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MODULES SATISFYING CERTAIN CHAIN CONDITIONS

AND THEIR ENDOMORPHISMS

Fanggui Wang and Hwankoo Kim

Abstract. In this paper, we characterize w-Noetherian modules in terms
of polynomial modules and w-Nagata modules. Then it is shown that
for a finite type w-module M , every w-epimorphism of M onto itself
is an isomorphism. We also define and study the concepts of w-Artinian
modules and w-simple modules. By using these concepts, it is shown that
for a w-Artinian module M , every w-monomorphism of M onto itself is
an isomorphism and that for a w-simple module M , EndRM is a division
ring.

1. Introduction

The question of when injective or surjective endomorphisms of certain mod-
ules over commutative rings are isomorphisms had been addressed in the lit-
erature. In [1], Bourbaki pointed out that if M is a Noetherian module, then
every surjective endomorphism of M is an isomorphism. For the general case,
Vasconcelos [5, 6] and Strooker [4] proved independently that if M is a finitely
generated module, then every surjective endomorphism ofM is an isomorphism.
In [7], Vasconcelos also considered cases where an injective endomorphism of a
finitely generated module is, actually, an isomorphism. It is a simple exercise
that Artinian modules are endowed with this property [1, p. 23]. It is well
known that if a module is simple, then its endomorphism ring is a division ring
(this is sometimes called Schur’s lemma).

Let D be an integral domain with quotient field q(D). Following [11], a
nonzero finitely generated ideal J of D is called a GV-ideal, denoted by J ∈
GV(D), if J−1 = D; and a torsion-free D-module M is called a w-module if
Jx ⊆ M for x ∈ q(D)⊗DM and J ∈ GV(D) implies x ∈ M . A w-module M is
called a strong Mori module if M satisfies the ACC on w-submodules of M . G.
W. Chang characterized strong Mori modules in terms of polynomial modules
and t-Nagata modules and also studied the above question in [2] as follows. It
is shown that M is a strong Mori module over D if and only if the polynomial
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module M [X ] is a strong Mori module over D[X ]; if and only if M [X ]Nv
is a

Noetherian module over D[X ]Nv
, where Nv = {f ∈ D[X ] | c(f)v = D}. And

it is proved that if ϕ : M → M is an epimorphism, where M is a strong Mori
module, then ϕ is an isomorphism. Certainly, this is the w-theoretic version of
the aforementioned Bourbaki’s theorem.

In this paper, we show that the two results above of G. W. Chang still hold
for a commutative ring with zero divisors if we use a new extended definition
of w-modules (see [9, 14]) under more weaker conditions (w-epimorphisms not
epimorphisms). We also address the above questions on endomorphisms. To do
this, we introduce and study the concepts of w-Artinian modules and w-simple
modules.

Throughout this paper, R is a commutative ring with identity element and
all modules are unitary. Following [14] a finitely generated ideal J of R is called
a GV-ideal, if the natural homomorphism R → HomR(J,R) is an isomorphism.
Denote by GV(R) the set of GV-ideals of R. An R-module M is called GV-

torsion if for any x ∈ M , there is a J ∈ GV(R) such that Jx = 0, and M is
said to be GV-torsion-free if Jx = 0 for J ∈ GV(R) and x ∈ M implies x = 0.
Denote by E(M) the injective envelope of M . For a GV-torsion-free R-module
M , define

Mw = {x ∈ E(M) | Jx ⊆ M for some J ∈ GV(R)},

which is called the w-envelope ofM . A GV-torsion-free moduleM is called a w-
module if Mw = M , equivalently, Ext1R(R/J,M) = 0 for any J ∈ GV(R). Then
it is easy to see that the w-operation on R distributes over finite intersections
since GV(R) is a multiplicative system of R. A w-ideal m of R is called a
maximal w-ideal if m is maximal among proper integral w-ideals of R. It is
shown that every maximal w-ideal of R is prime [14, Proposition 3.8].

Let M and N be R-modules. Following [9], a homomorphism f : M → N

is called a w-monomorphism (resp., w-epimorphism, w-isomorphism) if fm :
Mm → Nm is a monomorphism (resp., an epimorphism, an isomorphism) over
Rm for any maximal w-ideal m of R. A sequence A → B → C is said to be
w-exact if the induced sequence Am → Bm → Cm is exact for any maximal
w-ideal m of R. An R-module M is said to be of finite type if there is a w-exact
sequence F → M → 0, where F is finitely generated free. Thus, if M is of
finite type, then Mm is finitely generated over Rm for any maximal w-ideal m
of R. A module M is said to be w-Noetherian if every submodule of M is of
finite type. Certainly, when R is an integral domain, a torsion-free w-module
M is a strong Mori module if and only if M is w-Noetherian.

2. Main results

Under the renewed notions we can not only generalize G. W. Chang’s results
to a w-Noetherian module but also give a proof with different approach. To do
this, we need a couple of lemmas.



MODULES SATISFYING CERTAIN CHAIN CONDITIONS 551

Lemma 2.1. An R-module M is of finite type if and only if there is a finitely

generated submodule N of M such that M/N is GV-torsion.

Proof. See [9, Proposition 1.2]. �

Let X be an indeterminate over R. The content of a polynomial f ∈ R[X ],
denoted by c(f), is the ideal of R generated by the coefficients of f . Set
Sw = {f ∈ R[X ] | c(f)w = R} and R{X} = R[X ]Sw

, which is called the
w-Nagata ring of R. Let M be an R-module and M [X ] = M ⊗R R[X ]. Then
M [X ]Sw

is an R[X ]Sw
-module and is called the w-Nagata module of M and set

M{X} = M [X ]Sw
. Note that if R is a domain, then Sw = Nv and R{X} =

R[X ]Nv
.

Lemma 2.2. (1) An R-module M is GV-torsion if and only if M{X} = 0.
(2) An R-sequence A → B → C is w-exact if and only if the R{X}-sequence

A{X} → B{X} → C{X} is exact.

(3) Let α : M → N be an R-homomorphism. Then α is a w-monomorphism

(resp., w-epimorphism, w-isomorphism) if and only if the canonical exten-

sion α : M{X} → N{X} is a monomorphism (resp., an epimorphism, an

isomorphism).
(4) An R-module M is of finite type if and only if M{X} is finitely generated

over R{X}.

Proof. See [10]. �

Lemma 2.3. If J is a GV-ideal of R[X ], then there is g ∈ J such that c(g)w =
R.

Proof. See [13, Corollary 2.5]. �

Theorem 2.4. The following statements are equivalent for an R-module M .

(1) M is a w-Noetherian module over R.

(2) M [X ] is a w-Noetherian module over R[X ].
(3) M{X} is a Noetherian module over R{X}.

Proof. (1) ⇒ (2). Similar to the proof of [14, Theorem 4.9].
(2)⇒(3). Let A be a submodule of M{X}. Then there is a submodule B

of M [X ] such that A = BSw
. Since M [X ] is w-Noetherian, B is of finite type

over R[X ]. Thus by Lemma 2.1, there is a finitely generated submodule C

of B such that B/C is GV-torsion over R[X ]. Let u ∈ B. Then there is a
GV-ideal J of R[X ] such that Ju ⊆ C. By Lemma 2.3 there is g ∈ J such
that c(g)w = R. Hence c(g) ∈ GV(R). From gu ∈ C we have u

1
= gu

g
∈ CSw

.

Therefore, A = BSw
= CSw

is finitely generated over R{X}. So M{X} is
Noetherian.

(3) ⇒ (1). Let N be a submodule of M . Then N{X} is a submodule of
M{X}. Hence N{X} is finitely generated by hypothesis. So N is of finite type
by Lemma 2.2(4). Consequently, M is w-Noetherian. �
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As a corollary, we can recover [13, Proposition 4.3] in the following.

Corollary 2.5. The following statements are equivalent for a ring R.

(1) R is a w-Noetherian ring.

(2) R[X ] is a w-Noetherian ring.

(3) R{X} is a Noetherian ring.

Lemma 2.6. Let M and N be w-modules and let f : M → N be a homomor-

phism. If f is a w-isomorphism, then f is an isomorphism.

Proof. This is a simple corollary of [9, Theorem 1.2]. �

The following is the w-theoretic version of Vasconcelos-Strooker’s theorem.

Theorem 2.7. Let M be a finite type w-module and let f : M → M be a

w-epimorphism. Then f is an isomorphism.

Proof. Let m be a maximal w-ideal of R. Then the induced map fm : Mm →
Mm is an epimorphism over Rm. By Vasconcelos-Strooker’s theorem, fm is an
isomorphism, that is, f is a w-isomorphism. By Lemma 2.6, f is an isomor-
phism. �

In [3], Orzech proved that if f : N → M is an epimorphism, where M is
finitely generated and N is a submodule of M , then f is an isomorphism. This
theorem is certainly a generalization of Vasconcelos’ theorem. The following is
a w-version of this theorem.

Theorem 2.8. Let M be a finite type w-module and let N be a w-submodule

of M . Suppose f : N → M is a w-epimorphism. Then f is an isomorphism.

Proof. Similar to the proof of Theorem 2.7. �

Recall from [15] that a nonzero w-module M is said to be w-simple if M
has no nontrivial w-submodules. It was shown in [15, Example 3.7] that simple
modules and w-simple modules are two mutually exclusive concepts.

In [1], Bourbaki pointed out that any injective endomorphism of an Artinian
module is always an isomorphism. Now we can give a w-version of this theorem
by defining w-Artinian modules.

Definition 2.9. Let M be a w-module. If M has the DCC on w-submodules,
then we say that M is a w-Artinian module.

It is natural that a w-simple module is certainly w-Artinian. Therefore, a
w-Artinian module is not necessarily an Artinian module. Now we provide an
explicit example of a module which is w-Artinian but not Artinian.

Example 2.10. Let K be a field and R = K[X,Y ]. Then M = (R/(X))w
is a w-simple, and therefore, is w-Artinian. Write y = Y . Then Ry ⊃ Ry2 ⊃
· · · ⊃ Ryn ⊃ · · · is a descending chain of submodules of M but not stationary.
Therefore, M is not Artinian.
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Proposition 2.11. The following statements are equivalent for a w-module

M .

(1) M is a w-Artinian module.

(2) Any nonempty subset of w-submodules of M has a minimum element.

Proof. This is similar to the case of Artinian modules. �

Theorem 2.12. Let A,B and C be w-modules and let 0 → A
f
→ B

g
→ C → 0

be w-exact. Then B is a w-Artinian module if and only if A and C are w-

Artinian.

Proof. Since A is GV-torsion-free and f is a w-monomorphism, f is a monomor-
phism. So we regard that A is a w-submodule of B. Suppose B is w-Artinian.
Clearly A is w-Artinian. Let C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇ · · · be a descending
chain of w-submodules of C. Set Bn = g−1(Cn) for all n. It is routine to
verify that Bn is a w-submodule of B and Bn ⊇ Bn+1. Therefore there is an
integer m such that Bn = Bm for all n > m. Note that C = g(B)w since g is a
w-epimorphism. Hence Cn = g(Bn)w. Consequently, Cn = Cm for all n > m.
It follows that C is w-Artinian.

Conversely, suppose A and C are w-Artinian. Let B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇
· · · be a descending chain of w-submodules of B. Set An = A ∩ Bn and
Cn = g(Bn)w. Then A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · and C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇
· · · are descending chains of w-submodules of A and C, respectively. Thus
there is an integer m such that An = Am and Cn = Cm for all n > m. Let
b ∈ Bn. Then g(b) ∈ Cn = Cm. Therefore there is a GV-ideal J of R such
that Jg(b) = g(Jb) ⊆ g(Bm). For u ∈ J , write g(ub) = g(x), x ∈ Bm. Then
ub−x ∈ An = Am. Hence Jb ⊆ Bm. Since Bm is a w-module, we have b ∈ Bm.
Thus we get that Bn = Bm for all n > m. Consequently, B is w-Artinian. �

Corollary 2.13. A direct sum M1 ⊕M2 ⊕ · · · ⊕Mn is a w-Artinian module if

and only if each Mi is a w-Artinian module.

Proposition 2.14. Let M be a w-Artinian module. Then Mm is Artinian for

each maximal w-ideal m of R.

Proof. Let A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · · be a descending chain of submodules
of Mm. Let ϑ : M → Mm be the natural map and set Bn = ϑ−1(An). Then
(Bn)m = An and B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · · is a descending chain of w-
submodules of M . Thus there is an integer m such that Bn = Bm for n > m.
Therefore, An = Am, whence Mm is Artinian. �

Recall that a ring R is called a DW ring if every ideal of R is a w-ideal;
equivalently, GV(R) = {R}. By a slight modification of [8, Example 1.3(b)] we
give a counterexample that the converse of Proposition 2.14 does not hold.

Example 2.15. Let E be a countable direct sum of copies of Z2 with addi-
tion and multiplication defined component-wise. Let R = Z4 × E, and define
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addition and multiplication as follows:

(m,x) + (n, y) = (m+ n, x+ y)

and

(m,x)(n, y) = (mn,my + nx+ xy),

where m,n ∈ Z4 and x, y ∈ E. Then R is a ring with identity (1, 0). For
α = (2, 0) ∈ R, we have that ann(α) = 2Z4×E is not finitely generated. Hence
R is not a coherent ring. Therefore, R is not an Artinian ring. For any maximal
ideal m of R, it follows easily that Rm = Z2 or Rm = Z4. Thus dim(R) = 0,
and hence R is a DW ring. Therefore R is not a w-Artinian R-module, but for
any maximal w-ideal m, Rm is an Artinian module over Rm.

Now we give a w-theoretic version of the other Bourbaki’s Theorem afore-
mentioned.

Theorem 2.16. Let M be a w-Artinian module and let f : M → M be a

w-monomorphism. Then f is an isomorphism.

Proof. Since M is GV-torsion-free, f is actually a monomorphism. Conse-
quently, fn is also a monomorphism for all n. Thus Im(f) ⊇ Im(f2) ⊇ · · · is a
descending chain of w-submodules of M . Hence there is an integer n such that
Im(fn) = Im(fn+1). Therefore, for each x ∈ M , there is an element y ∈ M

such that fn(x) = fn+1(y). It follows x = f(y). Consequently, Im(f) = M .
So f is an isomorphism. �

The following is a w-theoretic version of Schur’s Lemma.

Corollary 2.17. Let M be a w-simple module. Then EndRM is a division

ring.

Proof. Let f be a nonzero endomorphism of M . Thus ker(f) 6= M . By [14,
Theorem 2.7], ker(f) is a w-submodule of M . Hence ker(f) = 0. So f is a
monomorphism. By Theorem 2.16, f is an isomorphism. Hence EndRM is a
division ring. �

In order to give a new characterization of Artinian rings, we need a couple
of lemmas.

Lemma 2.18. Suppose that R satisfies the DCC on w-ideals. Then we have:

(1) Non-zero-divisors of R are units.

(2) R has only finitely many maximal w-ideals.

Proof. (1) Let a ∈ R be a non-zero-divisor. Then (a) ⊇ (a2) ⊇ · · · ⊇ (an) ⊇ is
a descending chain of w-ideals of R. By hypothesis there is an integer n such
that (an) = (an+1). It follows directly that a is a unit.

(2) If m1,m2, . . . ,mn, . . . are maximal w-ideals of R, then

m1 ⊇ (m1m2)w ⊇ · · · ⊇ (m1m2 · · ·mn)w ⊇ · · ·
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is a descending chain of w-ideals of R. Hence there is an integer n such that
(m1m2 · · ·mn)w = (m1m2 · · ·mnmn+1)w . Hence m1m2 · · ·mn ⊆ mn+1. It follows
that mn+1 = mi for some i, 1 6 i 6 n. Hence R has only finitely many maximal
w-ideals. �

Lemma 2.19 ([12, Corollary 3.22]). Let R be a w-Noetherian ring. If I is

an ideal of R with ann(I) = 0, then I contains a non-zero-divisor of R. In

particular, if J ∈ GV(R), then J contains a non-zero-divisor of R.

Theorem 2.20. A ring R is Artinian if and only if R satisfies the DCC on

w-ideals.

Proof. It is enough to show “if” part. To show that R is Artinian, we must
prove that R is a DW ring. Let A be a w-ideal of R. From Lemma 2.18(2)
we may assume that m1, . . . ,mn are all maximal w-ideals of R. By Proposition
2.14, Rmi

is Artinian, and hence Ami
is finitely generated. Take {aij} ⊆ A, for

j = 1, . . . ,m, such that {
aij

1
} is a generating set of Ami

over Rmi
, i = 1, . . . , n.

It is routine to verify that A = ({aij})w. Therefore, A is of finite type, whence
R is w-Noetherian. Let J ∈ GV(R). By Lemma 2.19, J has a non-zero-divisor.
By Lemma 2.18(1), J = R. Hence R is a DW ring. �

From Theorem 2.20, it is no use to define w-Artinian rings to satisfy the
DCC on w-ideals.
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