• Title/Summary/Keyword: artinian modules

Search Result 36, Processing Time 0.02 seconds

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

MODULES SATISFYING CERTAIN CHAIN CONDITIONS AND THEIR ENDOMORPHISMS

  • Wang, Fanggui;Kim, Hwankoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.549-556
    • /
    • 2015
  • In this paper, we characterize w-Noetherian modules in terms of polynomial modules and w-Nagata modules. Then it is shown that for a finite type w-module M, every w-epimorphism of M onto itself is an isomorphism. We also define and study the concepts of w-Artinian modules and w-simple modules. By using these concepts, it is shown that for a w-Artinian module M, every w-monomorphism of M onto itself is an isomorphism and that for a w-simple module M, $End_RM$ is a division ring.

ON ARTINIANNESS OF GENERAL LOCAL COHOMOLOGY MODULES

  • Tri, Nguyen Minh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.689-698
    • /
    • 2021
  • In this paper, we show some results on the artinianness of local cohomology modules with respect to a system of ideals. If M is a 𝚽-minimax ZD-module, then Hdim M𝚽(M)/𝖆Hdim M𝚽(M) is artinian for all 𝖆 ∈ 𝚽. Moreover, if M is a 𝚽-minimax ZD-module, t is a non-negative integer and Hi𝚽(M) is minimax for all i > t, then Hi𝚽(M) is artinian for all i > t.

On Representable Rings and Modules

  • Mousavi, Seyed Ali;Mirzaei, Fatemeh;Nekooei, Reza
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.407-423
    • /
    • 2022
  • In this paper, we determine the structure of rings that have secondary representation (called representable rings) and give some characterizations of these rings. Also, we characterize Artinian rings in terms of representable rings. Then we introduce completely representable modules, modules every non-zero submodule of which have secondary representation, and give some necessary and sufficient conditions for a module to be completely representable. Finally, we define strongly representable modules and give some conditions under which representable module is strongly representable.

STRUCTURE OF THE FLAT COVERS OF ARTINIAN MODULES

  • Payrovi, S.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.611-620
    • /
    • 2002
  • The aim of the Paper is to Obtain information about the flat covers and minimal flat resolutions of Artinian modules over a Noetherian ring. Let R be a commutative Noetherian ring and let A be an Artinian R-module. We prove that the flat cover of a is of the form $\prod_{p\epsilonAtt_R(A)}T-p$, where $Tp$ is the completion of a free R$_{p}$-module. Also, we construct a minimal flat resolution for R/xR-module 0: $_AX$ from a given minimal flat resolution of A, when n is a non-unit and non-zero divisor of R such that A = $\chiA$. This result leads to a description of the structure of a minimal flat resolution for ${H^n}_{\underline{m}}(R)$, nth local cohomology module of R with respect to the ideal $\underline{m}$, over a local Cohen-Macaulay ring (R, $\underline{m}$) of dimension n.

BETTI NUMBERS OVER ARTINIAN LOCAL RINGS

  • Choi, Sangki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.35-44
    • /
    • 1994
  • In this paper we study exponential growth of Betti numbers over artinian local rings. By the Change of Tor Formula the results in the paper extend to the asymptotic behavior of Betti numbers over Cohen-Macaulay local rings. Using the length function of an artinian ring we calculate an upper bound for the number of generators of modules, this is then used to maximize the number of generators of sygyzy modules. Finally, applying a filtration of an ideal, which we call a Loewy series of an ideal, we derive an invariant B(R) of an artinian local ring R, such that if B(R)>1, then the sequence $b^{R}$$_{i}$ (M) of Betti numbers is strictly increasing and has strong exponential growth for any finitely generated non-free R-module M (Theorem 2.7).).

  • PDF

RESULTS OF CERTAIN LOCAL COHOMOLOGY MODULES

  • Mafi, Amir;Talemi, Atiyeh Pour Eshmanan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.653-657
    • /
    • 2014
  • Let R be a commutative Noetherian ring, I and J two ideals of R, and M a finitely generated R-module. We prove that $$Ext^i{_R}(R/I,H^t{_{I,J}}(M))$$ is finitely generated for i = 0, 1 where t=inf{$i{\in}\mathbb{N}_0:H^2{_{I,J}}(M)$ is not finitely generated}. Also, we prove that $H^i{_{I+J}}(H^t{_{I,J}}(M))$ is Artinian when dim(R/I + J) = 0 and i = 0, 1.

ON SUBDIRECT PRODUCT OF PRIME MODULES

  • Dehghani, Najmeh;Vedadi, Mohammad Reza
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.277-285
    • /
    • 2017
  • In the various module generalizations of the concepts of prime (semiprime) for a ring, the question "when are semiprime modules subdirect product of primes?" is a serious question in this context and it is considered by earlier authors in the literature. We continue study on the above question by showing that: If R is Morita equivalent to a right pre-duo ring (e.g., if R is commutative) then weakly compressible R-modules are precisely subdirect products of prime R-modules if and only if dim(R) = 0 and R/N(R) is a semi-Artinian ring if and only if every classical semiprime module is semiprime. In this case, the class of weakly compressible R-modules is an enveloping for Mod-R. Some related conditions are also investigated.