Browse > Article
http://dx.doi.org/10.4134/JKMS.2002.39.4.611

STRUCTURE OF THE FLAT COVERS OF ARTINIAN MODULES  

Payrovi, S.H. (Imam Khomeini International University)
Publication Information
Journal of the Korean Mathematical Society / v.39, no.4, 2002 , pp. 611-620 More about this Journal
Abstract
The aim of the Paper is to Obtain information about the flat covers and minimal flat resolutions of Artinian modules over a Noetherian ring. Let R be a commutative Noetherian ring and let A be an Artinian R-module. We prove that the flat cover of a is of the form $\prod_{p\epsilonAtt_R(A)}T-p$, where $Tp$ is the completion of a free R$_{p}$-module. Also, we construct a minimal flat resolution for R/xR-module 0: $_AX$ from a given minimal flat resolution of A, when n is a non-unit and non-zero divisor of R such that A = $\chiA$. This result leads to a description of the structure of a minimal flat resolution for ${H^n}_{\underline{m}}(R)$, nth local cohomology module of R with respect to the ideal $\underline{m}$, over a local Cohen-Macaulay ring (R, $\underline{m}$) of dimension n.
Keywords
Artinian module; flat cover; minimal flat resolution;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Injective modules over Noetherian rings /
[ E, Matlis ] / Pacific J. Math.   DOI
2 All modules have flat covers /
[ L. Bican;R. El Bashir;E. Enochs ] / Bull. London Math. Soc.   DOI
3 The Co-localization of an Artinian module /
[ L. Melkersson;P. Schenzel ] / Proc. Edinburgh Math. Soc.   DOI   ScienceOn
4 Injective and flat covers, envelopes and resolvents /
[ E. Enochs ] / Israel J. Math.   DOI
5 On invariants dual to the Bass numbers /
[ E. Enochs;J. Xu ] / Proc. Amer. Math. Soc.   DOI   ScienceOn
6 /
[ M. P. Brodmann;R. Y. Sharp ] / Local cohomology: an algebraic introduction with geometric applications
7 Flat covers of modules /
[ J. Xu ] / Lecture Notes in Mathematics
8 Minimal pure injective resolutions of flat modules /
[ E. Enochs ] / J. Algebra   DOI
9 On Cohen-Macaulay rings /
[ E. Enochs;O. Jenda ] / Comment. Math. Univ. Carolin
10 Secondary representation of modules over a cimmutative ring /
[ I. G. MacDonald ] / Symposia Mathematica
11 Flat covers and flat cotorsion modules /
[ E. Enochs ] / Proc. Amer. Math. Soc.   DOI
12 Mininal injective and flat resolutions of modules over gorenstein rings /
[ J. Xu ] / J. Algebra   DOI   ScienceOn