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Abstract. In this paper, we determine the structure of rings that have secondary repre-

sentation (called representable rings) and give some characterizations of these rings. Also,

we characterize Artinian rings in terms of representable rings. Then we introduce com-

pletely representable modules, modules every non-zero submodule of which have secondary

representation, and give some necessary and sufficient conditions for a module to be com-

pletely representable. Finally, we define strongly representable modules and give some

conditions under which representable module is strongly representable.

1. Introduction

Throughout this paper, R will denote a commutative ring with a non-zero iden-
tity and every module will be unitary. Given an R-module M , we shall denote
the annihilator of M (in R) by AnnR(M) or Ann(M). We shall follow Macdon-
ald’s terminology in [18] concerning secondary representation. Thus, an R-module
N is secondary if N ̸= 0 and for each r ∈ R, either rN = N or there exists
some positive integer n, such that rnN = 0. If N is a secondary module then,
Ann(N) is a primary ideal and hence P =

√
Ann(N) is prime and we say that

N is P -secondary. A secondary representation of M is an expression for M as a
sum M = N1 + N2 + · · · + Nt of finitely many secondary submodules of M , such
that Ni is Pi-secondary for i = 1, . . . , t. If such a representation exists, we shall
say M is representable. Such a representation is said to be minimal if P1, . . . , Pt

are all different and none of the summands Ni are redundant. Every representable
module has a minimal secondary representation. As for the primary decomposition
of submodules, we have two uniqueness theorems for secondary representation of
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modules. The first uniqueness theorem (see [18, 2.2]) says that if M = N1+· · ·+Nt,
with Ni being Pi-secondary, is a minimal secondary representation of M , then the
set {P1, ..., Pt} is independent of the choice of minimal secondary representation
of M . This set is called the set of attached prime ideals of M and is denoted by
Att(M). Every Artinian module and every injective module over a Noetherian ring
is representable. These and other propositions about representable modules can be
found in [5, 18, 22].

An R-module M is said to be Laskerian if every proper submodule of M is an
intersection of a finite number of primary submodules, i.e. has a primary decom-
position. A ring R is Laskerian if it is Laskerian as an R-module over itself.

We denote the set of all prime ideals and the set of all maximal ideals of a
ring R by Spec(R) and Max(R), respectively. The Jacobson radical J(R) of a ring
R is defined to be the intersection of all the maximal ideals of R. The set of all
nilpotent elements of R is called the nilradical of R and denoted by N(R). The
Krull dimension of R is denoted by dim(R). If I is a proper ideal of R, then

√
I

and Min(I) denote the radical ideal of I and the set of prime ideals of R minimal
over I, respectively.

A topological space X is said to be irreducible if X ̸= ∅, and whenever X =
Z1 ∪ Z2 with Zi closed, we have X = Z1 or X = Z2. The maximal irreducible
subsets of X are called irreducible components of X. A topological space X is said
to be Noetherian if the ascending chain condition holds for open subsets of X. If
X = Spec(R) with the Zariski topology, then X is Noetherian if and only if R
satisfies the ascending chain condition for radical ideals.

In Section 2, we investigate representable rings and show that these rings and
Artinian rings have similar properties in some cases. We then show that repre-
sentable rings are strictly between Artinian and semiperfect rings. Therefore, we
determine the structure of these rings and characterize them. Next we characterize
Artinian rings in terms of representable rings.

In Section 3, we consider modules for which all non-zero submodules are rep-
resentable and called these modules completely representable. Then we give some
necessary and sufficient conditions for a module to be completely representable.

In Section 4, we define strongly representable modules as modules that can be
written as a direct sum of finitely many secondary submodules and then give some
conditions such that a representable module is strongly representable.

2. Representable Rings

A ring R is representable if it is representable as a module over itself. In this
section, we first show that representable rings are strictly between Artinian and
semiperfect rings. Then we determine the structure of these rings. Finally we
give some characterization of these rings and characterize Artinian rings in terms
of representable rings. By [18, 5.2], any Artinian ring is representable. But the
converse is not true.
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Example 2.1. The ring R = k[X1, X2, . . . ]/(X1, X2, . . . )
2, where k is a field,

is representable (in fact it is m = (x1, x2, . . . )-secondary, where xi denotes the
equivalence class of Xi in R) but it is not Artinian, because it is not Noetherian.

Representable rings have similar properties to Artinian rings. Artinian rings
are Noetherian. We show that representable rings are Laskerian.

Proposition 2.2. Let R be a representable ring. We have the following statements.

(i) If R is a domain, then R is a field.

(ii) dim(R) = 0.

(iii) J(R) = N(R), and hence J(R) is a nil ideal.

(iv) R is Laskerian.

(v) Spec(R) is Noetherian.

Proof. (i) Let R be a representable domain and R = I1 + I2 + · · ·+ It be a minimal
secondary representation of R, where Ii is Pi-secondary (i = 1, . . . , t). Let r ∈ Pi.
Then there exists n > 1 such that rnIi = 0. But Ii ̸= 0, hence r = 0. Thus, Pi = 0
for all i, and hence R = I1. So, R is 0-secondary and hence is a field.
(ii) Let P be a prime ideal of R. Then R/P is a representable R-module and also
a representable domain. Hence by part (i), R/P is a field. Thus, P is a maximal
ideal.
(iii) It follows by part (ii).
(iv) Let I be a proper ideal of a representable ring R. Then R/I is a representable
R-module. Let R/I = J1 + · · ·+ Jt be a minimal secondary representation of R/I.
Then I = Ann(R/I) =

∩t
i=1 Ann(Ji) is a primary decomposition for I.

(v) It follows from (iv) and [10, Theorem 4]. 2

Every representable ring has finitely many prime ideals. Indeed, prime ideals
are maximal, and we have the following.

Proposition 2.3. Let R be a Laskerian ring. If dim(R) = 0, then it has finitely
many maximal ideals. In particular, every representable ring has finitely many max-
imal ideals.

Proof. Since R is Laskerian, it follows from [10, Theorem 4] that R has Noethe-
rian spectrum. Hence by [20, Theorem 3.A.16], the Spec(R) has finitely many
irreducible components and by [20, Corollary 3.A.14], these components are of the
forms V (P ) = {Q ∈ Spec(R) | P ⊆ Q}, where P is a minimal prime ideal of R.
Since dim(R) = 0, Min(R) = Max(R). Thus, V (P ) = {P}, for every P ∈ Min(R).
Therefore, Spec(R) is finite. The last statement follows from Proposition 2.2 (ii),
(iv). 2

In the following, we show that every representable ring is semiperfect. By [27,
42.6], a ring R is semiperfect if and only if R/J(R) is semisimple and idempotents
lift modulo J(R).
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Proposition 2.4. Every representable ring is semiperfect.

Proof. Let R be a representable ring and let Max(R) = {m1,m2, . . . ,mt} =
Spec(R). By the Chinese Remainder Theorem, R/J(R) ∼=

⊕t
i=1 R/mi. Hence

R/J(R) is semisimple. By Proposition 2.2 (iii), J(R) is a nil ideal. Thus by [27,
42.7], idempotents lift modulo J(R). Therefore, R is a semiperfect ring. 2

The converse of Proposition 2.4, is not true in general. For example, the ring
of formal power series R = k[[X]] where k is a field, is semiperfect (because it is
local) but it is not representable (because dim(R) ̸= 0). Thus, representable rings
are strictly between Artinian and semiperfect rings.

In the following, we will determine the structure of representable rings. To this
purpose we need the following.

Proposition 2.5. Let R be a ring and e ∈ R be an idempotent element. Then we
have the following statements.

(i) Re is a ring with 1Re = e.

(ii) Every ideal of Re is of the form Ie, where I is an ideal of R.

(iii) If m is a maximal (prime) ideal of R and e /∈ m, then me is a maximal
(prime) ideal of Re.

(iv) If I is an P -secondary (as R-module) ideal of R, then Ie is either zero or
Pe-secondary (as Re-module) ideal of Re.

Proof. (i), (ii) and (iv) are easily proven by definitions. For (iii), one can consider
ring isomorphism Re/Ie ∼= (R/I)(e+ I). 2

Lemma 2.6. A ring R is representable and local if and only if it is secondary as
an R-module.

Proof. Let (R,m) be a representable and local ring. Then m = N(R), and hence
every elements of R is a unit or nilpotent. Thus, R is m-secondary. Conversely, if
R is m-secondary, then R \U(R) = m, where U(R) is the set of unit elements of R.
Thus, R is local with unique maximal ideal m. 2

Lemma 2.7. Let R be a representable ring with Max(R) = {m1, . . . ,mt} and
e ∈ R be an idempotent element such that e − 1 ∈ m1 and e ∈

∩t
i=2 mi. Then Re

is a representable local ring with unique maximal ideal m1e.

Proof. According to Lemma 2.6, it is sufficient to show that the ring Re is m1e-
secondary. Let R = I1 + I2 + · · · + Is be a minimal secondary representation for
R, where Ii be mi-secondary (i = 1, . . . , s). In fact, s = t. Because, if s < t then
for r ∈ mt \

∪s
i=1 mi, we have rR = rI1 + · · · + rIs = I1 + · · · + Is = R. So r is

unit, which is a contradiction. Since e /∈ m1 and e ∈ mi (2 6 i 6 s), we have,
Re = I1e(= I1). Therefore, Re is m1e-secondary. 2

Theorem 2.8. (Structure theorem for representable rings) A representable ring is
uniquely (up to isomorphism) a finite direct product of representable local rings.
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Proof. Let Max(R) = {m1, . . . ,mt}. Since J(R) is a nil ideal, hence by [27, 42.7],
every idempotent in R/J(R) can be lifted to an idempotent in R. But by Chines
Reminder Theorem, R/J(R) ∼=

∏t
i=1 R/mi. Thus, there exists a set {e1, . . . , et} of

orthogonal idempotents (i.e. e2i = ei for all i and eiej = 0 for i ̸= j) in R such

that ei − 1 ∈ mi and ei ∈
∩t

j ̸=i mj , for i = 1, . . . , t. Thus, we have (e1 − 1)(e2 −
1) . . . (et − 1) ∈ J(R) = N(R). So there exists n > 1, such that (e1 − 1)n(e2 −
1)n . . . (et − 1)n = 0. Hence e1 + e2 + · · ·+ et = 1. By [13, Exercise 24, page 135],
we have R ∼= Re1 × · · · × Ret. But by Lemma 2.7, each Rei is representable and
local. Therefore, R is a finite direct product of representable local rings.
For uniqueness, suppose R ∼=

∏s
i=1 Ri, where the (Ri,mi) are representable local

(= mi-secondary) rings. For each i, we have a natural injective homomorphism
φi : Ri −→ R. Let Ii = Im(ϕi). Then one can simply see that R = I1 + · · · + Is
is a minimal secondary representation of R. On the other hand by proof of Lemma
2.7, R = Re1 + · · · + Ret is a minimal secondary representation of R and all the
secondary components Rei are isolated. Hence by 2nd uniqueness theorem for
secondary representation (see [18, 3.2]), we have s = t and Ri

∼= Ii ∼= Rei for all i,
and the proof is complete. 2

Corollary 2.9. Let R be a representable ring. Then every non-zero ideal of R is
representable (as an R-module).

Proof. By Theorem 2.8, R = R1 × · · · × Rn, where Ri is a representable local ring
(or equivalently secondary ring by Lemma 2.6). Let I be a non-zero ideal of R.
Then I = I1×· · ·×In, where Ii is an ideal of Ri for all i. Since every non-zero ideal
of a secondary ring is secondary, Ii is secondary for all i with Ii ̸= 0. For simplicity,
we can assume that all of Ii’s are non-zero. Then I = (I1 × 0× · · · × 0)+ · · ·+ (0×
· · · × 0× In), is a secondary representation of I and the proof is complete. 2

Proposition 2.10. Let R be a ring. Then R is a representable ring if and only
if Spec(R) is Noetherian and for every non-zero ideal I of R and every minimal
prime ideal P of Ann(I), there exists r ∈ R \ P such that rI is P -secondary.

Proof. Let R be a representable ring. Then by Proposition 2.2 (v), Spec(R) is
Noetherian. Let I be a non-zero ideal of R and P be a minimal prime ideal of
Ann(I). By Corollary 2.9, I has a minimal secondary representation, say, I =
I1 + · · ·+ It. Thus,

√
Ann(I) =

∩t
i=1 Pi ⊆ P . So, there exists i such that Pi ⊆ P ,

and hence Pi = P because dim(R) = 0. By rearranging Ii’s (if necessary), we can
assume that i = 1. If t = 1, then I = I1 is P -secondary and the proof is complete
for r = 1. Otherwise, suppose s ∈ (

∩t
i=2 Pi) \ P . Then there exists k > 1 such that

sk ∈ Ann(Ii) for all i, 2 6 i 6 t. Let r = sk. Then rI = rI1 + · · ·+ rIt = rI1 = I1
is P -secondary.
Conversely, let P0 be a minimal prime ideal of R = I0 . Then by assumption, there
exists r0 ∈ R \ P0 such that r0R is P0-secondary. Let I1 = (0 :R r0) = AnnR(Rr0).
Since r20I0 = r0I0, so we have R = r0I0 + I1. If I1 = 0, then R = r0I0 is a
representation of R. Otherwise, let P1 be a minimal prime ideal of Ann(I1). Again
by assumption, there exists r1 ∈ R \ P1 such that r1I1 is P1-secondary and hence



412 S. A. Mousavi, F. Mirzaei and R. Nekooei

I1 = r1I1 + I2 , where I2 = (0 :R r1). Thus, R = r0I0 + r1I1 + I2. If I2 = 0, then
R = r0I0+r1I1 is representation of R. Otherwise we continue this process and claim
that there exists some n > 1 such that In = 0. If not, then since · · · ⊆ I3 ⊆ I2 ⊆
I1 ⊆ I0 = R and hence

√
Ann(R) ⊆

√
Ann(I1) ⊆

√
Ann(I2) ⊆ . . . . Since Spec(R)

is Noetherian, there exists n > 1 such that
√
Ann(In) =

√
Ann(In+1). Thus, there

exists t > 1 such that rtnIn = 0. But rtnIn = rnIn. So rn ∈ Ann(In) ⊆ Pn, which is
a contradiction. Therefore, there exists n > 0 such that R = r0I0+r1I1+ · · ·+rnIn,
a representation of R and the proof is complete. 2

In the next theorem we give some characterization of representable rings. A
ring R is called von Neumann regular ring if for each a ∈ R, there exists b ∈ R
such that a = a2b. A ring R is said to be a Q-ring, if every ideal of R is a finite
product of primary ideals. A ring R is called a completely packed ring if whenever
I ⊆

∪
α∈Γ Pα, where I is an ideal and Pα’s are prime ideals of R then I ⊆ Pβ , for

some β ∈ Γ. It is well known that R is a compactly packed ring if and only if every
prime ideal is the radical of a principle ideal [24, Theorem]. We need the following
lemma.

Lemma 2.11. Let I ⊆ P be ideals of a ring R with P a prime ideal. Then the
following statements are equivalent.

(i) P is a minimal prime ideal of I.

(ii) For each x ∈ P , there is y ∈ R\P and a positive integer n such that yxn ∈ I.

Proof. [12, Theorem 2.1, Page 2]. 2

Theorem 2.12. Let R be a ring. The following statements are equivalent.

(i) R is a representable ring.

(ii) R/J(R) is a semisimple ring and J(R) is a nil ideal.

(iii) R/N(R) is a Noetherian and von Neumann regular ring.

(iv) R is a zero dimensional compactly packed ring.

(v) R has Noetherian spectrum and dim(R) = 0.

(vi) R is a zero dimensional Q-ring.

Proof. (i) ⇒ (ii) It follows from Propositions 2.2 and 2.4.
(ii) ⇒ (iii) A ring is semisimple if and only if it is Noetherian Von Neumann regular
ring [17, Theorem 4.25]. Since J(R) is a nil ideal, J(R) = N(R). Hence the result
follows.
(iii) ⇔ (iv) ⇔ (v) ⇔ (vi) [15, Theorem 2.12].
Now by Proposition 2.10, we show that the equivalent conditions (iv) and (v) imply
(i).
Let I be a non-zero ideal of R and P a minimal prime ideal of Ann(I). By [24,
Theorem], there exists a ∈ R such that P =

√
(a). Now by Lemma 2.11, there exists



On Representable Rings and Modules 413

r ∈ R\P and n > 1 such that ran ∈ Ann(I). We claim that rI is P -secondary. Since
r /∈ P , rI ̸= 0. Let s ∈ R. If s ∈ P , then there exists m > 1 such that sm ∈ (a).
Thus sm = ta, for some t ∈ R. We have snm(rI) = tnan(rI) = tn(ranI) = 0.
If s /∈ P , since P is maximal, then R = Rs + P . Therefore, 1 = ys + x, for
some y ∈ R and s ∈ P . Since P =

√
(a), sk = za for some k > 1 and z ∈ R.

Now we have 1 = (ys + x)kn = αs + xkn = αs + znan, for some α ∈ R. Thus,
rI = (αsr + znanr)I = αsrI. So, s(rI) ⊆ rI = s(αrI) ⊆ s(rI). Therefore,
s(rI) = rI and the proof is complete. 2

The following result is the expected generalization of [3, Theorem 8.5].

Corollary 2.13. A ring R is representable if and only if R is Laskerian and
dim(R) = 0.

Proof. It follows from Proposition 2.2, [10, Theorem 4] and Theorem 2.12 (v). 2

Corollary 2.14. Let R be a local ring. Then R is representable if and only if
dim(R) = 0.

Proof. It follows form Proposition 2.2 (ii) and Theorem 2.12 (iii). 2

Corollary 2.15. A ring R is reduced and representable if and only if R is a
Noetherian von Neumann regular ring (or equivalently a semisimple ring).

Proof. Let R be reduced (i.e. N(R) = 0) and representable. Then by Theorem 2.12
(iii), R is a Noetherian von Neumann regular ring. Conversely, if R is a Noetherian
von Neumann regular ring, then it is semisimple [17, Theorem 4.25]. So it is a finite
direct product of fields and hence is representable and reduced. 2

Representability is not a local property. However, we have the following theo-
rem.

Theorem 2.16. Let R be a ring. Then Rm is a representable ring for all maximal
ideal m of R if and only if dim(R) = 0.

Proof. If dim(R) = 0 then by Corollary 2.14, Rm is a representable ring, for all
maximal ideals m of R. Now let Rm be a representable ring, for all maximal ideal
m of R. Let q be a prime ideal and m be a maximal ideal of R such that q ⊆ m.
Then by Proposition 2.2 (ii), dim(Rm) = 0. So qm = mm, and hence q = m. This
shows that dim(R) = 0. 2

Corollary 2.17. Let R be a ring. Then R is reduced and Rm is a representable
ring, for all maximal ideal m of R if and only if R is a von Neumann regular ring.

Proof. It follows from Theorem 2.16 and [12, Remark, Page 5]. 2

Now we characterize Artinian rings in terms of representable rings.

Theorem 2.18. Let R be a ring. The following statements are equivalent.

(i) R is an Artinian ring.

(ii) R is a representable ring and locally Noetherian.
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(iii) R is a Noetherian ring and Rm is a representable ring, for all maximal ideals
m of R.

Proof. (i) ⇒ (ii) Follows from [18, 5.2] and [3, Theorem 8.5].
(ii) ⇒ (iii) By Theorem 2.12 (vi), R is a Q-ring with dim(R) = 0. Now by [14,
Theorem 3] and Theorem 2.16, (iii) holds.
(iii) ⇒ (i) Follows from Theorem 2.16 and [3, Theorem 8.5]. 2

3. Completely Representable Modules

In this section, we consider modules that all non-zero submodules are repre-
sentable. This is similar to definition of Laskerian modules and, in a sense, a dual
of that notion. We call these modules ”completely representable”. Artinian mod-
ules (see [18]), representable modules over regular rings ([8, Theorem 2.3]) and
modules over local rings that their maximal ideals are nilpotent, are examples of
such modules.

Definition 3.1. An R-module M is said to be completely representable, if M ̸=
0 and every non-zero submodule of M is representable. A ring R is completely
representable, if it is completely representable as a module over itself.

Remark 3.2. Both representable and completely representable modules are gener-
alizations of Artinian modules. But the second seems to be a better generalization,
because we know that every submodule of an Artinian module is again Artinian,
and we may want this feature to be preserved in generalization and this holds in
definition of completely representable modules (but not in representable modules).

For the case of rings, representable and completely representable are the same.
Proposition 3.3. A ring R is completely representable if and only if it is repre-
sentable.

Proof. If R is completely representable, then R is representable by definition. The
converse is Corollary 2.9. 2

By definition, every completely representable module is representable. But the
converse is not true.
Example 3.4. The Z-module Q is (0)-secondary and hence representable. But it
is not completely representable, because the submodule Z is not representable.

In the next, we give some necessary and some sufficient conditions for a module
to be completely representable. An R-module M is said to satisfy (dccr) if the de-
scending chain IN ⊇ I2N ⊇ . . . terminates, for every submodule N of M and every
finitely generated ideal I of R. The following result mentioned in [25, Proposition
3] without complete proof. We give its proof.
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Proposition 3.5. Let M be a completely representable R-module. Then M satisfies
(dccr).

Proof. By [25, Theorem, Page 2 ], M satisfies (dccr) if and only if for any submodule
N of M and a ∈ R, N = akN + (0 :N ak), for all large k. Let N = N1 + · · · +Nt

be a minimal secondary representation of N with Ni, Pi-secondary. If a /∈
∪t

i=1 Pi,
then aNi = Ni, for all i. Hence N = aN and the proof is complete. Otherwise,
let (by rearranging if necessary) a ∈

∩l
i=1 Pi and a /∈

∪t
i=l+1 Pi. Then there exists

an integer k such that akNi = 0, for all i, 1 6 i 6 l. So, akN = Nl+1 + · · · + Nt

and N1 + · · · + Nl ⊆ (0 :N ak). Hence N = akN + (0 :N ak) and the proof is
complete.

The following examples show that the converse of Proposition 3.5, is not true
in general.

Example 3.6. Let R be a non Noetherian von Neumann regular ring (e.g. R =∏∞
i=1 Z2). Then dim(R) = 0. So, by [26, Proposition 1.2], R satisfies (dccr). By

Theorem 2.12, R is not representable. (Note that any von Neumann regular ring is
reduced).

Example 3.7. Let M =
⊕

p∈P Zp, where P is the set of all prime numbers. Then
by [26, Remark 1.10], M satisfies (dccr) condition as a Z-module. But this module
is not representable (and therefore, is not completely representable). Because if N
is a pZ-secondary submodule of M , for some p ∈ P, then every component of every
element of N is zero except probably the component that belongs to Zp. Obviously,
the finite sum of this submodules can not be equal to M .

Therefore, the class of completely representable modules is strictly between
modules that satisfies (dcc) (i.e. Artinian modules) and modules that satisfies (dccr)
condition. Also, by Proposition 3.3 and [26, Proposition 1.2], representable rings
are strictly between Artinian rings and rings with zero dimension.

Although, the converse of Proposition 3.5, is true under some additional condi-
tions. A module M over a Noetherian ring R is said to have finite Goldie dimension,
if M does not contain an infinite direct sum of non-zero submodules.

Proposition 3.8. Let M be a module of finite Goldie dimension over a commutative
Noetherian ring R. Then M is completely representable if and only if M satisfies
(dccr).

Proof. [25, Proposition 3]. 2

Bourbaki in [4, Chap. IV, Sect. 2, Exercise 23, Page 295], give a necessary
and sufficient conditions for a finitely generated module to be Laskerian. In the
following we dualize these conditions for a module to be completely representable.

Let N be an R-module and S be a multiplicatively closed subset of R. We
consider S(N) =

∩
r∈S rN . If P be a prime ideal of R and S = R \ P , we denote

S(N) by SP (N).

Proposition 3.9. Let M be a completely representable R-module. Then we have
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(i) For every non-zero submodule N of M and every multiplicatively closed subset
S of R, there exists r ∈ S such that S(N) = rN .

(ii) For every non-zero submodule N of M , every increasing sequence (Sn(N))n>1

is stationary, where (Sn)n>1 is any decreasing sequence of multiplicatively
closed subset of R.

Proof. (i) Let N =
∑t

i=1 Ni be a minimal secondary representation with√
Ann(Ni) = Pi, (1 6 i 6 t). If S ∩Pi = ∅ for all i, then for every s ∈ S, sNi = Ni

for all i, and hence sN = N . Thus, S(N) = N and (i) holds, for r = 1 ∈ S.
Otherwise, there exists l, 1 6 l < t, such that Pi∩S = ∅, (1 6 i 6 l) and Pi∩S ̸= ∅
(l + 1 6 i 6 t). Thus, for every s ∈ S, sN = N1 + · · · + Nl + sNl+1 + · · · + sNt.
On the other hand, there exists r ∈ S such that rNi = 0, (l + 1 6 i 6 t). So
rN = N1 + · · · + Nl ⊆ S(N) ⊆ rN = N1 + · · · + Nl. Thus, S(N) = rN and (i)
holds.
(ii) Suppose the contrary is true; i.e., there exists a decreasing sequence (Sn)n>1

such that S1(N) $ S2(N) $ . . . . Let Pi ∩ S1 = ∅ (i = 1, . . . , l) and Pi ∩ S1 ̸= ∅
(i = l + 1, . . . , t). Since S2 ⊆ S1 and S1(N) $ S2(N), we have S2 ∩ Pk = ∅, for
some k, (l + 1 6 k 6 t). If similarly continue this, then there exists some i, such
that Si ∩ Pj = ∅ (j = 1, 2, . . . , t), and so N = Si(N) = Si+1(N) = . . . , which is a
contradiction. 2

Corollary 3.10. Let M be a completely representable R-module. Then for every
non-zero submodule N of M and every minimal prime ideal P over Ann(N), there
exists r ∈ R \ P such that rN is P -secondary.

Proof. Let S = R \ P . Then by Proposition 3.9 (i), there exists r ∈ R \ P such
that SP (N) = rN . Let s ∈ R. If s /∈ P , rN = SP (N) ⊆ srN ⊆ rN . Thus,
s(rN) = rN . If s ∈ P , by Lemma 2.11, there exists t ∈ R \ P and n > 1 such
that tsn ∈ Ann(N). So, tsnN = 0, and hence tsnrN = 0. But trN = rN . Thus,
sn(rN) = 0. Therefore, rN is P -secondary. 2

Conditions of Proposition 3.9 are sufficient for a finitely cogenerated AB5∗

module to be completely representable.

An R-module M is said to be finitely cogenerated if for every family {Mi}i∈I of
submodules of M with

∩
i∈I Mi = 0, there is a finite subset F ⊆ I with

∩
i∈F Mi =

0. It is clear that every submodule of a finitely cogenerated module is finitely
cogenerated. Also if N and M/N are finitely cogenerated then so is M . Hence
every direct sum of finitely cogenerated modules is finitely cogenerated.

A family {Mi}i∈I of submodules of a module M is called inverse (direct) if, for
all i, j ∈ I there exists k ∈ I such that Mk ⊆ Mi ∩ Mj (Mi + Mj ⊆ Mk). For
example, every chain of submodules is an inverse and direct family. The module
M is said to be satisfy the AB5∗ (AB5) condition (and is called an AB5∗ (AB5)
module) if, for every submoduleK ofM and every inverse (direct) family {Mi}i∈I of
submodules of M , K+

∩
i∈I Mi =

∩
i∈I(K+Mi) (K ∩ (

∑
i∈I Mi) =

∑
i∈I K ∩Mi).
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Every Artinian module is finitely cogenerated and AB5∗. For more information
about this class of modules one can see [6, 9, 19, 27].

Theorem 3.11. Let M be a finitely cogenerated AB5∗ module. Then M is com-
pletely representable if and only if

(i) For every non-zero submodule N of M and every minimal prime P over
Ann(N), there exists r ∈ R \ P such that SP (N) = rN (or equivalently rN
is P -secondary).

(ii) For every non-zero submodule N of M , every increasing sequence (Sn(N))n>1

is stationary, where (Sn)n>1 is any decreasing sequence of multiplicatively
closed subset of R.

Proof. (⇒) It follows by Proposition 3.9. (⇐) Let conditions (i) and (ii) holds and
let N be a non-zero submodule of M . Let P1 be a minimal prime of Ann(N). Then
by (i), and by proof of Corollary 3.10, there exists r1 ∈ R \P1 such that Q1 = r1N
is P1-secondary. Let N ′

1 = (0 :N r1). Since r21N = r1N , so we have N = Q1 +N ′
1.

If N ′
1 = 0, then N = Q1 is representable. Otherwise, let Σ = {0 ̸= G ≤ M | N =

Q1 + G,G ⊆ N ′
1}. N ′

1 ∈ Σ, and hence Σ ̸= ∅. Since M is finitely cogenerated and
AB5∗ module, so every chain in Σ has a lower bound. Hence by Zorn’s lemma, Σ has
a minimal element with respect to inclusion, N1 say. Let P2 be a minimal prime of
Ann(N1) and r2 ∈ R\P2 such that Q2 = r2N1 is P2-secondary. Then N1 = Q2+N ′

2

where N ′
2 = (0 :N1 r2). Thus, N = Q1 + Q2 + N ′

2. If N ′
2 = 0, N = Q1 + Q2 is

representable. Otherwise, let Σ = {0 ̸= G ≤ M | N = Q1 + Q2 + G,G ⊆ N ′
2}.

Again by Zorn’s lemma, Σ has a minimal element N2 with respect to inclusion. We
continue this process and claim that there exists n > 1 such that N ′

n = 0. Suppose
on the contrary that N ′

n ̸= 0 for all n. Let Sn = R \
∪n

i=1 Pi (n = 1, 2, 3, . . . ). We
show that Sn ∩Ann(Nn) ̸= ∅. If Sn ∩Ann(Nn) = ∅, then Ann(Nn) ⊆

∪n
i=1 Pi and

by Prime Avoidance Theorem, Ann(Nn) ⊆ Pi for some i, 1 6 i 6 n. But, · · · ⊆
N2 ⊆ N ′

2 ⊆ N1 ⊆ N ′
1 ⊆ N . So, Nn ⊆ Ni ⊆ N ′

i , and hence, Ann(N ′
i) ⊆ Ann(Ni) ⊆

Ann(Nn) ⊆ Pi. Thus, ri ∈ Pi, a contradiction. Therefore, Sn ∩ Ann(Nn) ̸= ∅.
Let s ∈ Sn ∩ Ann(Nn). Then Q1 + · · · +Qn ⊆ Sn(N) ⊆ sN = Q1 + · · · + Qn, so;
Sn(N) = Q1+ · · ·+Qn (n = 1, 2, . . . ). Now we have a decreasing sequence (Sn)n>1

of multiplicatively closed subsets of R, such that the sequence (Sn(N))n>1 is strictly
increasing. Because if Sn(N) = Sn+1(N) for some n; then Qn+1 ⊆ Q1 + · · ·+Qn.
Hence, N = Q1 + · · · + Qn + Nn+1. But, Nn+1 ⊆ Nn, and hence by minimality
of Nn, Nn+1 = Nn. Since, rn+1N

′
n+1 = 0, thus rn+1Nn+1 = 0. So, rn+1Nn = 0,

and hence rn+1 ∈ Ann(Nn) ⊆ Pn+1. Thus, rn+1 ∈ Pn+1, which is a contradiction.
Therefore, the sequence (Sn(N))n>1 is not stationary, which contradicts condition
(ii). Thus, there exists n > 1 such that N ′

n = 0, and hence N = Q1 + · · · + Qn is
representable. 2

Remark 3.12. We note that the notion of ”completely representable” is the dual
of the notion ”primary decomposition”. In some basic theorems for primary decom-
position, the authors assume that the condition ”finitely generated” (see [4, Chap.
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IV, Sect. 2, Exercise 23]). Also the AB5 condition is true for all modules (see [19,
Lemma 6.22]). Since the ”cofinitely generated” and ”AB5*” are the dual notions of
”finitely generated” and ”AB5” conditions respectively, so it is natural to use these
conditions in the proof or results about ”completely representable”.

Proposition 3.13. Let M be a finitely cogenerated AB5∗ module and N be a non-
zero submodule of M . Then M is completely representable if and only if both N
and M/N are completely representable.

Proof. If M is completely representable, then it is straightforward to show that N
and M/N are completely representable. Conversely, Let N and M/N be completely
representable. Let K be a non-zero submodule of M and P be a minimal prime of
Ann(K). By condition (i) of Proposition 3.9, there exist r1, r2 ∈ R \ P such that
SP (K ∩ N) = r1(K ∩ N) and SP (K/K ∩N) = r2(K/K ∩N). Let r = r1r2. We
show that SP (K) = rK. If α ∈ rK, then there exists x ∈ K such that α = rx. We
have

r2(x+K ∩N) ∈ r2(K/K ∩N) = SP (K/K ∩N).

So,

r2x+K ∩N ∈
∩

s∈R\P s(K/K ∩N) =
∩

s∈R\P ((sK +K ∩N)/K ∩N) =∩
s∈R\P (sK +K ∩N)/K ∩N .

Thus, r2x ∈
∩

s∈R\P (sK +K ∩N). Hence,

α = r1r2x ∈ r1(
∩

s∈R\P (sK +K ∩N)) ⊆
∩

s∈R\P (r1sK + r1(K ∩N)).

On the other hand, it is obvious that for every s ∈ R \P , r1(K ∩N) = r1s(K ∩N).
So

α ∈
∩

s∈R\P (sK + r1sK) =
∩

s∈R\P sK = SP (K).

Thus, α ∈ SP (K). Now we check condition (ii) of Theorem 3.11. Let (Sn)n>1

be a decreasing sequence of multiplicatively closed subset of R. Then there exists
n > 1 and r1, r2 ∈ Sn+1 such that Sn+1(K ∩ N) = Sn(K ∩ N) = r1(K ∩ N)
and Sn+1(K/K ∩N) = Sn(K/K ∩N) = r2(K/K ∩N). Let r = r1r2. Then
Sn(K) = rK = Sn+1(K). Thus, conditions (i) and (ii) of Theorem 3.11 are hold.
So M is completely representable. 2

Proposition 3.14. Let M1, M2,. . . ,Mn be R-modules such that are finitely cogen-
erated, AB5∗ and completely representable. If M = M1 ⊕M2 ⊕ · · · ⊕Mn is AB5∗,
then M is completely representable.

Proof. We prove this by induction on n. For n = 1, M = M1 is completely
representable. Now assume the assertion is true for n = k. For n = k + 1,
M = M1 ⊕M2 ⊕ · · · ⊕Mk ⊕Mk+1. Since M is AB5∗, M ′ = M1 ⊕M2 ⊕ · · · ⊕Mk

is AB5∗. Hence by induction hypothesis, it is completely representable. Since
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M ′ ∼= M/Mk+1 and Mk+1 are completely representable, by Proposition 3.13, M is
completely representable and the proof is complete by induction. 2

Note that finite direct sum of AB5∗ modules need not to be AB5∗ ([6, Lemma
2.5]).

A family of sets has the finite intersection property if every finite subfamily
has a nonempty intersection. A module M is linearly compact (with respect to the
discrete topology) if every collection of cosets of submodules of M which has the
finite intersection property has non-empty intersection. Linearly compact modules
are AB5∗ (see [9, Lemma 7.1]). Also every finite direct sum of linearly compact
modules is linearly compact (see [27, 29.8(2)]). So, we have the following Corollary.
Corollary 3.15. Let M1, M2,. . . , Mn be linearly compact, finitely cogenerated and
completely representable R-modules. Then M = M1 ⊕M2 ⊕ · · · ⊕Mn is completely
representable.

For relation between linearly compact and AB5∗ modules, see ([1],[2],[6]).
Heinzer, in [11, Proposition 2.1], gives a new restatement of Bourbaki’s condi-

tions. Inspired by this, we have the following results.

Theorem 3.16. Let M be an R-module such that Spec(R/Ann(M)) is Noetherian
and for all non-zero submodule N of M , there exists a minimal prime P of Ann(N)
and r ∈ R \ P such that rN is P -secondary. Then M is completely representable.

Proof. Let N be a non-zero submodule of M . Then by assumption, there exists
a minimal prime P1 of Ann(N) and r1 ∈ R \ P1 such that r1N is P1-secondary.
Let N1 = (0 :N r1). Since r21N = r1N , so we have N = r1N + N1. If N1 = 0,
then N = r1N is representation of N . Otherwise, there exists a minimal prime
P2 of Ann(N1) and r2 ∈ R \ P2 such that r2N1 is P2-secondary and N1 = r2N1 +
N2, where N2 = (0 :N1 r2). Thus, N = r1N + r2N1 + N2. If N2 = 0, then
N = r1N + r2N1 is representation of N . Otherwise, we continue this process
and claim that there exists some n > 1 such that Nn = 0. If not, then since
· · · ⊆ N3 ⊆ N2 ⊆ N1 ⊆ N ⊆ M and hence Ann(M) ⊆

√
Ann(M) ⊆

√
Ann(N) ⊆√

Ann(N1) ⊆
√
Ann(N2) ⊆ . . . . Since Spec(R/Ann(M)) is Noetherian so there

exists n > 1 such that
√
Ann(Nn) =

√
Ann(Nn+1). Thus, there exists t > 1

such that rtn+1Nn = 0. But rtn+1Nn = rn+1Nn. So rn+1 ∈ Ann(Nn) ⊆ Pn+1,
rn+1 ∈ Pn+1, which is a contradiction. Therefore, there exists n > 1 such that
N = r1N+r2N1+· · ·+rnNn+1, a representation of N and the proof is complete.

For the case of rings, these conditions are also necessary.
Theorem 3.17. A ring R is completely representable if and only if Spec(R) is
Noetherian and for every non-zero ideal I of R, there exists minimal prime P of
Ann(I) and r ∈ R \ P such that rI is P -secondary.

Proof. (⇐) It follows from Theorem 3.16.
(⇒) Let R be completely representable. Then R is representable and by Proposition
2.2 (iv), it is Laskerian. So by [10, Theorem 4], R has Noetherian spectrum. Now
by Corollary 3.10, the proof is complete. 2
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Remark 3.18. Note that by Corollary 3.10, Theorem 3.17, is the same as Propo-
sition 2.10.

In [7], authors have considered representable linearly compact modules. In the
next theorem we give a necessary and sufficient conditions for a finitely cogenerated
linearly compact module to be completely representable.

Theorem 3.19. Let M be a finitely generated, linearly compact and finitely cogener-
ated R-module. Then M is completely representable if and only if Spec(R/Ann(M))
is Noetherian and for all non-zero submodule N of M , there exists a minimal prime
ideal P of Ann(N) and r ∈ R \ P such that rN is P -secondary.

Proof. (⇐) Theorem 3.16.
(⇒) By Corollary 3.10, second condition is true. We show that R/Ann(M) has
Noetherian spectrum. Let {x1, x2, ..., xn} be a set of generators of M . Let
φ : R −→ M ⊕ M ⊕ · · · ⊕ M by r 7−→ (rx1, rx2, . . . , rxn). Then φ is an R-
homomorphism, and hence R/Ann(M) is a submodule of M ⊕M ⊕ · · · ⊕M . But
by Corollary 3.15, M ⊕M ⊕ · · · ⊕M is completely representable. So, R/Ann(M)
is a representable ring. Therefore, by [10, Theorem 4], R/Ann(M) has Noetherian
spectrum and the proof is complete. 2

In the following, we show that, if dim(R) = 0, then the converse of Theorem
3.16 is true. For this purpose, we need the following lemmas.

Lemma 3.20. Let I be a primary ideal of a ring R such that every regular element
of R/I is unit. Then R/I is a secondary ring.

Proof. By [23, Lemma 4.3], R/I is non-zero and every zero divisor in R/I is nilpo-
tent. Thus, every element of R/I is unit or nilpotent. Hence R/I is a secondary
ring. 2

Lemma 3.21. Let R be a ring with dim(R) = 0. Then every regular element of R
is unit.

Proof. Let r ∈ R be a regular element. By [26, Proposition 1.2], R satisfies (dccr).
Thus, there exists integer n > 1 such that Rrn = Rrn+1. So rn = rn+1s, for some
s ∈ R. Since r is regular, we have rs = 1. 2

Proposition 3.22. Let M be a representable R-module and M = N1 + · · ·+Nt be
a minimal secondary representation of M , with Ni, Pi-secondary (1 6 i 6 t). Let
Ii = Ann(Ni), (1 6 i 6 t). Suppose, Pi’s are pairwise comaximal and every regular
element of R/Ii, (1 6 i 6 t), is unit. Then Spec(R/Ann(M)) is Noetherian.

Proof. Since (
√
Ii =)Pi’s are pairwise comaximal, by [3, Proposition 1.16], Ii’s are

also pairwise comaximal. Therefore, by Chines Reminder Theorem, R/Ann(M) ∼=⊕t
i=1 R/Ii. So, by Lemma 3.20, R/Ann(M) is representable. Thus, by Proposition

2.2 (v), Spec(R/Ann(M)) is Noetherian. 2

Corollary 3.23. Let R be a ring with dim(R) = 0. Then R-module M is completely
representable if and only if Spec(R/Ann(M)) is Noetherian and for every non-zero
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submodule N of M and every minimal prime ideal P over Ann(N), there exists
r ∈ R \ P such that rN is P -secondary.

Proof. (⇒) Follows form Proposition 3.22 and Corollary 3.10.
(⇐) Follows form Theorem 3.16. 2

4. Strongly Representable Modules

By definition of representable modules, we can also consider the following defi-
nition.

Definition 4.1. Let M be an R-module. We say M is a strongly representable
module if there exists secondary submodulesN1, . . . , Nt such thatM = N1⊕· · ·⊕Nt.

Obviously, every strongly representable module is representable. But the con-
verse is not true in general, see [21, Example 2.4]. We give some condition such
that representable modules be strongly representable.

Theorem 4.2. Let M be a representable R-module such that the elements of
Att(M) are pairwise comaximal. Then M is strongly representable.

Proof. Let M = N1 + · · · + Nt be a minimal secondary representation of M with
Ni, Pi-secondary (1 6 i 6 t). Thus, Att(M) = {P1, . . . , Pt}. Let Ii = Ann(Ni) for
i = 1, . . . , t. Since (

√
Ii =)Pi’s are pairwise comaximal, Ii’s are also pairwise comax-

imal by [3, Proposition 1.16]. We show that Ni

∩
(
∑

j ̸=i Nj) = 0, for all i = 1, . . . , t.

For simplicity, let i = 1. Suppose x ∈ N1

∩
(
∑t

j=2 Nj). By [23, Proposition 3.59],

I1 +
∩t

j=2 Ij = R. So, there exists α ∈ I1 and β ∈
∩t

j=2 Ij such that α + β = 1.
Thus, x = 1x = (α + β)x = αx + βx = 0 + 0 = 0. Therefore, M = N1 ⊕ · · · ⊕Nt.
Hence M is strongly representable. 2

Corollary 4.3. Let M be a representable R-module such that Att(M) ⊆ Max(R).
Then M is strongly representable.

Proof. Every two distinct maximal ideals are comaximal. Hence Corollary follows
form Theorem 4.2. 2

Corollary 4.4. Let R be a ring with dim(R) = 0. Then every representable R-
module is strongly representable. In particular, every representable ring is strongly
representable.

Proof. If dim(R) = 0, then Max(R) = Spec(R) and result follows from Corollary
4.3. The ”in particular” statement follows from Proposition 2.2 (ii). 2

Remark 4.5. According to Proposition 3.3 and Corollary 4.4, representable, com-
pletely representable and strongly representable rings are the same.

Proposition 4.6. Let R be a domain with dim(R) = 1 (e.g. R be a Dedekind
domain) and M be a representable R-module such that contains no non-zero divisible
submodule. Then M is strongly representable.



422 S. A. Mousavi, F. Mirzaei and R. Nekooei

Proof. Over a domain, divisible modules and 0-secondary modules are the same.
Since M contains no divisible submodule, Att(M) ⊆ Spec(R) \ {0} = Max(R).
Hence, result follows from Corollary 4.3. 2

Corollary 4.7. Every representable module over a Dedekind domain is strongly
representable.

Proof. By [16, Theorem 8], every module M over a Dedekind domain R can be
decomposed as M = D ⊕ E, where D is divisible and E has no non-zero divisible
submodules. If M is representable, then E(∼= M/D) is also representable (if non-
zero). Hence result follows form Proposition 4.6. 2

Finally, we show that every finitely generated Artinian module is strongly rep-
resentable. For this, we need the following lemma.

Lemma 4.8. Let P be a maximal ideal of a ring R and M be an R-module such
that PnM = 0, for some integer n > 1. Then M is a P -secondary R-module.

Proof. Let r ∈ R. If r ∈ P , then rnM = 0. If r /∈ P , then since P is maximal,
P +Rr = R. Hence 1 = α+ sr, for some α ∈ P and s ∈ R. Thus, 1 = αn + γr, for
some γ ∈ R. So, for every x ∈ M , x = αnx+ γrx = γrx. Hence rM = M . 2

Proposition 4.9. Every finitely generated Artinian module is strongly repre-
sentable.

Proof. By [18, 6.3], if M is an Artinian R-module, then there exist (distinct)
maximal ideals m1, . . . ,mt of R such that M = M(m1) ⊕ · · · ⊕ M(mt), where
M(I) =

∪∞
n=1(0 :M In) = {x ∈ M |Inx = 0,∃n > 1}, for every ideals I of R. If M

is finitely generated, then every M(mi) is finitely generated and hence will be anni-
hilate by some power of mi. So by Lemma 4.8, M(mi) is mi-secondary (1 6 i 6 t).
Therefore, M = M(m1)⊕ · · · ⊕M(mt) is a secondary representation of M and M
is strongly representable. 2

References

[1] P. N. Anh, Morita Duality, Linear Compactness and AB5∗, Math. Appl., 343, Kluwer
Acad. Publ., Dordrecht(1995).

[2] P. N. Anh, D. Herbera and C. Menini, AB5∗ and Linear Compactness, J. Algebra,
200(1)(1998), 99–117.

[3] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-
Wesley(1969).

[4] N. Bourbaki, Commutative Algebra, Hermann, Paris; Addison-Wesley, Reading,
Mass(1972).

[5] M. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with
Geometric Applications, Cambridge University Press, Cambridge(1998).



On Representable Rings and Modules 423

[6] G. M. Brodskii and R. Wisbauer, On duality theory and AB5∗ modules, J. Pure Appl.
Algebra, 121(1)(1997), 17–27.

[7] N. T. Cuong and L. T. Nhan, On representable linearly compact modules, Proc. Amer.
Math. Soc., 130(2002), 1927–1936.

[8] S. E. Atani, Submodules of secondary modules, Int. J. Math. Math. Sci., 31(6)(2002),
321–327.

[9] L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, American Mathemat-
ical Society(2001).

[10] R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian
spectra, Proc. Amer. Math. Soc., 79(1)(1980), 13–16.

[11] W. Heinzer and D. Lantz, The Laskerian property in commutative rings, J. Algebra,
72(1981), 101–114.

[12] J. Huckaba, Rings with Zero-Divisors, New York/Basil: Marcel Dekker(1988).

[13] T. W. Hungerford, Algebra, Holt, Rinehart and Winston, New York(1974).

[14] C. Jayaram, Almost Q-rings, Arch. Math. (Brno), 40(2004), 249–257.

[15] C. Jayaram, K. H. Oral and U. Tekir, Strongly 0-dimensional rings, Comm. Algebra,
41(6)(2013), 2026–2032.

[16] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math.
Soc., 72(1952), 327–340.

[17] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathemat-
ics, Volume 131, Springer-Verlag, Berlin-Heidelberg, New York(1991).

[18] I. G. Macdonald, Secondary representation of modules over commutative rings, Sym-
posia Matematica, Istituto Nazionale di Alta Matematica, Roma(1973), 23-43.

[19] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in
Mathematics, Cambridge University Press(2003).

[20] D. P. Patil and U. Storch, Introduction to Algebraic Geometry and Commutative
Algebra, IISc Lecture Notes Series, Volume 1, 2010.

[21] N. Pakyari, R. Nekooei and E. Rostami, Associated and attached primes of local
cohomology modules over almost Dedekind domains, Submitted.

[22] R. Y. Sharp, Secondary representation for injective modules over commutative Noethe-
rian rings, Proc. Edinburgh Math. Soc., 20(2)(1976), 143–151.

[23] R. Y. Sharp, Steps in commutative algebra, Cambridge University Press(2000).

[24] W. W. Smith, A Covering Condition for Prime Ideals, Proc. Amer. Math. Soc.,
30(1971), 451–452.

[25] A. J. Taherizadeh, Modules satisfying dcc on certain submodules, Southeast Asian.
Bull. Math., 26(2002), 517–521.

[26] A. J. Taherizadeh, On modules satisfying DCCR*, Southeast Asian. Bull. Math.,
32(2008), 321–325.

[27] R. Wisbauer, Foundations of module and ring theory, A handbook for study and
research, Revised and translated from the 1988 German edition, Gordon and Breach
Science Publishers, Philadelphia(1991).


