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ON GENERIC SUBMANIFOLDS OF LP-SASAKIAN
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Abstract. The object of the present paper is to deduce some important

results on generic submanifolds and also generic product of LP-Sasakian
manifolds with concurrent vector fields. Also, we provide a necessary

and sufficient condition for which the invariant distribution D and anti-
invariant distribution D⊥ of M are Einstein. Also, we deduce an inter-

esting necessary and sufficient condition for submanifolds of LP-Sasakian

manifolds to be totally umbilical submanifolds. Especially we deal with
the generic submanifolds admitting a Ricci soliton in LP-Sasakian mani-

folds endowed with concurrent vector fields.

1. Introduction

Nowadays submanifold theory has become an amusing area of research in dif-
ferential geometry and plays an essential role in the development of the subject.
The results of this field are mainly used in applied mathematics and theoret-
ical physics [9, 19, 26]. For instance, the method of invariant submanifolds is
used in the study of non-linear autonomous systems [26]. Semi-Riemannian
geometry has remarkable applications in relativity theory [19]. Many authors
have worked on invariant submanifolds [5,20,26], and deduced a large number
of significant results. Some of them have studied semi-invariant submanifolds
which are generalizations of invariant and anti-invariant submanifolds. The
first study on semi-invariant submanifolds of Sasakian manifolds was done by
Bejancu and Papaghiuc in [4]. Semi-invariant submanifolds have been studied
by several authors [1,3,12]. These types of submanifolds help us to explain the
beauty of the subject. Generic semi-invariant submanifolds are an exceptional
category of semi-invariant submanifolds which give us more attractive and ex-
traordinary results. For generic submanifolds we refer [24, 25]. In this paper
we study generic semi-invariant submanifolds as well as generic semi-invariant
products which are more specific.
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Lorentzian manifolds form one of the most important sub-classes of pseudo
Riemannian manifolds. It plays a crucial role in mathematical physics, more
specifically in the development of the theory of relativity and cosmology. The
notion of Lorentzian almost para-contact manifolds was introduced by K. Mat-
sumoto [15]. Subsequently many authors worked on this type of manifolds
[1,2,16]. Lorentzian para-Sasakian manifolds are special kind of Lorentzian al-
most para contact manifolds. In brief, Lorentzian para-Sasakian manifolds are
called LP-Sasakian manifolds. A. Sarkar and M. Sen have worked on invariant
submanifolds of LP-Sasakian manifolds [20].

There has been several papers on Riemannian manifolds and pseudo Rie-
mannian manifolds which admit concircular vector fields and concurrent vector
fields. Recently B. Y. Chen and S. W. Wei studied Riemannian submanifolds
with concircular canonical vector fields in [8]. Many papers have been published
on related topics [7, 13, 14, 21, 23]. In 2015, B. Y. Chen deduced some results
on concircular vector fields and their applications to Ricci solitons [6]. In the
paper [25], the authors discussed on generic submanifolds of Sasakian mani-
folds with concurrent vector fields. Keeping these works in mind we establish
some interesting results on generic semi-invariant submanifolds of LP-Sasakian
manifolds with concurrent vector fields.

The concept of Ricci solitons in Riemannian geometry was introduced by
Hamilton as a self similar solution of the Ricci flow in 1982 [11]. A Ricci
soliton is known as quasi-Einstein metric in physics literature. This concept
has been studied in many fields of the manifold theory by several geometers.
For more details we refer [10,17,18,22].

A Ricci soliton is a pseudo-Riemannian manifold (M̃, g) that admits a smooth

vector field V on M̃ such that

(1.1)  LV g + 2S̃ = 2λg

where,  LV g is the Lie-derivative of the metric tensor g in the direction of the
vector field V , which is called a potential vector field of the Ricci soliton, λ

is a constant and S̃ is the Ricci tensor of M̃ . A Ricci soliton is denoted by

(M̃, g, V, λ). If  LV g = 0, then the potential vector field V is called Killing.
Also if  LV g = ρg, then the vector field V is called conformal Killing, where ρ
is a smooth function. If V = 0 or Killing, then the Ricci soliton is called trivial
and in this case, the metric g is Einstein. So, a Ricci soliton is viewed as a
generalization of Einstein metric. The present paper is organized as follows:

After the introduction in Section 1, we give some basic definitions, nota-
tions and formulas of generic submanifolds and Lorentzian almost para-contact
manifolds in Section 2. In Section 3, we construct two interesting examples of
5-dimensional generic submanifolds of 7-dimensional LP-Sasakian manifolds.
In Section 4, we deal with the generic submanifolds of LP-Sasakian manifolds
with concurrent vector fields. In Section 5, we deduce an interesting necessary
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and sufficient condition for submanifolds of LP-Sasakian manifold to be um-
bilical submanifolds. In the last section we study the generic semi-invariant
products admitting a Ricci soliton.

2. Preliminaries

A vector field V on a Riemannian or pseudo-Riemannian manifold M̃ is
called a concircular vector field if it satisfies

∇̃XV = fX

for any X tangent to M̃ , where ∇̃ is the Levi-Civita connection of M̃ and f

is a real valued function on M̃ . In particular, if f = 1, then the concircular
vector field V is called a concurrent vector field and also if f = 0, then the
concircular vector field V is called a parallel vector field.

Throughout this paper we consider the vector field V is concurrent and from
definition it follows

(2.1) ∇̃XV = X

for any X tangent to M̃ .

Let, M̃ be an m-dimensional real differentiable manifold of differentiability
class C∞ endowed with a C∞-vector valued linear function φ, a C∞-vector
field ξ, 1-form η and Lorentzian metric g of type (0, 2) such that for each point

p ∈ M̃ , the tensor gp : TpM̃ × TpM̃ −→ R is a non-degenerate inner product

of signature (−,+,+,+, . . . ,+), where TpM̃ denotes the tangent vector space

of M̃ at p and R is the real number space, which satisfies

(2.2) φ2X = X + η(X)ξ, η(ξ) = −1,

(2.3) g(φX, φY ) = g(X,Y ) + η(X)η(Y ), η(X) = g(X, ξ)

for all differentiable vector fieldsX, Y tangent to M̃ . Such a structure (φ, ξ, η, g)
is termed as Lorentzian para-contact structure. In a Lorentzian para-contact
structure the following relations also hold

(2.4) φξ = 0, η(φX) = 0, rankφ = n− 1.

A Lorentzian para-contact manifold M̃ is called a Lorentzian para-Sasakian
manifold if the following condition holds

(2.5) (∇̃Xφ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ

for all X,Y tangent to M̃ , where ∇̃ is the Levi-Civita connection on M̃ with
respect to g. From (2.5) it follows that

(2.6) ∇̃Xξ = φX,

(2.7) (∇̃Xη)Y = g(X,Y ) + η(X)η(Y ).
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Let M be an n-dimensional submanifold of an m-dimensional LP-Sasakian
manifold M̃ . Here, M is also an n-dimensional LP-Sasakian manifold. Then
we have [7]

(2.8) ∇̃XY = ∇XY + σ(X,Y ),

(2.9) ∇̃XN = ∇⊥
XN −ANX

for all vector fields X, Y tangent to M and normal vector field N on M , where
∇ is the pseudo Riemannian connection on M defined by the induced metric g
and ∇⊥ is the normal connection on T⊥M of M , σ is the second fundamental
form of M and AN is a shape operator.

It is well known that the relation between the second fundamental form σ
and the shape operator AN are given by

(2.10) g(σ(X,Y ), N) = g(ANX,Y )

for any vector fields X, Y tangent to M . Here we denote by the same symbol

g the Lorentzian metric induced by g on M̃ .
LetM be a real n-dimensional submanifold of anm-dimensional LP-Sasakian

manifold M̃ such that ξ is tangent to M . Then, M is called a semi-invariant

submanifold of M̃ , if there exist two orthogonal differentiable distributions D
and D⊥ on M satisfying following conditions.

a. the distribution D is invariant by φ, i.e., φ(Dx) = Dx for all x ∈M .
b. the distribution D⊥ is anti-invariant by φ, i.e., φ(D⊥

x ) ⊂ T⊥
x M for all

x ∈M .
Suppose we consider dimension of M̃ = m, dimension of M = n, dimension

of the distribution D = p and dimension of the distribution D⊥ = q. Now, if
q = m − n, then the semi-invariant submanifold M is called a generic semi-

invariant submanifold of M̃ .
Let M be a semi-invariant submanifold of an LP-Sasakian manifold M̃ .

By using the definition of semi-invariant submanifold, the tangent bundle and
normal bundle of a semi-invariant submanifold M have the orthogonal decom-
position

(2.11) TM = D ⊕D⊥ ⊕ 〈ξ〉, T⊥M = φ(D⊥)⊕ µ, φ(µ) = µ,

where µ is the complementary subbundle orthogonal to φ(D⊥) in Γ(T⊥M)
and 〈ξ〉 is the 1-dimensional distribution which is spanned by ξ. Also, if the
distributions D ⊕ ξ and D⊥ are totally geodesics in M , then the submanifold
M is called a semi-invariant product.

Furthermore, on a semi-invariant submanifold M of an LP-Sasakian mani-

fold M̃ , the following lemma holds.

Lemma 2.1 ([24]). The following properties are equivalent:

(i) M is a semi-invariant product;
(ii) Aφ(Z)X = 0;
(iii) the second fundamental form of M satisfies σ(φX, Y ) = φσ(X,Y )
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for any X ∈ Γ(D), Z ∈ Γ(D⊥) and Y ∈ Γ(TM).

Again, a semi-invariant product is called a generic semi-invariant product if
m− n = q is satisfied. Then, we have µ = {0} in (2.11). Therefore, we get the
following decomposition

(2.12) TM = D ⊕D⊥ ⊕ 〈ξ〉, T⊥M = φ(D⊥).

For, a generic semi-invariant product, we can write

(2.13) V = V T + V ⊥ + φ(V ⊥) + fξ,

where V ∈ Γ(TM̃), V T ∈ Γ(D), V ⊥ ∈ Γ(D⊥) and here we consider the function
f is constant.

Let M be a semi-invariant submanifold of an LP-Sasakian manifold M̃ . The
semi-invariant submanifold M is called a D-geodesic if it satisfies the following

(2.14) σ(X,Y ) = 0

for all X,Y ∈ Γ(D).
Similarly, for any X,Y ∈ Γ(D⊥) if the relation (2.14) is satisfied on M , then

the semi-invariant submanifold is called a D⊥-geodesic. Furthermore, for any
X ∈ Γ(D), Y ∈ Γ(D⊥) if the relation (2.14) is satisfied on M , the semi-invariant
submanifold M is called a (D,D⊥)-geodesic or a mixed geodesic.

Again, for any X,Y ∈ Γ(TM) if we get σ(X,Y ) = 0, then the semi-invariant
submanifold is called a totally-geodesic.

Now the distribution D is called parallel with respect to ∇̃, if it satisfies

∇̃XY ∈ Γ(D), where ∇̃ is the Levi-Civita connection of M̃ , for any X ∈ Γ(TM̃)
and Y ∈ Γ(D).

3. Examples

Let us construct two examples of generic submanifolds of LP-Sasakian man-
ifolds which help us to verify the obtained results.

Example 3.1. Let us consider the 7-dimensional manifold M̃={(x1, x2, x3, x4,
x5, x6, x7) ∈ R7}, where (x1, x2, x3, x4, x5, x6, x7) are the standard coordinates
in R7. The vector fields ei = ∂

∂xi
, for i = 1, 2, 3, 4, 5, 6, 7, are linearly indepen-

dent at each point of M̃ .
Let, g be the Lorentzian metric defined by

g(ei, ej) = 0 for i 6= j and i, j = 1, 2, 3, 4, 5, 6, 7,

g(ei, ej) = 1 for i = j and i, j = 1, 2, 3, 4, 5, 6,

g(e7, e7) = −1.

Let φ be the (1,1) tensor field defined by

φ(e1) = e1, φ(e2) = e2, φ(e3) = e3, φ(e4) = −e4,
φ(e5) = −e5, φ(e6) = −e6, φ(e7) = 0.
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Therefore (φ, ξ, η, g) is a Lorentzian almost para-contact manifold.

Now let us consider an immersed submanifold M in M̃ satisfying the equa-
tions

x21 + x22 = x25 + x26, x3 + x4 = 0.

By direct computation, it is easy to check that the tangent bundle of M is
spanned by the vectors.

E1 = cosθ
∂

∂x1
+ sinθ

∂

∂x2
+ cosα

∂

∂x5
+ sinα

∂

∂x6
,

E2 = −usinθ
∂

∂x1
+ ucosθ

∂

∂x2
,

E3 =
∂

∂x3
− ∂

∂x4
,

E4 = −usinα
∂

∂x5
+ ucosα

∂

∂x6
,

E5 =
∂

∂x7
,

where θ, α, u denote arbitrary parameters. From the definition of almost
Lorentzian para-contact structure φ, we can derive

φE1 = cosθ
∂

∂x1
+ sinθ

∂

∂x2
− cosα

∂

∂x5
− sinα

∂

∂x6
,

φE2 = E2, φE3 =
∂

∂x3
+

∂

∂x4
, φE4 = −E4, φE5 = 0.

Since φE1 and φE3 are orthogonal to TM and φE2 and φE4 are tangent
to TM , we find that D = span{E2, E4} is an invariant distribution of M
and D⊥ = span{E1, E3} is an anti-invariant distribution of M . Then TM =

D ⊕D⊥ ⊕ 〈E5〉. Thus M is a 5-dimensional semi-invariant submanifold of M̃
with its usual metric structure (φ, ξ, η, g).

Here, dim(M̃) = 7, dim(M) = 5, dim(D) = 2, and dim(D⊥) = 2.

Also dim(D⊥) = 2 = 7− 5 = dim(M̃)− dim(M).
Therefore, TM = D ⊕ D⊥ ⊕ 〈ξ〉, T⊥M = φ(D⊥). So this semi-invariant

submanifold M is also a generic semi-invariant submanifold of M̃ .

Example 3.2. Let us consider the 7-dimensional manifold M̃={(x1, x2, x3, x4,
x5, x6, x7) ∈ R7}, where (x1, x2, x3, x4, x5, x6, x7) are the standard coordinates
in R7. The vector fields

e1 = −2
∂

∂x1
+ 2x2

∂

∂x2
, e2 =

∂

∂x2
, e3 =

∂

∂x3
,

e4 =
∂

∂x4
, e5 = −2

∂

∂x5
+ 2x6

∂

∂x4
, e6 =

∂

∂x6
, e7 =

∂

∂x7

are linearly independent at each point of M̃ .
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Let, g be the Lorentzian metric defined by

g(ei, ej) = 0 for i 6= j and i, j = 1, 2, 3, 4, 5, 6, 7,

g(ei, ej) = 1 for i = j 6= 4,

g(e4, e4) = −1.

Let, η be the 1-form defined by

η(X) = g(X, e4)

for any X ∈ TM̃ .
Let φ be the (1,1) tensor field defined by

φ(e1) = e2, φ(e2) = e1, φ(e3) = e7, φ(e4) = 0,

φ(e5) = e6, φ(e6) = e5, φ(e7) = e3.

Then for e4 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian almost para-

contact manifold on M̃ .
Let ∇̃ be the Levi-Civita connection with respect to the Lorentzian metric

g. Then we have

[e1, e2] = −2e2, [e5, e6] = −2e4, remaining [ei, ej ] = 0.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g, we can
easily calculate the following:

∇̃e2e1 = 2e2, ∇̃e2e2 = −2e1, ∇̃e5e4 = −e6, ∇̃e6e4 = e5,

∇̃e4e5 = e6, ∇̃e6e5 = e4, ∇̃e4e6 = e5, ∇̃e5e6 = −e4,

remaining ∇̃eiej = 0.

From the above it can be easily seen that M̃7(φ, ξ, η, g) is an LP-Sasakian
manifold.

Let f be an isometric immersion from M to M̃ defined by

f(x1, x3, x4, x5, x7) = (x1, 0, x3, x4, x5, 0, x7).

Let M = {(x1, x3, x4, x5, x7) ∈ R5}, where (x1, x3, x4, x5, x7) are the stan-
dard coordinates in R.

The vector fields {e1, e3, e4, e5, e7} are linearly independent at each point of
M .

Let φ be the (1,1) tensor field defined by

φ(e1) = e2, φ(e3) = e7, φ(e4) = 0, φ(e5) = e6, φ(e7) = e3.

Since φ(e1) and φ(e5) are orthogonal to TM and φ(e3) and φ(e7) are tangent
to TM , we find that D = span{e3, e7} is an invariant distribution of M and
D⊥ = span{e1, e5} is an anti-invariant distribution of M . Then TM = D ⊕
D⊥ ⊕ 〈e4〉. Thus M is a 5-dimensional semi-invariant submanifold of M̃ with
its usual metric structure (φ, ξ, η, g).

Here, dim(M̃) = 7, dim(M) = 5, dim(D) = 2, and dim(D⊥) = 2.
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Also dim(D⊥) = 2 = 7− 5 = dim(M̃)− dim(M).
Therefore, TM = D ⊕ D⊥ ⊕ 〈ξ〉, T⊥M = φ(D⊥). So this semi-invariant

submanifold M is also a generic semi-invariant submanifold of M̃ .

4. Generic submanifolds of LP-Sasakian manifolds with concurrent
vector fields

In this section first we discuss some important lemma and propositions, then
we deduce the main results on this topic.

Lemma 4.1. Let M be a generic submanifold of an LP-Sasakian manifold M̃
with concurrent vector field V . Then we get the following

∇XV T +∇XV ⊥ −AφV ⊥X = X − fφX,

σ(X,V T ) + σ(X,V ⊥) +∇⊥
XφV

⊥ = 0

for X ∈ Γ(D) and others are usual notations discussed in Section 2.

Proof. Since V is a concurrent vector field then from (2.13) we get

∇̃XV T + ∇̃XV ⊥ + ∇̃XφV ⊥ + ∇̃Xfξ = X.

Now from (2.8) and (2.9) we get,

∇XV T + σ(X,V T ) +∇XV ⊥ + σ(X,V ⊥) +∇⊥
XφV

⊥ −AφV ⊥X + f∇̃Xξ = X.

Putting the value of ∇̃Xξ from (2.6) and comparing the tangential and normal
components we have the required results. �

Proposition 4.1. Let M be a generic submanifold of an LP-Sasakian manifold

M̃ with concurrent vector field V . Then we get

∇XφV T +∇XV ⊥ −AφV ⊥X = g(X,V T )ξ − fX + φX,

σ(X,φV T ) + σ(X,V ⊥) +∇⊥
XφV

⊥ = 0.

Proof. Since M̃ is an LP-Sasakian manifold then putting Y = V in (2.5), we
get

∇̃XφV − φX = g(X,V )ξ + η(V )X + 2η(X)η(V )ξ.

Now from (2.13), we have

∇̃XφV T + ∇̃XφV ⊥ + ∇̃Xφ2V ⊥ − φX = g(X,V T )ξ − fX.

Now using (2.8), (2.9) and (2.2) in the above equation, we obtain

∇XφV T + σ(X,φV T ) +∇⊥
XφV

⊥ −AφV ⊥X +∇XV ⊥ + σ(X,V ⊥)− φX
= g(X,V T )ξ − fX.

From the tangential and normal components of the above equation, we have
the required results. Hence the proposition is proved. �
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Proposition 4.2. Let M be a generic submanifold of an LP-Sasakian manifold

M̃ with concurrent vector field V . And also M is a D-geodesic. Then we get

∇XφV T − φ(∇XV T ) = g(X,V T )ξ.

Proof. Since M̃ is an LP-Sasakian manifold then putting Y = V T in (2.5), we
get

∇̃XφV T − φ(∇̃XV T ) = g(X,V T )ξ + η(V T )X + 2η(X)η(V T )ξ.

Now applying (2.8) in the above equation, we have

∇XφV T + σ(X,φV T )− φ(∇XV T + σ(X,V T )) = g(X,V T )ξ.

Since, M is a D-geodesic, we get

(4.1) ∇XφV T − φ(∇XV T ) = g(X,V T )ξ.

Hence the proposition is proved. �

Proposition 4.3. Let M be a generic submanifold of an LP-Sasakian manifold

M̃ with concurrent vector field V , M is a mixed-geodesic and ∇XV ⊥ ∈ Γ(D)
for any X ∈ Γ(D). Then we get

φ(∇XV ⊥) = −AφV ⊥X, ∇⊥
XφV

⊥ = 0.

Proof. Since M̃ is an LP-Sasakian manifold then putting Y = V ⊥ in (2.5), we
get

∇̃XφV ⊥ − φ(∇̃XV ⊥) = g(X,V ⊥)ξ + η(V ⊥)X + 2η(X)η(V ⊥)ξ.

Now applying (2.8) and (2.9) in the above equation, we obtain

∇⊥
XφV

⊥ −AφV ⊥X − φ(∇XV ⊥ + σ(X,V ⊥)) = 0.

Since, M is a mixed-geodesic, we get

∇⊥
XφV

⊥ −AφV ⊥X − φ(∇XV ⊥) = 0.

Now, comparing the tangential and normal components, we have

(4.2) φ(∇XV ⊥) = −AφV ⊥X, ∇⊥
XφV

⊥ = 0.

Hence the proposition is proved. �

Theorem 4.1. Let M be a generic submanifold of an LP-Sasakian manifold

M̃ with concurrent vector field V . If the submanifold M is a D-geodesic and
∇XV T is not orthogonal to ξ, then V T on D is concurrent if and only if f = 0.

Proof. From Proposition 4.1. we get

(4.3) ∇XφV T +∇XV ⊥ −AφV ⊥X = g(X,V T )ξ − fX + φX.

Since, M is a D-geodesic, then from (4.1) we obtain

(4.4) ∇XφV T = φ(∇XV T ) + g(X,V T )ξ.

Combining (4.3) and (4.4)

(4.5) φ(∇XV T ) +∇XV ⊥ −AφV ⊥X = −fX + φX.
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From Lemma 4.1, we have the following

(4.6) ∇XV T +∇XV ⊥ −AφV ⊥X = X − fφX.

Subtracting (4.6) from (4.5), we have

(4.7) φ(∇XV T )−∇XV T = (1 + f)φX − (1 + f)X.

Now, the equation (4.7) can be written as follows

(4.8) φ(∇XV T −X − fX) = (∇XV T −X − fX).

Applying φ on both sides of (4.8), we have the following

η(∇XV T −X − fX) = 0.

Hence, by the given condition we get

∇XV T = X + fX.

Therefore V T is concurrent on D if and only if f is a zero function. �

In the next theorem we study V ⊥ on M .

Theorem 4.2. Let M be a generic semi-invariant product of an LP-Sasakian

manifold M̃ with concurrent vector field V . If the submanifold M is a mixed-
geodesic and ∇XV ⊥ ∈ Γ(D) for any X ∈ Γ(D), then V ⊥ is a parallel vector
field.

Proof. From Proposition 4.3. we get

φ(∇XV ⊥) = −AφV ⊥X.

Using Lemma 2.1,

φ(∇XV ⊥) = 0.

Applying φ on both sides of this we have

−∇XV ⊥ + η(∇XV ⊥)ξ = 0.

Now, from the given condition we get

∇XV ⊥ = 0.

Therefore, V ⊥ is a parallel vector field. �

5. Generic submanifolds with conformal vector fields

In this section we study an interesting relation between conformal vector
fields and umbilical submanifolds.

Definition 5.1. The mean curvature vector H of an n-dimensional submani-
fold M is defined by

H =
1

n
trace σ,

where σ is the second fundamental form defined in Section 2.
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Definition 5.2. A submanifold M is called totally umbilical if its second fun-
damental form σ satisfies

σ(X,Y ) = g(X,Y )H.

Definition 5.3. A submanifold M is said to be umbilical with respect to a
normal vector field N if its second fundamental form σ satisfies

(5.1) g(σ(X,Y ), N) = µg(X,Y )

for a function µ.

Theorem 5.1. Let M be a generic submanifold of an LP-Sasakian manifold

M̃ endowed with a concurrent vector field V . If f = 0 and ∇XY = −∇YX,
then V T is a conformal vector field if and only if M is umbilical with respect
to φV ⊥.

Proof. It is well known that the Lie derivative on M satisfies

(5.2) ( LV g)(X,Y ) = g(∇XV, Y ) + g(∇Y V,X)

for any vector fields X,Y, V tangent to M .
Putting V = V T in the above equation we get

(5.3) ( LV T g)(X,Y ) = g(∇XV T , Y ) + g(∇Y V T , X).

Using Lemma 4.1 in (5.3) we have

( LV T g)(X,Y ) = 2g(X,Y )− 2fg(φX, Y ) + 2g(σ(X,Y ), φV ⊥)

− g(∇XV ⊥, Y )− g(∇Y V ⊥, X).(5.4)

Again we know that

(5.5) (∇Xg)(V ⊥, Y ) = ∇Xg(V ⊥, Y )− g(∇XV ⊥, Y )− g(V ⊥,∇XY ).

Since, M is a generic submanifold, we have from (5.5)

(5.6) g(∇XV ⊥, Y ) = −g(V ⊥,∇XY ).

Similarly we get

(5.7) g(∇Y V ⊥, X) = −g(V ⊥,∇YX).

Using (5.6) and (5.7) in (5.4) we have

( LV T g)(X,Y ) = 2g(X,Y )− 2fg(φX, Y ) + 2g(σ(X,Y ), φV ⊥)

+ g(V ⊥,∇XY +∇YX).(5.8)

Applying the given condition we get

(5.9) ( LV T g)(X,Y ) = 2g(X,Y ) + 2g(σ(X,Y ), φV ⊥).

Now let us assume that, the vector field V T is conformal. Then from the
definition of conformal vector field we have

(5.10) ( LV T g)(X,Y ) = ρg(X,Y )
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for a function ρ. From (5.9) and (5.10), we get

g(σ(X,Y ), φV ⊥) = (
ρ

2
− 1)g(X,Y ).

From above it is clear that M is umbilical with respect to φV ⊥.
Conversely, we assume that M is umbilical with respect to φV ⊥, so we have

(5.11) g(σ(X,Y ), φV ⊥) = µg(X,Y )

for a function µ.
From (5.9) and (5.11), we get

(5.12) ( LV T g)(X,Y ) = 2(1 + µ)g(X,Y ).

Therefore we have V T is a conformal vector field.
Hence the theorem is proved. �

6. Ricci solitons in generic submanifolds

In this section we study the generic submanifolds admitting Ricci solitons
of LP-Sasakian manifolds with concurrent vector fields. First we prove two
important lemmas.

Lemma 6.1. Let M be a generic submanifold admitting a Ricci soliton of an

LP-Sasakian manifold M̃ endowed with a concurrent vector field V . Then the
Ricci tensor SD of the invariant distribution D is given by

SD(X,Y ) = (λ− 1)g(X,Y ) + fg(φX, Y )− g(σ(X,Y ), φV ⊥)

− 1

2
g(V ⊥,∇XY +∇YX),

where ∇ is the Levi-Civita connection on M for any X,Y ∈ Γ(D).

Proof. From the definition of Lie derivative, we get

(6.1) ( LV T g)(X,Y ) = g(∇XV T , Y ) + g(∇Y V T , X).

Using Lemma 4.1 in (6.1) we have

( LV T g)(X,Y ) = 2g(X,Y )− 2fg(φX, Y ) + 2g(σ(X,Y ), φV ⊥)

− g(∇XV ⊥, Y )− g(∇Y V ⊥, X).(6.2)

Again we know that

(6.3) (∇Xg)(V ⊥, Y ) = ∇Xg(V ⊥, Y )− g(∇XV ⊥, Y )− g(V ⊥,∇XY ).

Since M is a generic submanifold, we have from (6.3)

(6.4) g(∇XV ⊥, Y ) = −g(V ⊥,∇XY ).

Similarly we get

(6.5) g(∇Y V ⊥, X) = −g(V ⊥,∇YX).

Using (6.4) and (6.5) in (6.2) we have

( LV T g)(X,Y ) = 2g(X,Y )− 2fg(φX, Y ) + 2g(σ(X,Y ), φV ⊥)
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+ g(V ⊥,∇XY +∇YX).(6.6)

Again, since the generic submanifold M admits a Ricci soliton, using the equa-
tion (1.1) we have the following

(6.7) ( LV T g)(X,Y ) + 2SD(X,Y ) = 2λg(X,Y ).

Combining the equations (6.6) and (6.7) we get

SD(X,Y ) = (λ− 1)g(X,Y ) + fg(φX, Y )− g(σ(X,Y ), φV ⊥)

− 1

2
g(V ⊥,∇XY +∇YX),

which is the required result. �

Lemma 6.2. Let M be a generic submanifold admitting a Ricci soliton of an

LP-Sasakian manifold M̃ endowed with a concurrent vector field V . Then the
Ricci tensor SD⊥ of the anti-invariant distribution D⊥ is given by

SD⊥(X,Y ) = (λ− 1)g(X,Y )− g(σ(X,Y ), φV ⊥)− 1

2
g(V ⊥,∇XY +∇YX),

where ∇ is the Levi-civita connection on M for any X,Y ∈ Γ(D⊥).

Proof. The proof is similar to the proof of Lemma 6.1. �

Theorem 6.1. Let M be a generic submanifold admitting a Ricci soliton of

an LP-Sasakian manifold M̃ endowed with a concurrent vector field V . If the
invariant distribution D is D-parallel and f = 0, then the invariant distribution
D is Einstein.

Proof. It is an easy consequence from Lemma 6.1. �

Theorem 6.2. Let M be a generic submanifold admitting a Ricci soliton of an

LP-Sasakian manifold M̃ endowed with a concurrent vector field V . If the anti-
invariant distribution D⊥ is D⊥-parallel, then the anti-invariant distribution
D⊥ is Einstein.

Proof. It follows from Lemma 6.2. �

Theorem 6.3. Let M be a generic semi-invariant product admitting a Ricci

soliton of an LP-Sasakian manifold M̃ endowed with a concurrent vector field
V and also let f = 0. Then the following are satisfied:

(i) The vector field V T is conformal Killing on D.
(ii) The invariant distribution D is Einstein.

Proof. From (6.6) we have

( LV T g)(X,Y ) = 2g(X,Y )− 2fg(φX, Y ) + 2g(σ(X,Y ), φV ⊥)

+ g(V ⊥,∇XY +∇YX).(6.8)

From the given condition it follows that

(6.9) ( LV T g)(X,Y ) = 2g(X,Y ).
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Therefore, the vector field V T is conformal Killing on D.
Since M be a generic submanifold admitting a Ricci soliton we get from

(1.1)

(6.10) ( LV T g)(X,Y ) + 2SD(X,Y ) = 2λg(X,Y ).

Combining the equations (6.9) and (6.10) we get

SD(X,Y ) = (λ− 1)g(X,Y ).

So, we can conclude that D is Einstein. Hence the theorem is proved. �
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