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INFINITESIMAL V ARIATIONS OF ANTHNVARIANT 

OF A KAEHLERIAN MANIFOLD 

By Kentaro Yano and Masahiro Kon 

Introduetion 

Various authors (see, for example, [1J , [7], [8J , [9]) studied recently anti­

invariant (or totally real) submanifolds of a Kaehlerian manifold. 

On the other hand, one of the present authors [6J has studied infinitesimal1 

variations of submanifolds applying the method developed in (3) and (4). 

The main purpose of the present paper is to study infinitesimal variations; 

which carry an anti-invariant submanifold into an anti-invariant submanifold. 

Such an infinitesimal variation will be called in this paper an anti-invariant 

varíatíon. 

In ~ 1, we state fonnulas for anti-invariant submanifolds of a KaehleriaTh 
‘ 

manifold which we need later. 

~ 2 is devoted to the study of infinitesimal variations which carry an anti­

invaraiant submanifold into an anti-invariant submanifold. A necessary and' 

sufficient condition for an infinitesimal variation to carry an anti-invariant 

submanifold into an anti-invariant submanifold is given by Theorem 2. 1. 

In ~ 3, we consider what we call infinitesimal parallel variations and prove 

that a parallel variation is an anti-invariant variation. 

In ~ 4 and 5, we compute variations ofAx and fy X respectively and in ~ 6,. 

we study isometric variations. 

The last ~ 7 is devoted to the study of variations of the second fundamental' 

tensors. In the later part of ~ 7, we study anti-invariant normal variations which 

preserve fb X and mean curvature vector. 

1. Anti-invariant submanifolds of a Kaehlerian manifold 

Let M2m be a real 2m-dimensional Kaehlerian manifold covered by a system of 

coordinate neighborhoods {U;i} and with almost complex structure tensor Fl and 
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Rermitian metric tensor gji' where. here and in the sequel. the indices h. i. j. k • 

. run over the range {1. 강. .... 2m}. Then we have 

(1. 1) F/F t
h=- δth， Fj tFzsgts = gji, 

(1. 2) VjFzh =o, 

where Vj denotes the operator of covariant differentiation with respect to the 

Christoffcl symbols rμ h formed with gji' 

Let Mn be an n-dimensionaI Riemannian manifold covered by a system of 

coordinate neighborhoods {V ;ya} and with metric tensor gcb' where. here and in 

the sequel. the indices a. b. ι … run over the range {1. 2 ..... n}. We assume that 

M n is isometricaIIy immersed in M 2m by the immersion i: M
n 
- • M

2m 
and identify 

i(M") with M n. We represent the immersion i:Mn-• M 2m IocaIIy by 

(1. 3) 

and put 

(1. 4) 

x!'=.1키(ya) 

Bbh =ò~. (òb=ò/ò/). 

which are n linearIy independent vectors of M 2m tangent to M". 

Since the immersion i is isometric. we have 

(1. 5) gcb= gjiB/ Bμ. 

We denote b바yCζyh 2m-% InmmInm1n1u뻐l 
and in the sequeI. the indices x. Y. z .... run over the range {n + 1. n + 2. …. 2m} ‘ 

Then the equations of Gauss are written as 

(1. 6) VcBb h =kcbXCx h 
where Vc denotes the operator of van der Waerden-Bortolotti covariant differentia-

tion along M" and hcb
x 

are second fundamentaI tensors of M" with respect to the 

normals C xh and those of Weingarten as 

(1. 7) Fccf := - hct BZ, 

where 

h3=kctygba=hcJz찮찮찮g상￡lb얄’ 

gb@a denoting covari떠ant components of the metric tensor gcb of M". and gZy the 

metric tensor of the normaI bundle. 

If the transform by F of any vector tangent to M n is always normaI to M". 
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that is, 

(1. 8) 

if there exists a tensor field 강 of mixed type such that 

FihBbi= - fbxC낀 
we say that M n is anti-invariant (or totally real) in M 2m. 

k 
For the transform by F of normal vectors Cy ’ 

we have equations of the form 

(1. 9) Ffcj =장BZ+fyXCxh， 
where 

(1. 10) j;a=fbZgbagzY ’ 

which can also be written as 

(1. 11) fy:z =f，ιy ’ 

where fy :z =f/gba and fay=faZgzy. 

From (1. 8) and (1. 9) we find (cf. [7) , [9)) 

(1. 12) 

(1. 13) 

(1. 14) 

(1. 15) 

f:，ζa=갱， 

f/ζx=α 

fyzfza=o, 

f/fz"'=-쉰+4afax. 

Equations (1. 14) and (1. 15) show that f.: is an f-structure in the normal y 

bundle of M n if it does not vanish. Differentiating (1. 8) and (1. 9) covariantly 

along M n, and using equations of Gauss and Weingarten, we find 

(1. 16) 

(1. 17) 

(1. 18) 

(1. 19) 

hcbxfxa- hctfbx =o, 

VJb"'=-hc:fy"',’ 

Vcf/ =hc a", fy"',’ 

VJy'" =캠f; -hca"'fya. 

If m=n, from (1. 12) we have fyaf;=쉰 and consequently from (1. 15) we find 

ζzfzx=α that is, ￡yf”=α f z,= !z"'gXY and fZY=f: g"'Z being skew-symmetric. 

Thus we have 양=0. In this case, equations (1. 12)-(1 .15) reduces to 

(1. 20) f;ζa=δ; jt•x4b=aX· 
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2. Infinitesimal variations of anti-invariant submanifolds 

We consider an infinitesimal variation of anti-invariant submanifold M
n of a 

Kaehlerian manifold M 2m given by 

(2.1) Xh=xh(y) +암(y)e， 

where 양(y) is a vector field of M 2m defined along M n and e is an infinitesimal. 

We then have 

(2.2) Ef=Bf+ (8않h)e， 

where Ebh=8b삼 are n 1inearly independent vectors tangent to the varied subma­
_h 

nifold. We displace B b
" parallelly from the varied point (x") to the original point 

(xh
). We then obtain the vectors 

at the point (i), or 

(2.3) 

Ebh =Ef+Tjih(x+얀)§jEbis 

Ef =Bbh+(Pb암)e 

neglecting the terms of order higher than one with respect to e, where 

(2.4) Vb땀 =Òb암+Fjzh Bbjξ. 

In the sequel we always neglect terms of order higher than one with respect 
to e. Thus putting 

(2.5) 

we have from (2.3) 

(2.6) 

Putting 

(2.7) 

we have 

δBbh=Rbh-B강 

ÒBbh=(V렇)e. 

양=~aBah+흰cf， 

(2.8) 많h=(Vbr-hb빨)BZ+ (Vb흰+hbZ%c2. 

Now we denote by "Cy
h 2m-n mutually orthogonal unit normals to the varied 

."h S삐nanifold and by Cy

h 
the vectors obtained from ζ by parallel displacement 

-;:::; h ,. • .. '. /_h 
of Cy" from the point (x") to (x"). Then we have 

(2. 9) Cf=ζh+끽f(x+얀)용jCJs. 
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vYe put 

(2.10) δζh=Qh-ζh 

and assume that δC/ is of the form 

(2.11) δcf=당e=(장Bt+힘c2)E· 
Then, from (2.9), (2.10) and (2.11), we have 

(2.12) 낳=cf-낀핏Cyis+(까얄+까xcr)s. 

Applying the operator δ to Bbjζ!gji=O and using (2.6), (2.8), (2.11) and δglz = 

0, we find 

(Vly +hbay암)+ηyb=o， 

where 휩 =~ZgZY and ηyb=1?ycgcbl or 

(2.13) ηr= - (pa￡+h않b)， 

'ïl being defined to be Va=gacVc' Applying the operator δ to CyiCxigji=5yx and 

using (2. 11) and δgji=O， we find 

(2.14) η~x+ηty=α 

where ηyx=ηyzgzx· 

We now assume that the infinitesimal variation (2.1) carries an anti-invariant 

submanifold into an anti-invariant submanifold, that is, 
- . 

(215) Fih(x+양)Bb‘ are Iinear combinations of Cz
h

• 

Now using F1Fzh=O and (1. 8), we see that 

Ff@+얀)Bbl 

= (Ff+웅iðjFihe) (B/ +ð6홍is) 

= [Ff-한긴thFit-「j1tFf)E] (Bbi+8b랐) 
=FfBbi+(F학f파믿많F암i샤+//낀r깐ji낀i 

that is, by (2. 12), 

(2.16) Fr(x+Fs)E; 

= -fbx감+ [F，h많1 
+fJ(PyaBZ+ 까xcf)] s. 
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Thus we see that (2.15) is equiva1ent to 

(217) Fthvb한+f:ηyaBf are linear combinations of C2. 
On the other hand, using (2.8) and (2.13), we have 

(2. 18') 단V않l+fJκB2 
=-(Vb얀-hb탤X)강Cyh+(V밥+hb품a〕(4CBch+강C낀 
-f/(V따 +hC댄c)Balt 

= [(V않X+ h많c)ff- fJ(?헬+h잖c)] BZ 

Thus (2.15) or 

(2. 19) 

+ [(Vb~Y +h않a)f，x-(Vb흥a-hZy흥Y) fax] Cxh• 

(2. 16) is equiva1ent to 

or, by (1. 16), to 

(2.20) 

or, by (1.11), to 

(2.21) 

Thus we have 

(VlX+h많c)f"a=fbx(V빨+h잖C)， 

(V6람)fxa=강(V헬)， 

(Vl,,)fa"= (Va윌)fb
X

• 

THEOREM 2. 1. In order for an z.nfz"쩌tesz.mal varz.alt"on to carry an anlt"-써variant 

submanzjold z.nto an anU-z.nvariant sμbηzanzjold， it z.s necessary and sμ:f/t"cient 

thαt the va1싫ion vector 암 saUsfz"es (2.20) or (2.21). 

COROLLARY 2. 1. If a vector 껴feld 상 defùzes an infinz.tesimal variation which 
carries an anU-z.nvariaηt submamjold into an anlt"-invariant submanifold, then 

another vector fz.eld ç-h whz.ch has the same normal part as 앙 has the same 

property. 

An infinitesima1 variation given by (2.1) is called an anU-invariant varz"ation if 

it carries an anti-invariant submanifo1d into an anti-invariant submanifo1d. For 

an infinitesimal variation given by (2.1), when r=o, that is, when the varia­

tion vector 암 is tangent to the submanifo1d we say that the variation is tangenNal 

and when 응a = α that is, when the variation vector 양 is norma1 to the submanifo1d 

we say that the variation is ηormal. 

Since Vc강 is symmetric in c and b by (1. 17), we see that (2.21) is equiva1ent 

to 
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(2.22) Vb(용;:f，띠 =V/~J낀. 

Thus we see 

PROPOSITION 2. 1. If ￡ 건 상 closed, tlzen an z"nfz"nz'tesimal variation is an anti­

invariant νariatz"on. 

If m> n, then there exists a normal vector field 용 in the normal bundle such 

that ç.J: =0. Therefore, from Proposition 2.1, we obtain 

THEOREM 2.2. If m> n, then there always exists an antz" -inνar낌nt normal 

varzαhon. 

The mean curvature vector Hh of Mn is given by H h= 웅gCbVßt If 감 is a 
h . 1 7Th ,.,h 

unit normal vector in the direction of H", then H"=αC" for some functio !1 α. 

We call α the mean curvature of M
n

• If the second fundamental tensors of M
n 

:C ., T :rX 1 ba ., , 1 .. ,.n 
is of the form hba~=gbaH'， where H~=그εgU~ hbax, then M" is sad to be totally 

umbilica l. 

Now we assume that M n is totally umbilical and anti-invariant in M2꺼 then 
(1. 16) gives 

(2.23) HxfZ=0. 

From (2.23) and Proposition 2. 1, we have 

THEOREl\1 2.3. Let M
n 

be a not totally geodesic, to!ally unzbilical, antz"-Í1Z!'ariant 

SZtbmG?Zifold of a Kaekle7z·a?z ma?ZZ·fold Af2m(%>%). The% the %07%Zal zlg??·gtz·0% 
h . η 

de}당~'ned by the ηzean cμrvatμre vectoγ H'-carrz"es M" z"nto an aχtz" -z'nvαrz"ant sμbmαRZ--

fold. 

If a tangent vector ua satisfies 

(2.24) Vbμα =VaχR 

then an infinitesimal normal variation defined by fX = fXaz/' satisfies (2.22). 

Therefore we have 

PROPOSITION 2.2. If a tangent vector μa satz"sfies (2.24), then the ηorηlaJ 

variation de꺼~'ned by 한 =fxaZta z-s αnti-invariant. 

3. ParalIel variation 
_h h , ",h Sum-)Cse that an infinItesimaI variation x =x +f s carries a suhmanifold xA = 
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'x"cy ) into another submanifold 삼=상(y) and the tangent space of the original 

submanifold at (i) and that of the varied submanifold at the corresponding point 

〈갖h) are paraIIeI. Then we say that the variation is parallel. 

Since we have from (2.5), (2.6) and (2.8) 

(3.1) 황=[양+(않a_ h찮X)e] Bah+ (않X+ hb풍a)CXhe， 

we have 

LEMMA 3.1 ([6]). In order for an infinz'tesimal varia!t'on to be parallel, z't is 

,necessary and suf/z'cient that 

(3.2) \16용X+ hb풍a=0. 

If (3.2) is satisfied, then (2. 19) is satisfied. Thus we have 

THEOREM 3. 1. A parallel varz"ation is an anU -t"nvarz"ant variatz"on. 

4. Variation of fb% 

-" h ,,..h 
Suppose that an anti-invariant variation x'=x"+용낱 carries an anti-invariant 

submanifold into an anti-invariant submanifold, that is, it is an anti-invariant 

variation. Then putting 

(4.1) Ff(x+용E)RJ= -(강 + δfbX)감， 
we have, from (2.16), (2.18) and (2.19), 

-(δ강)C:= [(\1떻 +hb옆a)f，% 

-(\1엉a-챔흰) fJ+f;ηyx] C월 
from which 

(4.2) ðfb
%= [(\1않a-챔캉)fax-(\I않'+h않a)강-f:힘] e. 

'Thus we have 

PROPOSITION 4. 1. Szφ'pose that an in/z'nzïesimal vaηratz'on is anU-invaYZ"ant. Then 
ihe variatz'on of f; is given by (4.2). 

PROPOSITION 4.2. An anti-z'nvariant variation preserves 강 κ and only z'/ 

(4.3) (\1밤-챔렀f;- (?b5y +h않a)4x -f;ηyx=o. 
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5. Variation of f/: 

h h . ".h In this sectiofl. we suppose that an infinitesimal variation x" = x" +종 s 

invariant. To find the variation of f"x, we apply the operator δ to y 

F?c i=faBah+f℃ h. 
z y " y 

Then using δFt=O， (2.11) and (2.6), we find 

F，h(꾀aBJ + ηyxCxi)s 

or 

=(δfya)B;+frPa양e+(δζx)cf 

+ζ.Z (ηZB2+ηZc2)s， 

[-Py앙axcf+ηyZ(ζaBah+fzxc2)] S 

=(δff)BZ+ff[(댔'1 _h찮x)BZ+ (Pe한+kZa홍a)CXh ] e 

+ (afyx)cf+강(ηZBf+ηZcr)g 

from which 

%γrE=δ지a+fye(Pe암 -hZx한)e-fyz("V떻z+hb탤’)e， 

or, using (1. 18) 

(5.1) δfya= [암Vbfya-ζepeF+Pyxfr+강hZx흰+ζxV합]e 

and 

[-ηyafJ+rjfr] s=fye(Fgx+heax용야+δζX+fy퍼rs， 

δfyx= [-강("Ve한 +he풍a)+("Va~y +hCayr)f: +힘ζx-ffηZ]E， 

or, using (1. 19), 

(5.2) δfyr= [용CVcfZ+PyγZ-ηz암_fy
e 
("V ß%) + ('V엄y)fex] e, 

or, using (2. 13), 

(5.3) δfyx = [p상f- ryafJ+ ηjf; -fyzηr] e, 

Thus we have 

is anti-



42 K entaro Yano and M asahiro K on 

PROPOSITION 5. 1. Suppose that an infinitesimal variation is anU-invariant. 

Then the variaUon of 강 is given by (5.2) or (5.3). 

PROPOSITION 5.2. An anti-invaη;ant variatz'on preserves the 1-strμctμre f/ z'n 

the normal bundle zf and only zf 

(5.4) (vc강+Py헐-η￠z-fye(V￡x)+(Fe￡)f￠=α 

or 

(5.5) ηZζe-까?ex+ηjfZ -f;ηZ=o. 

6. Isometric variations 

First of aU, applying the operator δ to (1. 5) and using (2.6), (2.8) and: 

δgji=O， we find (cf. [6]) 

(6.1) δgcò=(Vc옹b+Vò，좀c -2hcòl")e, 

from which 

(6.2) δgba= - (P영a+Va，암-2hbCF)s. 

A variation of a submanifold for which δgcò=O is said to be isometη·c. 

Now we assume that an anti-invariant variation pr않erves 강， that is. iJf ò" =0. 

Then (1. 12), (1. 14) and (4.3) imply 

(6.3) VIi용c- kbcy용 Y =f;fcxη.yx. 

Thus, by (2. 14), (6. 1) and (6.3), we have δ'gcò =0. Therefore we obtain 

PROPOSITION 6. 1. lf an antz'-z'nvariant varz'atz'on preserνes fò", then the variatz'on 

z's isometric. 

We assume next that m =n and the anti-invariant variation is normal. Then 

we have f ,"=O and hence (4.2) becomes 

(6.4) δfZ= - (k찮γax -f;ηyx)s. 

If the variation moreover pr않erves 강， then (6. 1) and Proposition 6. 1 show 

that hc삶τ=0. Thus (6.4) implies f;장=α from which 힘=0. Consequently 
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(2.11) reduces to 

(6.5) δCyh=장B파. 

PROPOSITION 6.2. 11 m=n and anN-z"nvaη'ant normal varz"atz"on þreserves 강， 

then the variation 01 앙 is given by (6.5) 

Furthermore, if the variation is parallel, then (2.13) gives ηya=o. Thus we 
have 

PROPOSITION 6.3. 11 m=n and zf a parallel anti-invariant normal variaNon 

preserves I
b
x, then z't þreserves C

y

h
• 

7. Variations of the second fundamental tensors 

In this section we compute infinitesimaI variations of the second fundamental 
tensors (see [6]). 

Suppose that 야 is a vector field of M '2m defined intrinsically along the subma­

nifold M n
, When we displace the submanifold M n by 'i=xh+암(y)e in the 

direction of 암， we obtain a vector field 삼 which is defined also intrinsically by 

the same rule along the varied submanifold. If we displace v
h 

back parallelIy from 

the point cæh
) to (i), we get 

ph =삼十I}·zh (x+ 5￡)홍liZE 

and hence, putting δ앙 =삼 - uA, we find 

δ감 = 삼 - z,h+rlf f1z,is. 
Similarly we have 

that is, 

h ;=; _h ~ h , ~ h ",i_ i 
δV/' =\Ì/D" - V/' + r j ;' eV/e, 

δFcUk=V?h - FcUh+ (akrZ+T$tr;z)상BJuis 

+rjf [(랭)ui+흰(acUins. 

On the other hand, we have 

Vcδ앙 =Vc섭 - PcUh+ (ajrkzk+ Fjthrkit )용kBcj1，zs 

+Fjzh [(8cF)ui+용j(ò/)]e. 
From these equations we find 
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h~k~ i 
δFcZ， -Fcδu =Kkji f B;zy s, 

where K kj/ is the curvature tensor of M
2m

• 

Similarly for a tensor field carrying three kinds of indices, say Tb/ , we have 

(7.1) δFcTbyh - FcδTbyh 

=K힘갚kBZTbyis- (δF$ )TJ- (δ펴 )T따， 

δr;b and δr:y being the variation of the affine connection 1’~b induced on M n 

and that of the affine connection induced on the nonnal bundle of M
n respectiv. 

ely. Applying formula (7.1) to Bb
h, we find 

δVcBf-FcδBf=K체썼BZBbis- (δT$)BZ， 
or using (1. 6) and (2.6) 

δ(hcb1:C 1:
h

) = (VCV 6닫+Kkjih람Bcj횡)e-(δF따B낀 
from which, using (2. 11), 

(δhcb1:)C:+hc:(ηrBZ + 1성Cyh)e 

= (VcVb'양+K힘/çkB/Bbi)e-(δ펴)Bf. 
Thus we have 

(7.2) 

and 

(7.3) 

from which 

(7.4) 

δr;b= (VcVb암+Kkji딸k1캡)B;E-kcZηxaE 

δhcb1:= -hc:ηyXE+ (FRb암+K힘뿔kBZBbi)C싸， 

δ감=[용dVdhc: +heb1:CVc향)+hce\VbÇe)-hc엄yX] S 

+ [VcV6흰+K싫CykBXC댐y-h파않YJ e. 

Since for a normal variation we have 

δ(gcbhcbx) = 2hCby용Ykcbx+ gCbδ'hcbx， 
we obtain from (7.4) 

(7.5) 

where Bji=Bifgcb. 
co~ 

δ( 3rgcbh꾀=웅 [gCbVc않'<+Kkj섣kBjiC뿔 
+hcbxkc엎y-hZy깨yx] 타 
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In the sequel we suppose that m=n and the anti-invariant 

fb%' Since we have hc않.y =0 and η'y" = 0, (7.5) yields 

variation preserves 

PROPOSITION 7. 1. If m=κ and an anti-invariant normal variatz'on preserves: 

fZ, the% %e haue 

(7_6) δ( 숭gCbhcZ) = 움 [gCb?cFb한+KkjihCykBjtC댐'1 e. 

COROLLARY 7. 1. If m=n and an an’nt짧z“짜tμti삼.;냥냥-jiiir너꺼뼈nva 

then zï preserν'es the mean cμrvature νector :1 and only if 

(7.7) gcbVcPbax+KkjihCykBjtcxhfy=o. 

Substituting (7.7) into 

웅J(댔x) =웅gCbFcPb(댔) = (gCbVcVb한)t" + (VC'강)(γ흰)， 

we find 

(7.8) 웅J(액x) = -Kkjihζ엄jicfFF+ (?C한) (Vl,,), 

K kjih being covariant components of the curvature tensor of M 2m
• 

If an anti-invariant submanifold Mn is compact and orientable, we find, froJlll 

(7.8), 

(7.9) M [(FC흰)(P5x) - KkjFkCykB11C빨한ldV=O. 

Thus we have 

THEOREM 7. 1. Sμppose that m=n and an antz'-invariant κ01'ηtal variatz'on 
mese7%s fZ a%d tke wax CZtruatμ1'e vector. If M

n 상 compact and o1'ientable and! 
satisfz’ es 

KkjihCykBj1C빨강르0， 

then the va1'iation z-s parallel. 

Suppose that the ambient Kaehlerian manifold M2m is of constant holomorphic 

sectional curvature k. Then we have 

(7.10) Kkjih=웅k[gkhgji- gjhg ki+ FkhFji- FjhF ki-2FkjFih]' 

m _~ '!1 12m Suppose also that a submanifold M'" of M r..m is anti-invariant. Then we have 

(7· 11) KkjjhcfBj1c2=송(m+3)힘，，' 
Thus we have, from Theorem 7.1, 



4 ’ KιIItaro } ι“。 and M asaJ.iro K 011 

PROPO:-)ITION 7.2. Slφ#ose that M2m z·s a Kaelzleia?t mmifoId of C0%Staηt 
m lio!0111orþhic sectiona! curνature k르o and that M"" is a comþact orientable anH-

2m 
Íizíxiiiant submanzfold of M~"'. lf an anti-invaγiant normal vaγiation of M 

þrεserz:es 지x a뼈 the mean cμrvatμre vector. theη the varz'ation is þarallel and 

í~=O. 

Suppose that the ambient Kaehlerian manifold has vanishing Bochner curvature 

tensor. Then we have (see[7]) 

(7.12) Kkjih=- [gkhLji-gjhLki+Lkhgji-Ljhgki 

where 

+ F klzMji- FjhMki+ M khFji- MjhF ki- 2(F kjMih + MkjFih)l. 

Lji=-한옳공원+ 8(%+1!rw+?、 Kgj& 

Mμ = -Lj,F:. 

K쉰 and K being the Ricci tensor and the scalar curvature of M-m respectively. 
m ,. ... .. 2m Suppose a1so that a submanifo1d M'" of M<<m is anti-invariant. Then we have 

(7.13) K힘씬ykBjic2=- [(m+3)Lyx+Lgyx+3L얘fy말1. 

where 

But. on 

Lyx=딘zCylCXZ， L=딘zBμ， 

the other hand. we have 

Lcb =좌iB싫. 

Lcbfyrfr = L껴clBhtf2fxb =LjiFtjCytFsiCxs=L 

because of 좌iF!Fsl=L，s' Thus we have from (7.13) 

knji ,., h 
(7. 14) KkjihC’yKB"C;'=_ [(m+6)Ly,,+Lgy). 

Thus we have 

2m PROPOSITION 7.3. Suppose that M<<m is a Kaehlerian manzfold with vanishing 

Bochner cμrvatκre tensor and that Mm z's a compact orientable anti-invariant 

submanzfold of M2m
• If an anU-invariant normal variation of Mm preserves f h 

and the mean cμrvatμre vector and 

[(m+6)LyX + Lgy"l 홍Y용x르α 

then the variation is pa1’allel. 

Tokyo Institute of Techno10gy, 
Science University of Tokyo. 
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