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ON GENERIC SUBMANIFOLDS OF LP-SASAKIAN
MANIFOLDS WITH CONCURRENT VECTOR FIELDS

SuJoy GHOSH, JAE-BOK JUN, AND AVIJIT SARKAR

ABSTRACT. The object of the present paper is to deduce some important
results on generic submanifolds and also generic product of LP-Sasakian
manifolds with concurrent vector fields. Also, we provide a necessary
and sufficient condition for which the invariant distribution D and anti-
invariant distribution D+ of M are Einstein. Also, we deduce an inter-
esting necessary and sufficient condition for submanifolds of LP-Sasakian
manifolds to be totally umbilical submanifolds. Especially we deal with
the generic submanifolds admitting a Ricci soliton in LP-Sasakian mani-
folds endowed with concurrent vector fields.

1. Introduction

Nowadays submanifold theory has become an amusing area of research in dif-
ferential geometry and plays an essential role in the development of the subject.
The results of this field are mainly used in applied mathematics and theoret-
ical physics [9,19,26]. For instance, the method of invariant submanifolds is
used in the study of non-linear autonomous systems [26]. Semi-Riemannian
geometry has remarkable applications in relativity theory [19]. Many authors
have worked on invariant submanifolds [5,20,26], and deduced a large number
of significant results. Some of them have studied semi-invariant submanifolds
which are generalizations of invariant and anti-invariant submanifolds. The
first study on semi-invariant submanifolds of Sasakian manifolds was done by
Bejancu and Papaghiuc in [4]. Semi-invariant submanifolds have been studied
by several authors [1,3,12]. These types of submanifolds help us to explain the
beauty of the subject. Generic semi-invariant submanifolds are an exceptional
category of semi-invariant submanifolds which give us more attractive and ex-
traordinary results. For generic submanifolds we refer [24,25]. In this paper
we study generic semi-invariant submanifolds as well as generic semi-invariant
products which are more specific.
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Lorentzian manifolds form one of the most important sub-classes of pseudo
Riemannian manifolds. It plays a crucial role in mathematical physics, more
specifically in the development of the theory of relativity and cosmology. The
notion of Lorentzian almost para-contact manifolds was introduced by K. Mat-
sumoto [15]. Subsequently many authors worked on this type of manifolds
[1,2,16]. Lorentzian para-Sasakian manifolds are special kind of Lorentzian al-
most para contact manifolds. In brief, Lorentzian para-Sasakian manifolds are
called LP-Sasakian manifolds. A. Sarkar and M. Sen have worked on invariant
submanifolds of LP-Sasakian manifolds [20].

There has been several papers on Riemannian manifolds and pseudo Rie-
mannian manifolds which admit concircular vector fields and concurrent vector
fields. Recently B. Y. Chen and S. W. Wei studied Riemannian submanifolds
with concircular canonical vector fields in [8]. Many papers have been published
on related topics [7,13,14,21,23]. In 2015, B. Y. Chen deduced some results
on concircular vector fields and their applications to Ricci solitons [6]. In the
paper [25], the authors discussed on generic submanifolds of Sasakian mani-
folds with concurrent vector fields. Keeping these works in mind we establish
some interesting results on generic semi-invariant submanifolds of LP-Sasakian
manifolds with concurrent vector fields.

The concept of Ricci solitons in Riemannian geometry was introduced by
Hamilton as a self similar solution of the Ricci flow in 1982 [11]. A Ricci
soliton is known as quasi-Einstein metric in physics literature. This concept
has been studied in many fields of the manifold theory by several geometers.
For more details we refer [10,17,18,22].

A Ricci soliton is a pseudo-Riemannian manifold (]T/[/ , g) that admits a smooth
vector field V on M such that

(1.1) Lyg+25 = 2)\g

where, Ly g is the Lie-derivative of the metric tensor g in the direction of the
vector field V', which is called a potential vector field of the Ricci soliton, A
Is a constant and S is the Ricci tensor of M. A Ricci soliton is denoted by
(M,g,V,\). If Lyg = 0, then the potential vector field V is called Killing.
Also if Ly g = pg, then the vector field V is called conformal Killing, where p
is a smooth function. If V= 0 or Killing, then the Ricci soliton is called trivial
and in this case, the metric g is Einstein. So, a Ricci soliton is viewed as a
generalization of Einstein metric. The present paper is organized as follows:
After the introduction in Section 1, we give some basic definitions, nota-
tions and formulas of generic submanifolds and Lorentzian almost para-contact
manifolds in Section 2. In Section 3, we construct two interesting examples of
5-dimensional generic submanifolds of 7-dimensional LP-Sasakian manifolds.
In Section 4, we deal with the generic submanifolds of LP-Sasakian manifolds
with concurrent vector fields. In Section 5, we deduce an interesting necessary
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and sufficient condition for submanifolds of LP-Sasakian manifold to be um-
bilical submanifolds. In the last section we study the generic semi-invariant
products admitting a Ricci soliton.

2. Preliminaries

A vector field V' on a Riemannian or pseudo-Riemannian manifold M is
called a concircular vector field if it satisfies

ViV = fX

for any X tangent to M , where V is the Levi-Civita connection of M and f
is a real valued function on M. In particular, if f = 1, then the concircular
vector field V is called a concurrent vector field and also if f = 0, then the
concircular vector field V' is called a parallel vector field.

Throughout this paper we consider the vector field V' is concurrent and from
definition it follows

(2.1) VxV =X

for any X tangent to M.

Let, M be an m-dimensional real differentiable manifold of differentiability
class C*° endowed with a C'*°-vector valued linear function ¢, a C°°-vector
field &, 1-form 7 and Lorentzian metric g of type (0, 2) such that for each point

p € M, the tensor g, : T,M x T,M — R is a non-degenerate inner product
of signature (—,+,+,+,...,+), where T, M denotes the tangent vector space
of M at p and R is the real number space, which satisfies

(2.2) ¢*X =X +n(X)¢, () =1,

(2.3) 9(dX,0Y) = g(X,Y) +n(X)n(Y), n(X)=g(X,$)

for all differentiable vector fields X, Y tangent to M. Such astructure (¢,€,m,9)
is termed as Lorentzian para-contact structure. In a Lorentzian para-contact
structure the following relations also hold

(2.4) ¢ =0, n(¢pX)=0, rank¢g=n—1.

A Lorentzian para-contact manifold M is called a Lorentzian para-Sasakian
manifold if the following condition holds

(2.5) (Vx@)Y = g(X,Y)E +n(Y)X + 2n(X)n(Y)E

for all XY tangent to M , where V is the Levi-Civita connection on M with
respect to g. From (2.5) it follows that

(2.6) Vxé = ¢X,

(2.7) (Vxn)Y = g(X,Y) +n(X)n(Y).
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Let M be an n-dimensional submanifold of an m-dimensional LP-Sasakian
manifold M. Here, M is also an n-dimensional LP-Sasakian manifold. Then
we have [7]

(2.8) VxY = VxY +0(X,Y),

(2.9) VxN =V%N — Ay X

for all vector fields X, Y tangent to M and normal vector field N on M, where
V is the pseudo Riemannian connection on M defined by the induced metric g
and V= is the normal connection on THM of M, o is the second fundamental
form of M and Ay is a shape operator.

It is well known that the relation between the second fundamental form o
and the shape operator Ay are given by

(2.10) 9(o(X.Y),N) = g(AnX,Y)

for any vector fields X, Y tangent to M. ‘Here we denote by the same symbol
g the Lorentzian metric induced by g on M.

Let M be a real n-dimensional submanifold of an m-dimensional LP-Sasakian
manifold M such that ¢ is tangent to M. Then, M is called a semi-invariant
submanifold of M, if there exist two orthogonal differentiable distributions D
and D on M satisfying following conditions.

a. the distribution D is invariant by ¢, i.e., ¢(D,) = D, for all z € M.

b. the distribution D+ is anti-invariant by ¢, i.e., ¢(DF) C T;-M for all
zeM. .

Suppose we consider dimension of M = m, dimension of M = n, dimension
of the distribution D = p and dimension of the distribution D+ = g. Now, if
q = m — n, then the semi-invariant submanifold M is called a generic semi-
invariant submanifold of M. .

Let M be a semi-invariant submanifold of an LP-Sasakian manifold M.
By using the definition of semi-invariant submanifold, the tangent bundle and
normal bundle of a semi-invariant submanifold M have the orthogonal decom-
position
(211)  TM =D& D & (€), T*M = (DY) & u, 6(u) = i,
where p is the complementary subbundle orthogonal to ¢(D*) in I'(T+M)
and (¢) is the 1-dimensional distribution which is spanned by £. Also, if the
distributions D @ ¢ and D' are totally geodesics in M, then the submanifold
M is called a semi-invariant product.

Furthermore, on a semi-invariant submanifold M of an LP-Sasakian mani-
fold M, the following lemma holds.

Lemma 2.1 ([24]). The following properties are equivalent:
(i) M is a semi-invariant product,
(11) A¢(Z)X = 0;
(iii) the second fundamental form of M satisfies 0(¢X,Y) = ¢o(X,Y)
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for any X e T(D),Z € T(D*) and Y € T(TM).

Again, a semi-invariant product is called a generic semi-invariant product if
m —n = q is satisfied. Then, we have p = {0} in (2.11). Therefore, we get the
following decomposition

(2.12) TM = D@ D+ @ (¢), T+M = ¢(DF).
For, a generic semi-invariant product, we can write
(2.13) V=vT4vti4oeWt)+ fe,

where V € D(TM), VT € T(D),V+ € I(D) and here we consider the function
f is constant. N

Let M be a semi-invariant submanifold of an LP-Sasakian manifold M. The
semi-invariant submanifold M is called a D-geodesic if it satisfies the following

(2.14) o(X,Y) =0

for all X,Y € T'(D).

Similarly, for any X,Y € I'(D%) if the relation (2.14) is satisfied on M, then
the semi-invariant submanifold is called a D*-geodesic. Furthermore, for any
X € T(D),Y € I'(D1) if the relation (2.14) is satisfied on M, the semi-invariant
submanifold M is called a (D, D+)-geodesic or a mixed geodesic.

Again, for any X, Y € T'(T M) if we get o(X,Y) = 0, then the semi-invariant
submanifold is called a totally-geodesic. N

Now the distribution D is called parallel with respect to V, if it satisfies
VxY €T(D), where V is the Levi-Civita connection of M, for any X € I'(TM)
and Y € I'(D).

3. Examples

Let us construct two examples of generic submanifolds of LP-Sasakian man-
ifolds which help us to verify the obtained results.

Example 3.1. Let us consider the 7-dimensional manifold M:{(ml, To, T3, X4,
x5, 76, 27) € R7}, where (21, 9,73, 24, T5, 26, ¥7) are the standard coordinates
in R”. The vector fields e; = %, fori=1,2,3,4,5,6,7, are linearly indepen-

dent at each point of M.
Let, g be the Lorentzian metric defined by

glei,ej) =0fori+#jandi,j=1,2,3,4,5,6,7,
g(ei,ej) =1fori=jandi,j=1,23,4,5,6,
g(er,er) = —1.
Let ¢ be the (1,1) tensor field defined by
p(e1) = e1, dle2) = ez, ¢(e3) = €3, Plea) = —eu,
¢(es) = —es, dles) = —eq, dler) = 0.
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Therefore (¢, &, 1, g) is a Lorentzian almost para-contact manifold.

Now let us consider an immersed submanifold M in M satisfying the equa-
tions

x3 + 23 :ngrx%, 3+ x4 = 0.
By direct computation, it is easy to check that the tangent bundle of M is
spanned by the vectors.

0 0 0
FE1 = cosf— + sinf — + cosa—— + sina

0x1 Oz, Ozs 87%7
By, = —usinHaij31 + ucosﬂa—x27
_90 _9

3= 8333 81‘4

E, = —ublnoza—gc5 + ucosoza—6
0

E =

5 ax7 )

where 0, «,u denote arbitrary parameters. From the definition of almost
Lorentzian para-contact structure ¢, we can derive

¢F1 = cosf 881 + sm@ai2 — cosoza—5 — 5111046’—:106
0 0
OEy = Es, ¢E3 = , OFy = —FE4, ¢F5; =0.

925 | 02

Since ¢F; and ¢Fs3 are orthogonal to TM and ¢FE5 and ¢FE, are tangent
to TM, we find that D = span{Es, F4} is an invariant distribution of M
and D+ = span{E1, F3} is an anti-invariant distribution of M. Then TM =
D @ D+ @ (Es). Thus M is a 5-dimensional semi-invariant submanifold of M
with its usual metric structure (¢,&,7,9).

Here, dim(M ) =7, dim(M) = 5, dim(D) = 2, and dim(D+) = 2

Also dim(D+) =2 =7 — 5 = dim(M) — dim(M).

Therefore, TM = D @& D+ @ (¢), T*M = ¢(D*). So this semi-invariant
submanifold M is also a generic semi-invariant submanifold of M.

Example 3.2. Let us consider the 7-dimensional manifold Mz{(xl, To, T3, T4,
x5, 76, 27) € R7}, where (21, 9,73, 74,5, 26, ¥7) are the standard coordinates
in R”. The vector fields

I R R B )
0z 0xy’ Ozy’ Ozs’
0 0 0 0 0
= g T 85+2-73684 66:78136767:78%7

are linearly independent at each point of M.
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Let, g be the Lorentzian metric defined by
glej,ej) =0fori+#jandi,j=1,2,3,4,56,7,
glej,ej) =1fori=j#4,
g(eq,eq) = —1.

Let, n be the 1-form defined by

n(X) = g(X, eq)

forany X € T M.
Let ¢ be the (1,1) tensor field defined by

ple1) = ez, dle2) =e1, ¢(es) =er, ¢(es) =0,

d(es) = es, dles) = es5, d(er) = es.
Then for e4 = &, th(/ev structure (¢,&,7,g) defines a Lorentzian almost para-
contact manifold on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric
g. Then we have

[e1, e2] = —2e2, [es, e6] = —2e4, remaining [e;, e;] = 0.

Taking e4 = £ and using Koszul formula for the Lorentzian metric g, we can
easily calculate the following:

Ve,e1 = 2ea, Ve,e0 = —2e1, Ve eq4 = —€g, Veges = €5,

v64€5 = €g, vegeS = €4, v6466 = €5, V6566 = —é€y4,
remaining V., e; = 0.

From the above it can be easily seen that M7(¢,§, 7,g) is an LP-Sasakian
manifold. .
Let f be an isometric immersion from M to M defined by

f(xl, T3,T4,T5, JJ7) = (l‘l, O7 I3,T4,T5, 0, 33‘7).
Let M = {(x1,23, 24,75, 77) € R®}, where (1,23, 74,5, 27) are the stan-
dard coordinates in R.
The vector fields {eq, €3, e4, €5, e7 } are linearly independent at each point of
M.
Let ¢ be the (1,1) tensor field defined by

Pler) = ez, dles) = er, dles) =0, ¢(es) = es, P(er) = es.

Since ¢(e1) and ¢(es5) are orthogonal to TM and ¢(e3) and ¢(e7) are tangent
to TM, we find that D = span{es,e7} is an invariant distribution of M and
D+ = span{ey,es} is an anti-invariant distribution of M. Then TM = D @
D+ @ {e4). Thus M is a 5-dimensional semi-invariant submanifold of M with
its usual metric structure (¢,&,n,g).

Here, dim(M) = 7, dim(M) = 5, dim(D) = 2, and dim(D1) = 2.
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Also dim(D4) =2 =7 — 5 = dim(M) — dim(M).
Therefore, TM = D @& D+ @ (¢), T*M = ¢(D*). So this semi-invariant
submanifold M is also a generic semi-invariant submanifold of M.

4. Generic submanifolds of LP-Sasakian manifolds with concurrent
vector fields

In this section first we discuss some important lemma and propositions, then
we deduce the main results on this topic.

Lemma 4.1. Let M be a generic submanifold of an LP-Sasakian manifold M
with concurrent vector field V.. Then we get the following

VaVT 4+ VxVE — Ay X = X — foX,
(X, V) +o(X,VE) + VeV =0
for X € T(D) and others are usual notations discussed in Section 2.
Proof. Since V is a concurrent vector field then from (2.13) we get
VxVT 4+ ViV + ViVt + Vx fE = X.
Now from (2.8) and (2.9) we get,
ViVT 40X, VT) + VxVE 4+ 0(X, V) + VoVt — Ayy i X + fVxE = X.

Putting the value of v x& from (2.6) and comparing the tangential and normal
components we have the required results. (I

Proposition 4.1. Let M be a generic submanifold of an LP-Sasakian manifold
M with concurrent vector field V.. Then we get

VxoVT +VxVE — Ayt X = g(X, Ve — fX + ¢X,
o(X,oVT) +o(X, V) + ViV = 0.

Proof. Since M is an LP-Sasakian manifold then putting Y = V in (2.5), we
get

VgV = ¢X = g(X, V)E +n(V)X + 29(X)n(V)E
Now from (2.13), we have
VxoVT + VxoVt + Vx¢?VE — X = g(X,VT)¢ - fX.
Now using (2.8), (2.9) and (2.2) in the above equation, we obtain
VxoVT +0(X,¢VT) + VxoVE — Aypr X + VxV*E +0(X, V) - X
= g(X, Ve~ fX.

From the tangential and normal components of the above equation, we have
the required results. Hence the proposition is proved. (I
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Proposition 4.2. Let M be a generic submanifold of an LP-Sasakian manifold
M with concurrent vector field V.. And also M is a D-geodesic. Then we get

VoV —¢(VxVT) = g(X,VT)E.
Proof. Since M is an LP-Sasakian manifold then putting Y = V7 in (2.5), we
et

) VxoV! = o(VxV") = g(X,VI)E+ (V)X + 2p(X)n(VT)E.
Now applying (2.8) in the above equation, we have

VxoVT +0(X,0VT) —s(VxVT +o(X, V7)) = g(X, V).
Since, M is a D-geodesic, we get
(4.1) VxoVT —¢(VxVT) = g(X,VT)E.
Hence the proposition is proved. (I

Proposition 4.3. Let M be a generic submanifold of an LP-Sasakian manifold
M with concurrent vector field V., M is a mized-geodesic and VxV+ € T'(D)
for any X € T'(D). Then we get

P(VxVE) = —Aypr X, VxoV+ =0.
Proof. Since M is an LP-Sasakian manifold then putting Y = V=+ in (2.5), we
get
VgV = g(Vx V) = g(X, VHE+ (VX +20(X)n(VH)e.
Now applying (2.8) and (2.9) in the above equation, we obtain
VoVt — Ay X —¢p(VxVE +o(X, V) =0.
Since, M is a mixed-geodesic, we get
VoVt — Ay X — ¢(Vx V) =0.
Now, comparing the tangential and normal components, we have
(4.2) P(VxVE) = Ay X, VxoV+t =0.
Hence the proposition is proved. (I

Theorem 4.1. Let M be a generic submanifold of an LP-Sasakian manifold
M with concurrent vector field V. If the submanifold M is a D-geodesic and
Vx VT is not orthogonal to &, then VT on D is concurrent if and only if f = 0.

Proof. From Proposition 4.1. we get

(4.3) VxdVT + Vx V4t — Ay X = g(X, VT)E - X + ¢X.
Since, M is a D-geodesic, then from (4.1) we obtain
(4.4) VxoVT = ¢(VxVT) +g(X, VT)E.

Combining (4.3) and (4.4)
(4.5) P(VxVT)+VxVE — Ay X = —fX + ¢X.



370 S. GHOSH, J. B. JUN, AND A. SARKAR

From Lemma 4.1, we have the following

(4.6) VxVT+VxVE— Ay X = X — foX.
Subtracting (4.6) from (4.5), we have

(4.7) d(VxVT) = VxVT = (14 f)oX — (1+ f)X.
Now, the equation (4.7) can be written as follows

(4.8) d(VxVT - X — fX) = (VxVT - X — fX).

Applying ¢ on both sides of (4.8), we have the following
n(VxVl —X - fX)=0.
Hence, by the given condition we get
VxVT =X+ fXx.
Therefore V7T is concurrent on D if and only if f is a zero function. O
In the next theorem we study V+ on M.

Theorem 4.2. Let M be a generic semi-invariant product of an LP-Sasakian
manifold M with concurrent vector field V. If the submanifold M is a mized-
geodesic and VxV+ € T'(D) for any X € T'(D), then V* is a parallel vector
field.

Proof. From Proposition 4.3. we get
P(VxVT) = —Ay X.
Using Lemma 2.1,
p(VxV*)=0.
Applying ¢ on both sides of this we have
—VxV+t+n(VxV+H)E=o.
Now, from the given condition we get
VxV+t=0.
Therefore, V= is a parallel vector field. (I

5. Generic submanifolds with conformal vector fields

In this section we study an interesting relation between conformal vector
fields and umbilical submanifolds.

Definition 5.1. The mean curvature vector H of an n-dimensional submani-
fold M is defined by

1
H = —trace o,
n

where o is the second fundamental form defined in Section 2.
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Definition 5.2. A submanifold M is called totally umbilical if its second fun-
damental form o satisfies

o(X,Y) = g(X,Y)H.

Definition 5.3. A submanifold M is said to be umbilical with respect to a
normal vector field IV if its second fundamental form o satisfies

(51) g(O’(X,Y),N) :.ug(va)
for a function pu.

Theorem 5.1. Let M be a generic submanifold of an LP-Sasakian manifold
M endowed with a concurrent vector field V. If f =0 and VxY = —Vy X,
then VT is a conformal vector field if and only if M is umbilical with respect
to oV +.

Proof. 1t is well known that the Lie derivative on M satisfies
(5-2) (Lvg)(X,Y) = g(VxV,Y) + g(VyV, X)

for any vector fields X, Y,V tangent to M.
Putting V = V7 in the above equation we get

(5:3) (Lyrg)(X,Y) = g(Vx V1Y) +g(Vy VT, X).
Using Lemma 4.1 in (5.3) we have
(Lyrg)(X,Y) = 29(XY) = 2fg(¢X,Y) + 29(c(X,Y), 6V ")
(5.4) —g(VxVEY) - g(VyV+E X).
Again we know that
(55)  (Vxg)(V5Y) = Vxg(VS,Y) = g(VxVEY) = g(VF, VxY).

Since, M is a generic submanifold, we have from (5.5)

Similarly we get
(57) g(VyVl,X) = —g(VL,VYX).

Using (5.6) and (5.7) in (5.4) we have
(Lyrg)(X,Y) =29(X.,Y) —2fg(¢X,Y) + 29(0(X,Y), (ZSVL)

(5.8) +9(VE VXY + VyX).
Applying the given condition we get
(5.9) (Lyrg)(X,Y) = 29(X,Y) +29(0(X,Y), V).

Now let us assume that, the vector field V7 is conformal. Then from the
definition of conformal vector field we have

(5.10) (Lyrg)(X,Y) = pg(X,Y)
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for a function p. From (5.9) and (5.10), we get
p
g(U(Xa Y)7¢VL) = (5 - 1)g(Xa Y)

From above it is clear that M is umbilical with respect to ¢V +.
Conversely, we assume that M is umbilical with respect to ¢V 1, so we have

(5.11) 9(0(X,Y), V") = ug(X,Y)

for a function pu.
From (5.9) and (5.11), we get

(5.12) (Lyrg)(X,Y) =2(1 + p)g(X,Y).
Therefore we have V7 is a conformal vector field.
Hence the theorem is proved. O

6. Ricci solitons in generic submanifolds

In this section we study the generic submanifolds admitting Ricci solitons
of LP-Sasakian manifolds with concurrent vector fields. First we prove two
important lemmas.

Lemma 6.1. Let M be a generic submanifold admitting a Ricci soliton of an
LP-Sasakian manifold M endowed with a concurrent vector field V. Then the
Ricci tensor Sp of the invariant distribution D is given by

Sp(X,Y) = (A= 1)g(X,Y) + fg(¢X,Y) = g(a(X,Y), ¢V ")
- %Q(VJ‘, VxY + VyX),

where V is the Levi-Civita connection on M for any X,Y € T'(D).
Proof. From the definition of Lie derivative, we get
(6.1) (Lyrg)(X,Y) = g(Vx VT, Y) +g(Vy V", X).
Using Lemma 4.1 in (6.1) we have

(Bvrg)(X,Y) = 29(X,Y) = 2fg(6X,Y) +29(0(X,Y), oV ")
(6.2) —g(VxVE,Y) = g(VyV*, X).
Again we know that
(6:3)  (Vxg)(V5,Y) =Vxg(V,Y) —g(VxV©Y) - g(V, VxY).

Since M is a generic submanifold, we have from (6.3)

Similarly we get
(6.5) g(VyVE, X) = —g(VE, Vy X).

Using (6.4) and (6.5) in (6.2) we have
(Lyrg)(X,Y) =29(X,Y) = 2fg(¢X,Y) +29(0(X,Y), (bvl)
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(6.6) +g(VH, VxY + Vy X).

Again, since the generic submanifold M admits a Ricci soliton, using the equa-
tion (1.1) we have the following

(6.7) (Lyrg)(X,Y) 4+ 25p(X,Y) = 2)0g9(X,Y).
Combining the equations (6.6) and (6.7) we get
Sp(X,Y) = (A= 1)g(X,Y) + fg(6X.Y) — g(o(X,Y), 6V ")
LV VY Yy X),
which is the required result. O

Lemma 6.2. Let M be a generic submanifold admitting a Ricci soliton of an
LP-Sasakian manifold M endowed with a concurrent vector field V. Then the
Ricci tensor Spi of the anti-invariant distribution D+ is given by

1
Spr(X,Y) = (A= Dg(X,Y) = g(0(X,Y), V") = 59(VF, VxY + Vy X),
where V is the Levi-civita connection on M for any X,Y € T'(D4).
Proof. The proof is similar to the proof of Lemma 6.1. (]

Theorem 6.1. Let M be a generic submanifold admitting a Ricci soliton of
an LP-Sasakian manifold M endowed with a concurrent vector field V. If the
invariant distribution D is D-parallel and f = 0, then the invariant distribution
D is Einstein.

Proof. 1t is an easy consequence from Lemma 6.1. O

Theorem 6.2. Let M be a generic submanifold admitting a Ricci soliton of an
LP-Sasakian manifold M endowed with a concurrent vector field V. If the anti-
invariant distribution D+ is D -parallel, then the anti-invariant distribution
DY is Einstein.

Proof. 1t follows from Lemma 6.2. (]

Theorem 6.3. Let M be a generic semi-invariant product admitting a Ricci
soliton of an LP-Sasakian manifold M endowed with a concurrent vector field
V' and also let f = 0. Then the following are satisfied:

(i) The vector field VT is conformal Killing on D.

(ii) The invariant distribution D is Einstein.

Proof. From (6.6) we have
(Lvrg)(X,Y) = 29(X,Y) — 2fg(¢X,Y) + 2g(0(X,Y), V")
(6.8) +g(VE, VXY + VyX).
From the given condition it follows that
(6.9) (Lyrg)(X,Y) =2¢9(X,Y).



374

S. GHOSH, J. B. JUN, AND A. SARKAR

Therefore, the vector field V7 is conformal Killing on D.
Since M be a generic submanifold admitting a Ricci soliton we get from
(1.1)

(6.10) (Lyrg)(X,Y) +25p(X,Y) = 2)g(X, V).

Combining the equations (6.9) and (6.10) we get

Sp(X,)Y)=(A—1)g(X,Y).

So, we can conclude that D is Einstein. Hence the theorem is proved. O
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