• Title/Summary/Keyword: antifuse

Search Result 23, Processing Time 0.024 seconds

Design of a One-Time Programmable Memory Cell for Power Management ICs (Power Management IC용 One-Time Programmable Memory Cell 설계)

  • Jeon, Hwang-Gon;Yu, Yi-Ning;Jin, Li-Yan;Kim, Du-Hwi;Jang, Ji-Hye;Lee, Jae-Hyung;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.84-87
    • /
    • 2010
  • We manufacture an antifuse OTP (One-time programmable) cell for analog trimming which will be used in power management ICs. For the antifuse cell using dual program voltage of VPP (=7V) and VNN (=-5V), the thin gate oxide is broken down by applying a voltage higher than the hard break-down voltage to the terminals of the antifuse. The area of the manufactured antifuse OTP cell using $0.18{\mu}m$ BCD process is $48.01{\mu}m^2$ and is about 44.6 percent of that of an eFuse cell. The post-program resistances of the antifuse are good with the values under several kilo ohms when we measure twenty test patterns.

  • PDF

Electrical Characteristics of the PIP Antifuse for Configuration of the Programmable Logic Circuit (프로그램 가능한 논리 회로 구성을 위한 PIP 앤티퓨즈의 전기적 특성)

  • 김필중;윤중현;김종빈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.953-958
    • /
    • 2001
  • The antifuse is a semi-permanent memory device like a ROM which shows the open or short state, and a switch device connecting logic blocks selectively in FPGA. In addition, the antifuse has been used as a logic device to troubleshoot defective memory cells arising from SDRAM processing. In this study, we have fabricated ONO antifuses consisted of PIP structure. The antifuse shows a high resistance more than several G Ω in the normal state, and shows a low resistance less than 500 Ω after program. The program resistance variation according to temperature shows the very stable value of $\pm$20 Ω. At this time, its program voltage shows 6.7∼7.2 V and the program is performed within 1 second. Therefore this result shows that the PIP antifuse is a very stable and programmable logic device.

  • PDF

On-state resistance secreasing effect of mim antifuse by re-programming method (재 프로그래밍 방법에 의한 MIM ANTIFUSE의 온저항 감소 효과)

  • 임원택;이상기;김용주;이창효;권오경
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.194-199
    • /
    • 1997
  • We fabricated MIM (Metal-Insulator-Metal) antifuses with Al/a-Si/Mo structure and then examined the I-V characteristics and on-state resistance distribution of antifuses. The leakage current of antifuses is below $1Pa/{\mu}m^2$, and programming voltage lies within 10 to 11 V. After programming, on-resistance of antifuses is mostly 10-20$\Omega$ and 20% of these have above 100$\Omega$. In order to reduce on-resistance and the deviation of this distribution, we tried to inject current again into already programed antifuses (we call this re-programming method). From this method, the resistance of antifuses with above 100Ω can be reduced to below 50$\Omega$. When antifuses are programmed by re-programming method, these antifuses have more uniform and lower on-resistance than programmed with one-pulse.

  • PDF

Design of Low-Area 1-kb PMOS Antifuse-Type OTP IP (저면적 1-kb PMOS Antifuse-Type OTP IP 설계)

  • Lee, Cheon-Hyo;Jang, Ji-Hye;Kang, Min-Cheol;Lee, Byung-June;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1858-1864
    • /
    • 2009
  • In this paper, we design a non-volatile memory IP, 1-kb one-time programmable (OTP) memory, used for power management ICs. Since a conventional OTP cell uses an isolated NMOS transistor as an antifuse, there is an advantage of it big cell size with the BCD process. We use, therefore, a PMOS transistor as an antifuse in lieu of the isolated NMOS transistor and minimize the cell size by optimizing the size of a OTP cell transistor. And we add an ESD protection circuit to the OTP core circuit to prevent an arbitrary cell from being programmed by a high voltage between the terminals of the PMOS antifuse when the ESD test is done. Furthermore, we propose a method of turning on a PMOS pull-up transistor of high impedance to eliminate a gate coupling noise in reading a non-programmed cell. The layout size of the designed 1-kb PMOS-type antifuse OTP IP with Dongbu's $0.18{\mu}m$ BCD is $129.93{\times}452.26{\mu}m^2$.

Electrical characteristics of MIM antifuse with contact hole numbers of $alpha-Si$. ($alpha-Si$의 contact hole 수의 증가에 따른 MIM antifuse의 전기적 특성)

  • 이상기;김용주;임원택;이동윤;권오경;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.46-50
    • /
    • 1995
  • 물성을 달리한 $\alpha$-Si을 사용하여 MIM(Metal-Insulator-Metal)구조의 antifuse들을 제작하고, 물성의 변화에 따른 전기적 특성의 변화를 조사하였다. $\alpha$-Si은 PECVD (Plasma Enhanced Chemical Vapor Deposition)방법으로 증착하였으며, 물성은 RF power를 달리하여 변화시켰다. $\alpha$-Si MIM구조의 antifuse를 프로그램할 때 생기는 failure rate를 줄이기 위해 전극 사이에 삽입되는 $\alpha$-Si의 contact hole 크기와 개수를 변화시켜 보았다. MIM antifuse는 contact hole이 2개 이상일 때 failure rate가 10% 이내로 줄었으며, 프로그래밍 전류는 거의 변화가 없었다. 항복전압은 10-11V범위에 집중적으로 분포하였으며, 5V에서의 누설전류는 contact hole의 수가 증가함에 따라 커짐을 알았다.

  • PDF

Antifuse Circuits and Their Applicatoins to Post-Package of DRAMs

  • Wee, Jae-Kyung;Kook, Jeong-Hoon;Kim, Se-Jun;Hong, Sang-Hoon;Ahn, Jin-Hong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.216-231
    • /
    • 2001
  • Several methods for improving device yields and characteristics have been studied by IC manufacturers, as the options for programming components become diversified through the introduction of novel processes. Especially, the sequential repair steps on wafer level and package level are essentially required in DRAMs to improve the yield. Several repair methods for DRAMs are reviewed in this paper. They include the optical methods (laser-fuse, laser-antifuse) and the electrical methods (electrical-fuse, ONO-antifuse). Theses methods can also be categorized into the wafer-level(on wafer) and the package-level(post-package) repair methods. Although the wafer-level laser-fuse repair method is the most widely used up to now, the package-level antifuse repair method is becoming an essential auxiliary technique for its advantage in terms of cost and design efficiency. The advantages of the package-level antifuse method are discussed in this paper with the measured data of manufactured devices. With devices based on several processes, it was verified that the antifuse repair method can improve the net yield by more than 2%~3%. Finally, as an illustration of the usefulness of the package-level antifuse repair method, the repair method was applied to the replica delay circuit of DLL to get the decrease of clock skew from 55ps to 9ps.

  • PDF

An Electrical Repair Circuit for Yield Increment of High Density Memory (고집적 메모리의 yield 개선을 위한 전기적 구제회로)

  • 김필중;김종빈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.273-279
    • /
    • 2000
  • Electrical repair method which has replaced laser repair method can replace defective cell by redundancy’s in the redundancy scheme of conventional high density memory. This electrical repair circuit consists of the antifuse program/read/latch circuits, a clock generator a negative voltage generator a power-up pulse circuit a special address mux and etc. The measured program voltage of made antifuses was 7.2~7.5V and the resistance of programmed antifuses was below 500 Ω. The period of clock generator was about 30 ns. The output voltage of a negative voltage generator was about 4.3 V and the current capacity was maximum 825 $mutextrm{A}$. An antifuse was programmed using by the electric potential difference between supply-voltage (3.3 V) and output voltage generator. The output pulse width of a power-up pulse circuit was 30 ns ~ 1$mutextrm{s}$ with the variation of power-up time. The programmed antifuse resistance required below 44 ㏀ from the simulation of antifuse program/read/latch circuit. Therefore the electrical repair circuit behaved safely and the yield of high densitymemory will be increased by using the circuit.

  • PDF

3- Transistor Cell OTP ROM Array Using Standard CMOS Gate-Oxide Antifuse

  • Kim, Jin-Bong;Lee, Kwy-Ro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.205-210
    • /
    • 2003
  • A 3-Transistor cell CMOS OTP ROM array using standard CMOS antifuse (AF) based on permanent breakdown of MOSFET gate oxide is proposed, fabricated and characterized. The proposed 3-T OTP cell for ROM array is composed of an nMOS AF, a high voltage (HV) blocking nMOS, and cell access transistor, all compatible with standard CMOS technology. The experimental results show that the proposed structure can be a viable technology option as a high density OTP ROM array for modern digital as well as analog circuits.

A New Programming Architecture in Antifuse-based FPGA (안티퓨즈를 기초로 한 현장 가공형 반도체의 새로운 프로그래밍 회로 구조)

  • 조한진;박영수;박인학
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.63-69
    • /
    • 1995
  • A novel programming architecture for antifuse FPGA(Field Programmable Gate Array) is described. This architecture prevents programming transistors from breakdown which occurs due to high voltage across the transistors during antifuse programming. Extra mask and processes can be avoided using this proposed architecture. To reduce the applied voltage across the terminals of programming transistors, different voltage ranges are supplied to vertical and horizontal tracks; between programming voltage Vp and Vp/2 for vertical tracks and between Vp/2 and 0V for horizontal tracks. Therefore, Maximum voltage across the programming transistors is half of the programming voltage and an designated antifuse can be programmed by applying maximum voltage for vertical track and minimum voltage for horizontal track while others are subjected to voltage difference below Vp/2.

  • PDF

Antifuse with Ti-rich barium titanate film and silicon oxide film (과잉 Ti 성분의 티탄산 바륨과 실리콘 산화막으로 구성된 안티퓨즈)

  • 이재성;이용현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.72-78
    • /
    • 1998
  • This paper is focused on the fabrication of reliable novel antifuse, which could operate at low voltage along with the improvement in OFF and ON-state properties. The fabricated antifuse consists of Al/BaTi$_{2}$O$_{3}$/SiO$_{2}$/TiW-silicide structure. Through the systematic analyses for bottom metal and the intermetallic insulator, material and electri cproperties were investiaged. TiW-silicide as the bottom electrode had smooth surface with average roughness of 11.angs. at 10X10.mu.m$^{2}$ and was bing kept as-deposited SiO$_{2}$ film stable. Amorphous BaTi$_{2}$O$_{3}$ film as the another insulator was chosen because of its low breakdown strength (2.5MV/cm). breakdown voltage of antifuse is remarkably reduced by using BaTi$_{2}$O$_{3}$ film, and leakage current of that maintained low level due to the SiO$_{2}$ film. Low ON-resistance (46.ohm./.mu.m$^{2}$) and low programming voltage(9.1V) can be obtained in theses antifuses with 220.angs. double insulator layer and 19.6X10$^{-6}$ cm$^{2}$ area, while keeping sufficient OFF-state reliability (less than 1nA).

  • PDF