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ON SUBDIRECT PRODUCT OF PRIME MODULES

Najmeh Dehghani and Mohammad Reza Vedadi

Abstract. In the various module generalizations of the concepts of prime
(semiprime) for a ring, the question “when are semiprime modules sub-
direct product of primes?” is a serious question in this context and it
is considered by earlier authors in the literature. We continue study
on the above question by showing that: If R is Morita equivalent to a
right pre-duo ring (e.g., if R is commutative) then weakly compressible
R-modules are precisely subdirect products of prime R-modules if and
only if dim(R) = 0 and R/N(R) is a semi-Artinian ring if and only if
every classical semiprime module is semiprime. In this case, the class
of weakly compressible R-modules is an enveloping for Mod-R. Some
related conditions are also investigated.

1. Introduction

Throughout this paper rings will have a nonzero identity, modules will be
right and unitary. In the literature, there are several module generalizations of
a semiprime (prime) ring, see [15, Sections 13 and 14] for an excellent reference
on the subject. These generalizations introduce various concepts of semiprime
(prime) modules and many important theories on semiprime (prime) rings are
generalized to modules by them, see; [3], [7], [8], [10] and [17]. The natural
question “when are semiprime modules subdirect product of primes?” is then
appeared related to these generalizations. In the following, we first recall some
definitions of the literature and explain some where the above question was
studied. Then we illustrate the main results about the above question. Follow-
ing [10], a module MR is called ⋆-prime if M ∈ Cog(N) for any 0 6= N ≤ MR.
These modules were originally studied in [4]. It is easy to see that ⋆-prime mod-
ules MR are prime (i.e., annR(M) = annR(N) for any 0 6= N ≤ MR). In [3],
classical prime modules MR (i.e., for any 0 6= N ≤ MR, annR(N) is a prime
ideal of R) was studied. A widely used generalization of semiprime rings is
weakly compressible modules MR that was defined in [2] by HomR(M,N)N 6= 0
for all 0 6= N ≤ MR. They are semiprime in the sense of [10] (i.e., M ∈ Cog(N)
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for every N ≤ess MR). As we will see in Proposition 2.1, semiprime R-modules
have the property “ annR(N) is a semiprime ideal of R for all 0 6= N ≤ MR”.
We call such modules MR classical semiprime. Consider the following classes
of R-modules:
P⋆ = {⋆-prime R-modules}, P = {prime R-modules}, CP = {classical prime
R-modules}, W = {weakly compressible R-modules}, S = {semiprime R-
modules}, CS = {classical semiprime R-modules}. We have the following
diagram and in Examples 2.4, we will show that all of the implications in
the diagram are in general not reversible.

P⋆ ( P ( CP

∩ ∩

W ( S ( CS

Let C, D be two classes of R-modules and C is closed under taking submodules.
If we denote ΩC = {MR | Rej(M, C) = 0} where Rej(M, C) =

⋂

{Kerf | f :
MR → CR for some C ∈ C}, then D ⊆ ΩC means every element in D is a
subdirect product of some elements in C. In [7], for a commutative ring R,
it is studied, when CS = ΩP . In [3, Thoerem 3.12], it is investigated when
CS = ΩCP for certain commutative rings. In [5, Theorems 2.6 and 3.3], the
conditions S ⊆ ΩP⋆

and W = ΩP⋆
are investigated for certain duo rings. In

[10, Corollary 5.4], it is shown that W ⊆ ΩP . The aim of this paper is study
the equality “W = ΩP” for commutative rings (or more generally duo rings) as
stated in the abstract of the paper. However, in view of the mentioned works,
the study of relations between these generalizations is not out of place. We
observe in (Theorems 2.10 and 2.12) that the study of conditions on a ring
R, under which W = ΩP leads to knowing where the equalities CP = P and
S = CS may occur. This in turn describes how are the generalizations far away
from each others. Any unexplained terminology and all the basic results on
rings and modules that are used in the sequel can be found in [1] and [11].

2. Main results

We first collect some properties of the classes stated in the introduction
for latter uses, and show that they are invariant under Morita equivalences.
Then we investigate when W = ΩP . A nonzero submodule N of a module
MR is called essential (and denoted by N ≤ess MR) if N ∩ K 6= 0 for all
0 6= K ≤ MR. For R-modules X and Y , we write X →֒ Y if there exists an
injective R-homomorphism from X to Y . A module XR is cogenerated by YR

and denoted by XR ∈ Cog(Y ) if Rej(X,Y ) = 0. If A is a nonempty set and M
is an R-module, then MA means a direct product of copies of MR.

Proposition 2.1. (a) If M is a semiprime R-module and N is a fully invariant

submodule of MR, then NR is semiprime.
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(b) If MR is semiprime (resp. prime), then MR is classical semiprime (resp.
classical prime). In particular, annR(M) is a semiprime (resp. prime) ideal of
R.

(c) Every weakly compressible module is semiprime.

(d) Let I be an ideal of R and “P” denote any one of the properties: “weakly
compressible”, “⋆-prime”, “prime”, “semiprime”, “classical prime”, “classical

semiprime”. If M is an R-module such that MI = 0, then MR satisfies the

property “ P” if and only if MR/I does so.

(e) Let MR be a semiprime module. Then every simple submodule of MR

is a direct summand of MR. In particular, if Soc(M) is essential in MR, then

MR is weakly compressible.

(f) The class of weakly compressible modules is closed under co-products and

taking submodules.

(g) The class of semiprime modules is closed under products ⋆-prime and

co-products.

Proof. The part (d) has a routine arguments and the other parts are obtained
by [5, Proposition 2.1]. �

Lemma 2.2. Let R and S be Morita equivalent rings with category equiva-

lence α : Mod-R → Mod-S and M ∈ Mod-R. If I = annR(M) and B =
annS(α(M)), then the rings R/I and S/B are Morita equivalent by the restric-

tion α on Mod-R/I.

Proof. Let A = annS(α(R/I)). Hence R/I
α
≈S/A by [1, Proposition 21.11].

On the other hand, α(M) is faithful as a module over S/A by [1, Proposition
21.6(4)]. It follows that A = B, as desired. �

Proposition 2.3. The properties: “semiprime”, “⋆-prime”, “prime”, “clas-

sical prime”, “classical semiprime” and “weakly compressible” are Morita in-

variant .

Proof. Let R and S be Morita equivalent rings with equivalence category α :
Mod-R → Mod-S and M ∈ Mod-R.

Since category equivalences preserve (essential) monomorphisms and direct
products [1, Proposition 21.6(3) and (5)], hence the properties of semiprime
and ⋆-prime are Morita invariant.

For the prime case suppose that α(M)S is prime, 0 6= N ≤ MR, I =
annR(M) and B = annS(α(M)). Thus annS(α(N)) = B and hence α(N) is
a faithful S/B-module. Now since R/I ≈ S/B by Lemma 2.2, N must be a
faithful R/I-module by [1, Proposition 21.6(4)]. Hence annR(N) = I, proving
that MR is prime.

For classical (semi) prime cases note that every ring Morita equivalent to
a prime (semiprime) ring is also a prime (semiprime) ring. Thus Lemma 2.2
shows that classical prime (classical semiprime) modules are Morita invariant.
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Finally, if MR is a weakly compressible module, then N 6 →֒ Rej(M,N)
for every nonzero R-submodule N . Because if with 0 6= NR, then θ(N) ⊆
Rej(M,N) = Rej(M, θ(N)) that shows MR is not weakly compressible. Now
suppose that α(M) is a weakly compressible S-module and 0 6= N ≤ MR. If
N ⊆ Rej(M,N), then α(N) →֒ α(Rej(M,N)) →֒ Rej(α(M), α(N)). This, by
the above, contradicts weakly compressible condition on α(M)S . Hence N *
Rej(M,N) and MR is weakly compressible. �

A ring R is called right semi-Artinian if every nonzero R-module contains a
simple submodule.

Examples 2.4. (a) Suppose that R is any commutative regular ring which

is not semi-Artinian (for example R = Z2
N). Then by [14, Theorem 3.2],

there exists an R-module M such that M /∈ W . Since R is a regular ring,
Rad(M) = 0 and so M →֒ L :=

∏

λ∈Λ
Sλ where Λ is a nonempty set and each

Sλ is a simple R-module. By Lemma 2.1(g), L ∈ S. Thus if W = S, then
M ∈ W , a contradiction. Therefore W 6= S.

(b) Let R be a commutative domain which is not field and Q be the quotient
field of R. It is clear that QR ∈ P . Since HomR(Q,R) = 0, QR /∈ S. This
example shows that P⋆ ( P and S ( CS.

(c) Consider the Z-module M = Q⊕ Zp, where p is a prime number. Since
annZ(Q) 6= annZ(Zp), M /∈ P . In fact, the annihilator of any nonzero submod-
ule of MZ is either 0 or pZ. Hence M ∈ CP\P and so CP 6= P .

In order to study when W = ΩP , we first investigate the stronger cases:
Mod-R = P⋆ or W . A ring R is said to be (right quasi-duo) right duo if
(maximal) right ideals of R are ideal. We say that a ring R is a right pre-duo

ring if every prime factor ring of R is right duo.

Proposition 2.5. If R is a right duo ring, then S ⊆ ΩP∗
.

Proof. Let M ∈ S. Note that if m ∈ M , then mR ≃ R/ann(mR) because R
is right duo. Hence every cyclic submodule of M lies in ΩP∗

by Proposition
2.1(b). On the other hand, since there exists an essential submodule N of MR

such that N is a direct sum of cyclic submodules of M , we deduce that M can
be embedded in a product of its cyclic submodules. Therefore M ∈ ΩP∗

. The
proof is complete. �

Lemma 2.6. A ring R is right pre-duo ⇒ R is a right quasi-duo ring ⇒ R/J
is a reduced ring.

Proof. Since every maximal right ideal of R contains a prime ideal, we see that
every right pre-duo ring is a right quasi-duo ring. For the second implication,
let R be a right quasi-duo ring. Without loss of generality, we may suppose
that J(R) = 0. If xn = 0 and xn−1 6= 0 for some x ∈ R, then there exists a
maximal right ideal P of R such that xn−1 /∈ P . It follows that xn−1R+P = R
and hence xR = xP ⊆ P , a contradiction. Thus R has no nonzero nilpotent
elements. �
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Following [11, Chapter 6], the classical Krull dimension of a ring R is origi-
nally defined to be the supremum of the lengths of all chains of prime ideals in
R and is usually denoted by dim(R). A ring R is called right V -ring if every
simple R-module is injective. A right quasi-duo ring R is a right V -ring if and
only if R is a regular ring if and only if R is a semiprime ring with dim(R) = 0
[16, Theorems 2.6 and 2.7].

Theorem 2.7. Let R be a ring. The following statements hold.

(a) Every R-module is ⋆-prime if and only if R is a simple Artinian ring.

(b) Every R-module is prime if and only if R is a simple ring.

(c) Consider the following conditions.

(i) R is a right semi-Artinian right V -ring.

(ii) Mod-R = W.

(iii) Mod-R = S.
Then (i) ⇒ (ii) ⇔ (iii). All conditions are equivalent if the ring R is Morita

equivalent to a right quasi-duo ring.

Proof. (a) For sufficiency note that by our assumption, there exists a unique
simple R-module T (up to isomorphism) and every nonzero R-module M is
isomorphic to a direct sum of copies of T . Hence M ∈ Cog(N) for all 0 6=
N ≤ MR. Conversely, suppose that all R-modules are ⋆-prime. If M1 and M2

are nonzero R-modules, then M1 ∈ Cog(M2) because M1 ⊕ M2 is a ⋆-prime
R-module. This follows that R is a simple ring because R ∈ Cog(R/I) for any
proper ideal I of R. Thus R is a right nonsingular ring. Now if J is any essential
right ideal of R, the condition R/J ∈ Cog(R) implies J = R. Therefore R has
no proper essential right ideal, proving that R is a simple Artinian ring.

(b) The sufficiency is clear. Conversely, suppose that every R-module is
prime and I is any proper ideal of R. Since R ⊕ R/I is a prime R-module,
annR(R/I) = annR(R) = 0. Hence I = 0, proving that R is a simple ring.

(c) (i) ⇒ (ii). Since R is right semi-Artinian, we shall show that for every
simple submodule S ≤ MR, there exists a homomorphism f : M → S such
that f(S) 6= 0. The latter statement holds because R is a right V -ring.

(ii) ⇒ (iii). By Proposition 2.1(c).
(iii) ⇒ (ii). Let M be an R-module and N be any nonzero submodule of

MR. There exists a submodule N
′

of MR such that N ⊕N
′

/N
′

is an essential

submodule of M/N
′

[1, Proposition 5.21]. Since N ≃ N ⊕N
′

/N
′

and M/N
′

is a semiprime R-module by (iii), M/N
′

∈ Cog (N). This follows that there
exists a homomorphism f : M → N such that f(N) 6= 0, proving that MR is
weakly compressible.

(ii) ⇒ (i). Now suppose that R is Morita equivalent to a right quasi-duo
ring. In view of Proposition 2.3, we may suppose that R is right quasi-duo.
By (ii) and Proposition 2.1(e) we can show that S = E(S) for every simple
R-module S. Therefore J(R) = 0 and so R is a reduced ring by Lemma 2.6.
Hence R is a right semi-Artinian and strongly regular ring by [14, Theorem
3.2]. Now, R is a V-ring by the above remarks and so (i) holds. �
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Remark 2.8. If R is any arbitrary ring, then the condition (ii) (or equivalently,
the condition (iii)) of the above theorem implies that R is a V-ring because if
f : E(S) → S with f(S) 6= 0 for a simple R-module S then ker f is a maximal
submodule with 0 = S∩ker f . Thus SR is injective. We don’t know whether R
is also semi-Artinian. However, for many ring including duo rings, the answer
is positive, see [14].

Lemma 2.9. If {Ii}i∈A is a family of semiprime ideals in a ring R, then

⊕i∈A(R/Ii)
Λi is a weakly compressible R-module, where each Λi is a nonempty

set.

Proof. By Proposition 2.1(d) each (R/Ii)
Λi is a weakly compressible R/Ii-

module if and only if it is weakly compressible R-module. Hence by Proposition
2.1(f), we need to show that for every semiprime ring S and every nonempty
set Λ, the S-module SΛ is weakly compressible. The latter statement is well
known, we give a proof for completeness. Let 0 6= n = {ai}i∈Λ ∈ N ≤ SΛ. Thus
at 6= 0 for some t ∈ Λ. Since S is a semiprime ring, atSat 6= 0. Hence there
exists s ∈ S such that atsat 6= 0. Consider the nonzero element x = ns ∈ N .
Let f = ℓxπt, where πt : S

Λ → S is the canonical projection and ℓx : S → xS
is the left multiplication map by x. Thus f : SΛ → N is a homomorphism such
that f(n) 6= 0. The proof is complete. �

A ring R is called right Goldie if R has finite right uniform dimension and
R satisfies the ACC on right annihilators. It is well known that a ring R is
semiprime right Glodie if and only if R is semiprime, Z(RR) = 0 and R has finite
right uniform dimension if and only if R has a semisimple Artinian classical
right quotient ring [11, Theorem 2.3.6]. For any ring R, the intersection of all
prime ideals of R is called prime radical and usually denoted by N(R).

Theorem 2.10. Let R be a ring.

(a) CP = P if and only if dim(R) = 0.
(b) If R is a ring such that R/N(R) is a right Goldie ring, then the following

statements are equivalent.

(i) P⋆ = P.

(ii) S = CS.
(iii) W = ΩP .

(iv) R/N(R) is a semisimple Artinian ring.

Proof. (a) For the sufficiency note that if MR ∈ CP, then R/annR(M) is a
simple ring. Hence MR ∈ P . Conversely, suppose that CP = P and P1, P2

are prime ideals of R such that P1 ⊆ P2. Let M = R/P1 ⊕ R/P2 and 0 6=
N ≤ MR. If N ⊆ R/P2, then annR(N) = P2. Let N * R/P2. Thus there
exists an element n = (a + P1, b + P2) ∈ N such that a /∈ P1. It follows that
annR(nR) ⊆ P1 and so annR(N) ⊆ P1. On the other hand, P1 ⊆ annR(N)
because MP1 = 0. Therefore MR ∈ CP and so, by our assumption, MR ∈ P .
It shows that P1 = P2, as desired.
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(b) Let R be a ring with N = N(R). Since all modules stated in conditions
(i), (ii) or (iii), are annihilated by N, hence we may suppose that N = 0 and R
is a semiprime right Goldie ring.

Clearly (iv) implies (i), (ii) and (iii).
Suppose that one of the conditions (i), (ii) or (iii) holds. It is well known

that R has only finitely many minimal prime ideals such that R/P is a right
Goldie ring for each minimal prime ideal P of R [11, Propositions 3.2.2 and
3.2.5]. Thus it is enough to show that R/P is an Artinian ring for any minimal
prime ideal P of R. Let now P be a minimal prime ideal of R. By Proposition
2.1(d), the conditions (i), (ii) and (iii) hold for the ring R/P . Thus we may
suppose that R is a prime right Goldie ring with Q = the classical right quotient
ring of R [11, Theorem 2.3.6]. Hence for any 0 6= A ≤ QR, we have annR(A) ⊆
annR(A ∩ R) = 0 and so QR ∈ P . Consequently, in any cases (i), (ii) or (iii),
we have QR ∈ S. Thus Q ∈ Cog(R). Hence by Lemma 2.9 and Proposition
2.1(f), QR is weakly compressible. It follows that HomR(Q,U) 6= 0 for every
uniform right ideal U of R. Therefore every uniform right ideal of R contains
a nonzero divisible submodule. It is well known that in a semiprime right
Goldie ring S, every nonsingular divisible S-module is injective, see instance
[9, Theorem 3.3]. Hence every uniform right ideal of R contains a nonzero
injective submodule. It follows that every uniform right ideal of R is a simple
and injective R-module. Now, since the uniform dimension of RR is finite, we
deduce that R = U1⊕· · ·⊕Un (n ≥ 1) such that each Ui is a simple and injective
R-module. Therefore R is an Artinian ring. The proof is complete. �

Let M be an R-module. The Krull dimension of MR is defined by a transfi-
nite induction [11, Chapter 6]. It is well known that every Noetherian module
has a Krull dimension, and modules with Krull dimensions have finite uniform
dimensions [11, Lemma 6.2.6].

Corollary 2.11. Let R be a ring such that RR has finite Krull dimension.

The following statements are equivalent.

(a) P⋆ = P.

(b) S = CS.
(c) W = ΩP .

(d) R/N(R) is a semisimple Artinian ring.

Proof. Note that semiprime rings with right Krull dimensions are known to be
right Goldie [11, Proposition 6.3.5], and apply Theorem 2.10(b). �

Theorem 2.12. Let R be a ring Morita equivalent to a right pre-duo ring.

Then the following statements hold.

(a) P = P⋆ if and only if dim(R) = 0.
(b) The following statements are equivalent.

(i) S = CS.
(ii) W = ΩP .

(iii) dim(R) = 0 and R/N(R) is a right semi-Artinian ring.
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Proof. By Lemma 2.2, if R
α
≈S, then R/N(R) ≈ S/N(S). Therefore in view

of Proposition 2.3, we may suppose that R is a right pre pre-duo ring. We
first show that every prime factor ring of R is a right Goldie ring. Let P be
a prime ideal of R. By our assumption on R, R/P is a domain and right duo
ring. Hence R/P has finite right uniform dimension, by [12, Proposition 4.6].
Therefore R/P is a right Goldie ring [11, Theorem 2.3.6].

(a) For the sufficiency consider that every prime factor ring of R is a simple
and right duo ring, hence is a division ring. Thus P = P⋆. Conversely, let
P be any prime ideal of R. By the above, R/P is a right Goldie ring. Now
an application of Theorem 2.10(b) for the ring R/P , shows that R/P is an
Artinian ring and so P is a maximal ideal of R, as desired.

(b) The first note that R is a right quasi-duo ring by Lemma 2.6. Also
if dim(R) = 0, then by the remarks before Theorem 2.7, R/N(R) is a right
V -ring.

(iii) ⇒ (i) By Theorem 2.7(c).
(iii) ⇒ (ii) By [10, Corollary 5.4] we have W ⊆ ΩP . On the other hand,

every nonzero R-module M with Rej(M,P) = 0 is a module over R/N(R). The
result is now obtained by Theorem 2.7(c).

(i) or (ii) ⇒ (iii). By a similar argument, as it is seen in (a), we deduce that
dim(R) = 0. Thus by the first statements, R/N(R) is a right V -ring. Therefore
every nonzero module over R/N(R) embeds in a product of simple R-modules.
Hence Mod-R/N(R) = ΩP ⊆ CS [10, Proposition 5.5]. Therefore one of the
conditions (i) or (ii) implies that Mod-R/N(R) ⊆ S. Hence R/N(R) is a right
semi-Artinian ring by Theorem 2.7(c). �

A class of R-modules C is called enveloping if every R-module has an envelop
in C, see [6].

Corollary 2.13. Let R be a right duo ring such that dim(R) = 0 and R/N(R)
is a right semi-Artinian ring. Then the class W is enveloping.

Proof. By Proposition 2.5 and Theorem 2.12, we have W = ΩP⋆
. Hence the

result is obtained by [5, Thereom 3.3]. �
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