DOI QR코드

DOI QR Code

ON ARTINIANNESS OF GENERAL LOCAL COHOMOLOGY MODULES

  • Tri, Nguyen Minh (Department of Natural Science Education Dong Nai University)
  • Received : 2020.05.26
  • Accepted : 2021.03.08
  • Published : 2021.05.31

Abstract

In this paper, we show some results on the artinianness of local cohomology modules with respect to a system of ideals. If M is a 𝚽-minimax ZD-module, then Hdim M𝚽(M)/𝖆Hdim M𝚽(M) is artinian for all 𝖆 ∈ 𝚽. Moreover, if M is a 𝚽-minimax ZD-module, t is a non-negative integer and Hi𝚽(M) is minimax for all i > t, then Hi𝚽(M) is artinian for all i > t.

Keywords

Acknowledgement

The author is deeply grateful to the referee for careful reading of the manuscript and for the helpful suggestions.

References

  1. M. Aghapournahr and L. Melkersson, Finiteness properties of minimax and coatomic local cohomology modules, Arch. Math. (Basel) 94 (2010), no. 6, 519-528. https://doi.org/10.1007/s00013-010-0127-z
  2. J. Azami, R. Naghipour, and B. Vakili, Finiteness properties of local cohomology modules for a-minimax modules, Proc. Amer. Math. Soc. 137 (2009), no. 2, 439-448. https://doi.org/10.1090/S0002-9939-08-09530-0
  3. M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative and Noetherian rings, J. London Math. Soc. (2) 19 (1979), no. 3, 402-410. https://doi.org/10.1112/jlms/s2-19.3.402
  4. M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1980), no. 2, 173-181. https://doi.org/10.1017/S0017089500004158
  5. M. H. Bijan-Zadeh, On the Artinian property of certain general local cohomology modules, J. London Math. Soc. (2) 32 (1985), no. 3, 399-403. https://doi.org/10.1112/jlms/s2-32.3.399
  6. K. Divaani-Aazar and M. A. Esmkhani, Artinianness of local cohomology modules of ZDmodules, Comm. Algebra 33 (2005), no. 8, 2857-2863. https://doi.org/10.1081/AGB200063983
  7. E. G. Evans, Jr., Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155 (1971), 505-512. https://doi.org/10.2307/1995700
  8. L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 267-271. https://doi.org/10.1017/S0305004100068535
  9. P. Rudlof, On minimax and related modules, Canad. J. Math. 44 (1992), no. 1, 154-166. https://doi.org/10.4153/CJM-1992-009-7
  10. R. Y. Sharp and P. Schenzel, Cousin complexes and generalized Hughes complexes, Proc. London Math. Soc. (3) 68 (1994), no. 3, 499-517. https://doi.org/10.1112/plms/s3-68.3.499
  11. K.-I. Yoshida, Cofiniteness of local cohomology modules for ideals of dimension one, Nagoya Math. J. 147 (1997), 179-191. https://doi.org/10.1017/S0027763000006371
  12. H. Zoschinger, Minimax-moduln, J. Algebra 102 (1986), no. 1, 1-32. https://doi.org/10.1016/0021-8693(86)90125-0
  13. H. Zoschinger, Uber die Maximalbedingung fur radikalvolle Untermoduln, Hokkaido Math. J. 17 (1988), no. 1, 101-116. https://doi.org/10.14492/hokmj/1381517790