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Introduction

Various authors (see, for example, [1], [7], [8], [9]) studied récently anti-
invariant (or totally real) submanifolds of a Kaehlerian manifold.

On the other hand, one of the present authors [6] has studied infinitesimal
variations of submanifolds applying the method developed in [3] and [4].

The main purpose of the present paper i1s to study infinitesimal variations:
which carry an anti-invariant submanifold into an anti-invariant submanifold.
Such an infinitesimal variation will be called in this paper an anti-invariant:
variation.

In §1, we state formulas for anti-invariant submanifolds of a Kaehlerian
manifold which v;re need later.

§ 2 is devoted to the study of infinitesimal variations which carry an anti-
invaraiant submanifold into an anti-invariant submanifold. A necessary and
sufficient condition for an infinitesimal variation to carry an anti-invariant.
submanifold into an anti-invariant submanifold is given by Theorem 2. 1.

In §3, we consider what we call infinitesimal parallel variations and prove

that a parallel variation i1s an anti-invariant variation.
In §4 and 5 we compute variations of f;° and f,* respectively and in §86,

we study isometric variations.

The last § 7 is devoted to the study of variations of the second fundamental
tensors. In the later part of §7, we study anti-invariant normal variations which
preserve f,* and mean curvature vector.

1. Anti-invariant submanifolds of a Kaehlerian manifold

Let M“™ be a real 2m-dimensional Kaehlerian manifold covered by a system of

coordinate neighborhoods {U ;x”} and with almost complex structure tensor F;-” and:
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Hermitian metric tensor giis where, here and in the sequel, the indices %4, ¢, J, &,

. run over the range {1, 2, -, 2m}. Then we have

Ln F/Fi==0/, Fj/'Flg =g
ho_

1.2 VF =0,

where V;. denotes the operator of covariant differentiation with respect to the
Christoifel symbols [ ﬁ.h formed with g

et M" be an #n-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V:y“} and with metric tensor g., Where, here and in
the sequel, the indices ¢, &, ¢, -+ run over the range {1, 2, ---, #}. We assume that
M" is isometrically immersed in M by the immersion z':M”—-——>M2m and identify
i(M™) with M". We represent the immersion 7: M"——M>" locally by

(1.3) x'= x"(y%)
and put
(1.4) B, =d,x", (3,=d/0y"),

. | . . 2 n
which are #z linearly independent vectors of M~" tangent to M.
Since the immersion ¢ is isometric, we have

(1. 5) . gcb:-gjchthb i-

We denote by Cyh 2m—n mutually orthogonal unit normals to M", where, here
and in the sequel, the indices x, y, z, -» run over the range {n+1, #+2, -, 2m}.
"Then the equations of Gauss are written as

(1. 6) | VCBbh:kcbxcx k:r

where V_ denotes the operator of van der Waerden-Bortolotti covariant differentia-

tion along M and & cbx are second fundamental tensors of M~ with respect to the
normals C xk and those of Weingarten as
(1.7) VC)=—h’ B,
where
kcay _ thygba _ szgbagzy |
gbﬂ denoting covariant components of the metric tensor £ of M", and g, the

metric tensor of the normal bundle.

If the transform by F of any vector tangent to M is always normal to M,
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that is, if there exists a tensor field f;" of mixed type such that
(1.8) F'B'=-f"c],

we say that M" is anti-invariant (or totally real) in M.

; :
For the transform by F of normal vectors C,, we have equations of the form

(1.9 rlc'=f'B'+fC,
where

(1. 10) £i=fg"zg,,,
which can also be written as

(1.11) fri=Fsy

where f, =f, g, and f, =f’g..
From (1.8) and (1.9) we find (cf. [7], [9])

(1.12) fif, =04,

(1.13) £, f, =0,

(1.14) 1, =0,

(1.15) ff==0,+1F,"

Equations (1.14) and (1.15) show that f; is an f-structure in the normal

bundle of M” if it does not vanish. Differentiating (1.8) and (1.9) covariantly
along M", and using equations of Gauss and Weingarten, we find

(1.16) h,f'—h'.f, =0,
(1.17) V.fi==hn,f],
(1.18) V.S, =hf,,

(1.19) V.S, =h'f, ~h,f

If m=n, from (1.12) we have fff;=5j and consequently from (1.15) we find
f;f ;=O, that 1s, fzy £ =, v, .= f:gxy and f7=f ;'gxz being skew-symmetric.

Thus we have f ;-'-:0. In this case, equations (1.12)~(1.15) reduces to

(1.20) £rl=00  £lf =0
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2. Infinitesimal variations of anti-invariant submanifolds

We consider an infinitesimal variation of anti-invariant submanifold M of a
Kaehlerian manifold M- given by
(2.1) 2 =2"(9)+E (e,

where Eh(y) is a vector field of M°™ defined along M”" and ¢ is an infinitesimal.
We then have

(2.2) B,=B,+ (0,

where B bhzﬁbfh are n linearly independent vectors tangent to the varied subma-
nifold. We displace F;’ parallelly from the varied point (Eh) to the original point
(xh). We then obtain the vectors
h =k k = 1
Eb =B, +1"jz. (x+$e)§"'B;e

at the point (xh), or

(2.3) B, =B,'"+(V,£"e
neglecting the terms of order higher than one with respect to & where
(2.4) vE'=98"+I,BJE.

In the sequel we always neglect terms of order higher than one with respect
to e. Thus putting

(2.5) oB,'=B,-B/)
we have from (2.3)
(2.6) . 0B, =(V,£"e.
Putting
(2.7) g'=¢°B"+£°C ),
we have
(2.8) Ve =V, —n" B, + (V£ +h, EC .

Now we denote by Eyh 2m—n mutually orthogonal unit normals to the varied

submanifold and by E‘yh the vectors obtained from Eyk by paralle]l displacement

of Eyh from the point (':Ek) to (xh). Then we have

(2.9) C'=C '+, (x+£)E'C e

y y
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We put
(2.10) 0¢,'=C,'-C,
and assume that JC yk is of the form
(2.11) 0C,'=ne=(n"B +7CDe.
Then, from (2.9), (2.10) and (2.11), we have
(2.12) C'=C/~I;EC e+ B, +1CPe.

Applying the operator ¢ to Bbf Cyigjf=0 and using (2.6), (2.8), (2.11) and 5gﬁ=
0, we find

(VE,+hy, ) +n,=0,
where £, ={"¢, and N5=7, & OF
(2.13) nS=—(VE,+h ",
V® being defined to be Vﬂ=gach. Applying the operator ¢ to Cyj C;g ﬁ=5n and

using (2.11) and 5gﬁ=0, we find
(2. 14) Wyx_l— ??_ty:()l

_ 4
where Mo =Ty g,
We now assume that the infinitesimal variation (2.1) carries an anti-invariant
submanifold into an anti-invariant submanifold, that is,

(2.15) Fz.h(x+€e)§; are linear combinations of 5:.
Now using VjF z.k=0 and (1.8), we see that
F(x+€)B, ’
=(F;'+&3.Fe) (B} +d,£'%
=[F;~& T, F/~I;F]el(B) +3,¢'%)

=F z‘hB; (F :Vﬁf +f p I jz'hcxjéi)e’
that is, by (2.12),
(2.16) F/(x+€e)B,

' a s
=~f,C, +[FVE+f)(n B +7/CD]e.
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T'hus we see that (2.15) is equivalent to

(2.17) Fz.hvbéf—l- fby nyaB: are linear combinations of C:‘.
On the other hand, using (2.8) and (2.13), we have
(2. 18) F/VE+fn’B)
a h h /]
== (V& =n, E)F C/+(V,E +h,ED B, +f]CH)
o f bx(vﬂéx T kcﬂ.téc) Bah

= (V" +h, €V = FI(VE +1° E)1BS
+HIVE +h,JED f - (VE —n £ £1C),
Thus (2.15) or (2.16) 1s equivalent to

(2.19) (VE +h, EFI=F (VE +h'ED),
or, by (1.16), to

(2.20) (VEDF, =f, (VED,
or, by (1.11), to

(2.21) (VEDF =(VEDS,.

Thus we have

THEOREM 2.1. In order for an infinilesimal variation to carry an anti-invariant
submanifold into an anii-invariant submanifold, it is mnecessary and sufficient

that the variation vector EJ' satisfies (2.20) or (2.21).

COROLLARY 2.1. If a vector field & " de fines an infinitesimal variation which
carries an anti-invariant submanifold into an awili-invariant submawnifold, then

. oo
another vector field &7 which has the same normal part as E’k has the same
property.

An infinitesimal variation given by (2.1) is called an ae#nti-invariant variation if
it carries an anti-invariant submanifold into an anti-invariant submanifold. For

an infinitesimal variation given by (2.1), when é‘x =0, that is, when the wvaria-
tion vector Eh is tangent to the submanifold we say that the variation is {engential
and when £°=0, thatis, when the variation vector E’h 1s normal to the submanifold
we say that the variation is normal.

Since ch; 1s symmetric in ¢ and & by (1.17), we see that (2.21) is equivalent

to
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(2.22) V,(E.f D=V (E f,).

Thus we see

PROPOSITION 2.1. If ¢, f: s closed, them an infinitesimal variation is an anti-
irvariant variation.

If m>n, then there exists a normal vector field & in the normal bundle such

that £_f =0. Therefore, from Proposition 2.1, we obtain

THEOREM 2.2. If m>n, then there always exists an anti-invariant normal
VaYiatLon,

The mean curvature vector H” of M" is given by H'= ?12 g"bV,:Bbh. If C*is a

k

: . : . h h .
unit normal vector in the direction of A, then H =aC for some function «.

We call « the mean curvature of M. If the second fundamenta] tensors of M

1
7

1s of the form kb:=gbaHI, where H = gbﬂizbax, then M" is sad to be totally

umbilical.

Now we assume that M is totally umbilical and anti-invariant in M“™  then
(1.16) gives

(2.23) H f!=0.

From (2.23) and Proposition 2.1, we have

THEOREM 2.3. Let M" be a not totally geodesic, totally umbilical, anti-invariant
submanifold of a Kaehlerian manifold M?'m(m> n). Then the normal variation

defined by the mean curvature vector H carries M’ into an anti-invariant submani-
fold.

If a tangent vector % satisfies
(2.24) Vi, =V U,

then an infinitesimal normal variation defined by £ = #" satisfies (2.22).
Thereiore we have

PROPOSITION 2.2. If a tangent vector u satisfies (2.24), then the normal

. . . X g . + e .
variation defined by & = fxau 1§ anti-invariant.

3. Parallel variation

e e e _h_ k. ek . . 7
Suppese that an infinitesimal variation ¥ =x +§& ¢ carries a submanifold x* =
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.-xk( ) into another submanifold Eh=fk(y) and the tangent space of the original

submanifold at (xk) and that of the varied submanifold at the corresponding point

-(Ek) are parallel. Then we say that the variation is parallel.
Since we have from (2.5), (2.6) and (2.8)

(3.1) B =10+ (VE ~n EVEIB)+ (V& + b, 7€HC ],
we have

LEMMA 3.1 ([6]). In order for an infinitesimal variation to be parallel, it is
necessary and sufficient that

(3.2) V& +h, "€ =0.
If (3.2) is satisfied, then (2.19) is satisfied. Thus we have

THEOREM 3.1. A parallel variation is an anii-invariant variation.

4. Variation of ;

. . . .k h : .. :
Suppose that an anti-invariant variation ¥ =x —I-EJ' € carries an anti-invariant

submanifold into an anti-invariant submanifold, that is, it is an anti-invariant

variation. Then putting

(4.1) Fl(x+8e)B =—(f+orHCY,
we have, from (2.16), (2.18) and (2.19),

—@OFDC=IVE +h,JEDF]
~(VE ~mSENFI+Fn]1C

from which

(4.2) 0f, = (V& ~hy E)F = (VE +h, §)F,—f,n, le.
Thus we have

PROPOSITION 4.1, Suppose that an infinitesimal variation is anti-invariant. T hen

the variation of fbx s giver by (4.2).

PROPOSITION 4.2. An anti-invariant variation preserves f; 1 f and only if

(4.3) (VE ~hy £F )= (VE +h, ) ED ) —Fn,=0.
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5. Variation of f;

h

. : P . ek k., sh_ . :
In this sectioh we suppose that an infinitesimal variation ¥ =« +& ¢ is anti-

invariant. To find the variation of f;, we apply the operator J to
F'C'=f"B'+f7C].
Then using 5F,‘,-h=0, (2.11) and (2.6), we find
F:' (T?j B: —l—n: C:)s
=(0f,)B, +£V £'e+(0r))C]!

h ;
. +f ;-‘ (T?:Ba T 72;0;) &,

or
[— ﬂyﬂ f: th n ﬁyz (f° Bﬂk n f: Cx;;) Te
=B +1I(VE 1] EOB+ (VE+h[ £C e
+OFDCH+Fi (B +17Che,
from which

0 f fe=0f, "+ (VE ~hS EDe—f (V€ ,+h £ e,
or, using (1.18)
(5.1) Of ' =6V, f, =V £ 0 f + 5 nS £+ f]VE e
and
(=7, f, +n,f,1e=f (VE +h, EDVe+df +Fn e
Of ) =[~f,  (VE +h, E)+(VE, +h EVF 40" —fin]le
or, using (1.19),

(5.2) ofy =€V, ) +n f, =0, F)=F (NED+(VEDf]]s,
or, using (2.13),
( 5 3) 5 f: _ [7?2 fye__ 77:' f: n 72; f; . fyz7?:] e

Thus we have
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PROPOSITION 5.1. Suppose that anr infinitesimal variation is anti-itnvariant.
Then the variation of f ; is given by (5.2) or (5.3).

PROPOSITION 5.2. An aniti-invariant variation preserves the ¥-structure f: X

the normal bundle if and only if
(5.4) EV_fI+nlf -0 f—f (VEDFVENF, =0,
07 |
(5.5) 0" S, =0, f, A0 —fn, =O0.
6. Isometrie variations

First of all, applying the operator ¢ to (1.5) and using (2.6), (2.8) and
5gﬁ=0, we find (cf. [6])

(6.1) 0g,,=(VE+VE —2h, e

from which

(6. 2) 5gba: . (ng_.a Vafb—thaxEt)e.

A variation of a submanifold for which dg =0 is said to be isometric.

Now we assume that an anti-invariant variation preserves f,, that is, df, =0.
Then (1.12), (1.14) and (4.3) imply

X
(6.3) vbga_kbcygy:f byf c Myx®
Thus, by (2.14), (6.1) and (6.3), we have 0g,,=0. Therefore we obtain

PROPOSITION 6.1. If an anti-invariant variation preserves f,, then the variation

1S 180metric.

We assume next that m=#» and the anti-invariant variation is normal. Then
we have f;=0 and hence (4.2) becomes

-2 @ £Yp % y x
(6-4) a‘fb_—(kbyéfa T bny)e'
If the variation moreover preserves f;, then (6.1) and Proposition 6.1 show

that %,,6"=0. Thus (6.4) implies f; 5, =0, from which n°=0. Consequently
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(2.11) reduces to
(6.5) 0C yk':'q;zB ;a.

PROPOSITION 6.2. If m=n and anti-invariant normal variation preserves f;,
lken the variation of Cyh is given by (6.5).

Furthermore, if the variation is parallel, then (2.13) gives 17;::0. Thus we
have

PROPOSITION 6.3. If m=n and if a parallel anti-invariant normal variation
preserves f ;, then it preserves Cyk.

7. Variations of the second fundamental tensors

~ In this section we compute infinitesimal variations of the second fundamental
tensors (see [6]).

Suppose that J" is a vector field of M~ defined intrinsically along the subma-
nifold M". When we displace the submanifold M” by z'=+"+&"(y)e in the

direction of $h, we obtain a vector field ﬁh which is defined also intrinsically by
the same rule along the varied submanifold. If we displace 5 back parallelly from
the point ('x“k) to (xk), we get

ﬁhzﬁk—kfﬁh (x—!—&'e)&'jﬁie

. N .
and hence, putting 5vh=vh—v", we find

00 =5" =" ﬁké'jvie.
Similarly we have
R =k h hofo 4
| Vo =V7 —Vu+I Ve,
that is,

OV Y =V 3" =V "+ @+ Ty I DE Blv'e
+I,; 10 £ +E (@ 0))]e.
On the other hand, we have
Vou'=Vg' =V o'+ @I+, T, e B v'e
+1," 10 €0 +E7(0 ).

From these equations we find
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h B, hekp i
5vcv _vcav "—.K'kjiE BC E,
. 2
Where K --h 15 the curvature tensor Of M m

Similarly for a tensor field carrying three kinds of indices, say Tb , we have
(7.1 A T, —V ) T

=K, &'B/T, 'e— (oI )T )~ (0T )HT, I,

ol :b and 01" ; being the variation of the affine connection I',; induced on M”"
and that of the affine connection induced on the normal bundle of M" respectiv-

ely. Applying formula (7.1) to Bbk, we find

oV B!~V oB'=K, '¢*B'Ble— (oI’ )B]
or using (1.6) and (2.6)

o(h,'CH=(VVE+K
from which, using (2.11),

Gk )C, +h g (n B} +n)C e

kit

'¢*B/BHYe— (I )B),

kit

=(V,V£"+ K, "e*B B e~ (or° B
Thus we have
(7.2) 6Ie= (Y V,E'+K,, ' B)B  e—h n’e
and
@3 Ohy=—hnSc+ (VYL +K, € B/BHC ¢
from which
(7. 4) Ohyy =18V 1 +h [ (VE)+h, (V) ~h )7 e

+ [chb€+Kkj':szkBiic héy_hce kb J'gy] ¢
Since for a normal variation we have
5 (gcb kax ) =2 hcby éy kcbx 4 g_cb 5 kax
we obtain from (7.4)
(7.5) O 8% )= &V V£ + K ylC, BiCh e
+kcb kﬂb E.? h ay I]

jt _ pjt cb
where B =B g".
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In the sequel we suppose that m=# and the anti-invariant variation preserves
f;. Since we have & cby{?” =0 and 7 :=O, (7.5) vyields

PROPOSITION 7.1. If m=n and an anti-invariant normal variation preserves:
f;, lhen we have

(7.6) (", )=V +K,,/'C B C ¢ e,

COROLLARY 7.1. If m=n and an anti-invariant normal variation preserves f :,.
then il preserves the mean curvalure vector if and only if

b x h~ kpit .
(7.7) g"VVE+K,.'C "B C & =o0.
Substituting (7.7) into

TAEE) =g VY E) =@V I A VLIV,

we find
(7.8) S AEE )=~ K, C B C/EE+(VENVE),

. . 2
K, ., being covariant components of the curvature tensor of M .

If an anti-invariant submanifold M” is compact and orientable, we find, fromr
(7. 8),

(7.9) [ (VENVED-K,,,C B CEE 1av =,

kith™ y
Thus we have

THEOREM 7.1. Suppose that m=n and anrn anti-invariant normal variatiorn
preserves f; and the mean curvature vector. If M’ is compact and orientable and’
salisfies

K, .C'B"C¢E =0,

kith ¥
then the variation is parallel.

Suppose that the ambient Kaehlerian manifold M“™ is of constant holomorphic:
sectional curvature 2 Then we have

1
(7.10) B oiin= 1% 818 ;i 88 1t F il ji— F il = 2F £ ).
Suppose also that a submanifold M™ of M °m is anti-invariant. Then we have
3 S |
(7.11) Kkﬁhcy BC, —T(m+ B)kgyx.

Thus we have, from Theorem 7.1,
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2m

PROPCSITION 7.2, Suppose that L is a Kaehlerian manifold of constant

. ] . m . . .
rolomorphic sectional curvature R=0 and that M~ s a compact orientable anti-
2m

incaiiant submanifold of M.
preserves f ; and the mean curvature vector, then the variation is parallel and

.« » . . . m
I'f an anli-invariant normal variation of M

£==0,
Suppose that the ambient Kaehlerian manifold has vanishing Bochner curvature

tensor. Then we have (see{7])
(7.12) Kka‘h:— [gkhl’fi— al f'+Lkhgff_Lfkgkz‘
+szM F Mkz+MkhF M Wb pi— 2(F, M M, Fah)]

where
AT 2(m+2) T T8m+D(m+2) T8
M}-=-LﬂFz,

K i and K being the Ricci tensor and the scalar curvature of M respectively.

Suppose also that a ubmanifold M™ of M°™ is anti-invariant. Then we have

b
(7.13) K,..C B Cl=—[(m+3)L +Lg, +3L 1 Ff,,

where
_ It . f 71
Lyx_LjiCy Cx’ L_sz'B ’ L szBcb
But, on the other hand, we have

cpob IpteCpb Ittt s
chfy fx _L;'E'Bc Bb fy fx _sz'Ft cy Fs Cx _LJ'J:’
because of sz‘F !j F :=L . Thus we have from (7.13)

(7.14) K,.4C,'B'C =~ [(m+6)L, +Lg, ].

Thus we have

PROPOSITION 7.3. Suppose that M is @ Kaehlerian manz’fo?d with vanishing
Bochner curvature temsor and that M is a compact orientable anti-invariant

. 2m . . . . e m
submanifold of M. If an awnti-invariant normal variation of M~ preserves f ,)x
and the mean curvalture vector and

[(m+6)L, +Lg,) ¢ =0,

ther the variation is parallel.

Tokyo Institute of Technology,
Science University of Tokyo.
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