward conducting mode and as an FWD in reverse conducting mode. Also, to avoid the destructive failure of the gate oxide under the surge current and abnormal conditions, a protective Zener diode is successfully integrated in the gate electrode without compromising the operation performance of the IGBT.

The Worst-Case Optimal Design of An Interface Circuit for Satellite (Worst Case를 고려한 위성체 접속회로의 최적설계)

  • Lho, Yeung-Hwan;Lee, Sang-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.136-141
    • /
    • 2002
  • The electrical characteristics of solid state devices such as BJT(Bipolar Junction Transistor) and MOSFET, etc, are altered by impinging nuclear radiation and temperature in the space environment. This phenomenon is well known and has been studied extensively since the early 1960's when satellites were first being designed and used in the United States. However, the studies and the developments of radiation hardening technologies for the electronic components at the industrial fields in our country has not been popular so far. The worst case design technology in the electrical circuit is required for the appropriate operation of solid state devices in the space environment. In this paper, the interface circuit used in KOMPSAT(Korea Multipurpose Satellite), which is now being operated since the one was launched in 1999, is optimally designed to accomodate the worst case design and radiation effect.

Test Pattern Genration for Detection of Stuck-Open and Stuck-On Faults in BiCMOS Circuits (BiCMOS 회로의Stuck-Open 고장과 Stuck-On 고장 검출을 위한 테스트 패턴 생성)

  • 신재흥;임인칠
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.1-11
    • /
    • 1997
  • A BiCMOS circuit consists of the CMOS part which performs the logic function, and the bipolar part which drives output load. In BiCMOS circuits, transistor stuck-open faults exhibit delay faults in addition to sequential beavior. Also, stuck-on faults enhanced IDDQ (quiscent power supply current) at steady state. In this paper, a method is proposed which efficiently generates test patterns to detect stuck-open faults and stuck-on faults in BiCMOS circuits. The proposed method divides the BiCMOS circuit into pull-up part and pull-down part, and generates test patterns detect faults occured in each part by structural property of the BiCMOS circuit.

  • PDF

Design of Super-junction TMOSFET with Embedded Temperature Sensor

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.232-236
    • /
    • 2015
  • Super-junction trench MOSFET (SJ TMOSFET) devices are well known for lower specific on-resistance and high breakdown voltage (BV). For a conventional power MOSFET (metal-oxide semiconductor field-effect transistor) such as trench double-diffused MOSFET (TDMOSFET), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a SJ TMOSFET structure is suggested, but sensing the temperature distribution of TMOSFET is very important in the application since heat is generated in the junction area affecting TMOSFET. In this paper, analyzing the temperature characteristics for different number bonding for SJ TMOSFET with an embedded temperature sensor is carried out after designing the diode temperature sensor at the surface of SJ TMOSFET for the class of 100 V and 100 A for a BLDC motor.

Study on Improved Switching Characteristics of LIGBT by the Trap Injection (Trap 주입에 의한 LIGBT의 스위칭 특성 향상에 관한 연구)

  • 추교혁;강이구;성만영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.120-124
    • /
    • 2000
  • In this paper, the effects of trap distribution on switching characteristis of a lateral insulated gate bipolar transistor (LIGBT) are investigated. The simulations are performed in order to to analyze the effect of the positon, width and concentration of trap distribution model with a reduced minority carrier lifetime using 2D device simulator MEDICI. The turn off time for the proposed LIGBT model A with the trap injection is 0.8$mutextrm{s}$. These results indicate the improvement of about 2 times compared with the conventional LIGBT. It is shown that the trap distribution model is very effective to reduce the turn-off time with a little increasing of on-state voltage drop.

  • PDF

Drive system for 500MVA high-power testing facility (500MVA 대전력시험설비의 모터구동시스템)

  • Jung, Heung-Soo;La, Dae-Ryeol;Kim, Sun-Koo;Roh, Chang-Il;Kim, Won-Man;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.858-860
    • /
    • 2003
  • This paper introduces the drive system for 500MVA short-circuit generator. Drive system is usually low-voltage, but this system is 2300V high-voltage using Insulated Gate Bipolar Transistor(IGBT). Drive system consists of switchgear, 18-pulse transformer, converter(source bridge), inverter(load bridge) and control rack. In this paper, It describes the function and construction of each part.

  • PDF

The Technical Trends of Power MOSFET (전력용 MOSFET의 기술동향)

  • Bae, Jin-Yong;Kim, Yong;Lee, Eun-Young;Lee, Kyu-Hoon;Lee, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.125-130
    • /
    • 2009
  • This paper reviews the characteristics technical trends in Power MOSFET technology that are leading to improvements in power loss for power electronic system. The power electronic technology requires the marriage of power device technology with MOS-gated device and bipolar analog circuits. The technology challenges involved in combining power handling capability with finger gate, trench array, super junction structure, and SiC transistor are described, together with examples of solutions for telecommunications, motor control, and switch mode power supplies.

  • PDF