• Title/Summary/Keyword: anti-invariant submanifolds

Search Result 15, Processing Time 0.021 seconds

RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM

  • Kim, Jeong-Sik;Dwivedi, Mohit Kumar;Tripathi, Mukut Mani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-998
    • /
    • 2009
  • Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, $\theta$-slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant $\Theta_k$ of different kind of submanifolds of a S-space form $\tilde{M}(c)$ are obtained.

CERTAIN RESULTS ON SUBMANIFOLDS OF GENERALIZED SASAKIAN SPACE-FORMS

  • Yadav, Sunil Kumar;Chaubey, Sudhakar K
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.123-137
    • /
    • 2020
  • The object of the present paper is to study certain geometrical properties of the submanifolds of generalized Sasakian space-forms. We deduce some results related to the invariant and anti-invariant slant submanifolds of the generalized Sasakian spaceforms. Finally, we study the properties of the sectional curvature, totally geodesic and umbilical submanifolds of the generalized Sasakian space-forms. To prove the existence of almost semiinvariant and anti-invariant submanifolds, we provide the non-trivial examples.

ON GENERIC SUBMANIFOLDS OF LP-SASAKIAN MANIFOLDS WITH CONCURRENT VECTOR FIELDS

  • Ghosh, Sujoy;Jun, Jae-Bok;Sarkar, Avijit
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.361-375
    • /
    • 2021
  • The object of the present paper is to deduce some important results on generic submanifolds and also generic product of LP-Sasakian manifolds with concurrent vector fields. Also, we provide a necessary and sufficient condition for which the invariant distribution D and anti-invariant distribution D of M are Einstein. Also, we deduce an interesting necessary and sufficient condition for submanifolds of LP-Sasakian manifolds to be totally umbilical submanifolds. Especially we deal with the generic submanifolds admitting a Ricci soliton in LP-Sasakian manifolds endowed with concurrent vector fields.

A SHORT NOTE ON BIHARMONIC SUBMANIFOLDS IN 3-DIMENSIONAL GENERALIZED (𝜅, 𝜇)-MANIFOLDS

  • Sasahara, Toru
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.723-732
    • /
    • 2016
  • We characterize proper biharmonic anti-invariant surfaces in 3-dimensional generalized (${\kappa}$, ${\mu}$)-manifolds with constant mean curvature by means of the scalar curvature of the ambient space and the mean curvature. In addition, we give a method for constructing infinity many examples of proper biharmonic submanifolds in a certain 3-dimensional generalized (${\kappa}$, ${\mu}$)-manifold. Moreover, we determine 3-dimensional generalized (${\kappa}$, ${\mu}$)-manifolds which admit a certain kind of proper biharmonic foliation.

NEW RELATIONSHIPS INVOLVING THE MEAN CURVATURE OF SLANT SUBMANIFOLDS IN S-SPACE-FORMS

  • Fernandez, Luis M.;Hans-Uber, Maria Belen
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.647-659
    • /
    • 2007
  • Relationships between the Ricci curvature and the squared mean curvature and between the shape operator associated with the mean curvature vector and the sectional curvature function for slant submanifolds of an S-space-form are proved, particularizing them to invariant and anti-invariant submanifolds tangent to the structure vector fields.

SHAPE OPERATOR AH FOR SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • KIM, DONG-SOO;KIM, YOUNG-HO;LEE, CHUL-WOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.189-201
    • /
    • 2005
  • In this article, we establish relations between the sectional curvature function K and the shape operator, and also relationship between the k-Ricci curvature and the shape operator for slant submanifolds in generalized complex space forms with arbitrary codimension.