KYUNGPOOK Math. J. 61(2021), 395-408
https://doi.org/10.5666/KMJ.2021.61.2.395
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

On f-biharmonic Submanifolds of Three Dimensional TransSasakian Manifolds

Avijit Sarkar* and Nirmal Biswas
Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India
e-mail: avjaj@yahoo.co.in and nirmalbiswas.maths@gmail.com

Abstract. The object of the present paper is to study f-biharmonic submanifolds of three dimensional trans-Sasakian manifolds. We find some necessary and sufficient conditions for such submanifolds to be f-biharmonic.

1. Introduction

Let M and N be two Riemannian manifolds, a harmonic map $\psi: M \rightarrow N$ is any critical point of the energy equation

$$
E(\psi)=\frac{1}{2} \int_{M}|d \psi|^{2} d v_{g}
$$

where $d v_{g}$ denotes the volume element of g, and the Euler-Lagrange equation corresponding to $E(\psi)$ is $\tau(\psi)=\operatorname{trace} \nabla d \psi=0$.

In 1983, Eells and Lemaire [9] introduced the notion of biharmonic maps, which are a natural generalization of harmonic maps. A biharmonic map $\psi: M \rightarrow N$ is a critical point of the energy equation

$$
E_{2}(\psi)=\frac{1}{2} \int_{M}|\tau \psi|^{2} d v_{g}
$$

where $d v_{g}$ denotes the volume element of g, and the Euler-Lagrange equation [15] corresponding to $E_{2}(\psi)$ is

$$
\begin{equation*}
\tau_{2}(\psi)=\Delta \tau(\psi)-\operatorname{trace}\left(R^{N}(d \psi, \tau(\psi)) d \psi\right)=0 \tag{1.1}
\end{equation*}
$$

* Corresponding Author.

Received December 20, 2019; revised November 20, 2020; accepted November 23, 2020.
2020 Mathematics Subject Classification: 53C15, 53C21.
Key words and phrases: trans-Sasakian manifolds, invariant submanifolds, anti-invariant submanifolds, f-biharmonic submanifolds.

Here Δ is the Laplacian operator given by $\Delta V=\operatorname{tr}\left(\nabla^{2} V\right)$, and R^{N} is the curvature tensor on the manifold N defined as $R^{N}(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$.

Let M be the submanifold of the manifold \bar{M}, if the biharmonic map $\psi: M \rightarrow$ \bar{M} is an isometric immersion then M is biharmonic submanifold of \bar{M}. In the paper [2], Baird studied conformal and semi-conformal biharmonic maps. Oniciuc studied biharmonic submanifolds of $C P^{n}$ in [10]. He studied explicit formula for biharmonic submanifolds in Sasakian space forms and deduced some conditions in [11]. He proved a gap theorem for the mean curvature of certain complete proper biharmonic pmc submanifolds and classified proper biharmonic pmc surfaces in $S^{n} \times R$ in [12]. In [16], Oniciuc studied biharmonic constant mean curvature surface in the sphere. Recently, Oniciuc proved several unique continuation results for biharmonic maps between Riemannian manifolds in [19]. He studied biharmonic maps between Riemannian manifolds in [18]. Over the last few years many authors have studied biharmonic submanifolds, for example see [5, 10, 18]. Recently, Ou studied biharmonic maps form tori into a 2 -sphere in [27]. In the paper [1], Ou studied biharmonic Riemannian submanifolds.

The notion of f-biharmonic maps was introduced by $\mathrm{Lu}[17]$; it is a natural generalization of biharmonic maps. In the papers [21, 22], Ou studied f biharmonic maps and f-biharmonic submanifolds. In these papers he proved that a f-biharmonic map from a compact Riemannian manifold into a non-positively curved manifold with constant f-bienergy density is a harmonic map. In [20], Ou characterized harmonic maps and minimal submanifolds using the concept of f-biharmonic maps and proved that the set of all f-biharmonic maps from a 2 dimensional domain is invariant under the conformal change of the metric on the domain. In [24], Roth studied f-biharonic submanifolds of generalized space forms. He deduced some necessary and sufficient conditions for f-biharmonicity in the general case and many particular cases. In [2] Baird and Fardon studied conformal and semi conformal biharmonic maps.

Let us consider the C^{∞} differentiable function $f: M \rightarrow R$. Now, f-harmonic maps are the critical points of the f-energy functional $E_{f}(\psi)$ for the maps $\psi: M \rightarrow$ N between Riemannian manifolds, where

$$
E_{f}(\psi)=\frac{1}{2} \int_{M} f|d \psi|^{2} d v_{g}
$$

The Euler-Lagrange equation corresponding to $E_{f}(\psi)$ is given by

$$
\begin{equation*}
\tau_{f}(\psi)=f \tau(\psi)+d \psi(\operatorname{grad} f)=0 \tag{1.2}
\end{equation*}
$$

Analgously f-biharmonic maps are critical points of the f-bienergy functional $E_{2, f}(\psi)$ for maps $\psi: M \rightarrow N$ between Riemannian manifolds where

$$
E_{2, f}(\psi)=\frac{1}{2} \int_{M} f|\tau \psi|^{2} d v_{g}
$$

The Euler-Lagrange equation corresponding to $E_{2, f}(\psi)$ is given by

$$
\begin{equation*}
\tau_{2, f}(\psi)=f \tau_{2}(\psi)+(\Delta f) \tau(\psi)+2 \nabla_{(\operatorname{grad} f)}^{\psi} \tau(\psi)=0 \tag{1.3}
\end{equation*}
$$

Clearly, we have the following relationship among these different types of harmonic maps: Harmonic maps \subset biharmonic maps $\subset f$-biharmonic maps.

A f-biharmonic map is called a proper f-biharmonic map if it is neither a harmonic nor a biharmonic map. Also, we will call a f-biharmonic submanifold proper if it is neither minimal nor biharmonic.

The notion of trans-Sasakian Manifolds was introduced by Blair and Oubina $[4,23]$ as a generalization of Sasakian manifolds. Trans-Sasakian manifolds of type (α, β) are generalizations of α-Sasakian and β-Kenmotsu manifolds. It is known that a proper trans-Sasakian manifold exists only for dimension three and transSasakian manifolds of type $(0,0),(0, \beta)$, and $(\alpha, 0)$ are known [14] as cosymplectic, β-Kenmotsu and α-Sasakian respectively. In higher dimension it is either α-Sasakian or β-Kenmotsu. In Differential Geometry of almost contact manifolds, submanifold theory has become an important topic of research. There are several works on invariant submanifolds. In [6], the authors studied invariant submanifolds of trans-Sasakian manifolds. Three dimensional trans-Sasakian Manifolds have been studied by the first author in the papers [8, 25, 26].

During last few years biharmonic maps on contact manifolds have become a popular area of research. So in the present paper we would like to study f biharmonic maps on three dimensional trans-Sasakian manifolds. Precisely we study f-biharmonic submanifolds of three dimensional trans-Sasakian manifolds and find some conditions for the map f to be biharmonic or not.

The present paper is organized as follows: Section 1 is introductory. After the introduction we give some preliminaries in Section 2. In Section 3 we study f biharmonic submanifolds of three-dimensional trans-Sasakian manifolds.

2. Preliminaries

Let \bar{M} be an odd dimensional smooth differential manifold with an almost contact metric structure (ϕ, ξ, η, g), where ϕ is a $(1,1)$-tensor field, ξ is a vector field, η is a one form and g is a Riemannian metric on \bar{M}. For such manifolds, we know [3]

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1 \tag{2.1}\\
\eta(X)=g(X, \xi), \quad g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}\\
\phi \xi=0, \quad \eta \circ \phi=0, \quad g(X, \phi Y)=-g(\phi X, Y) \tag{2.3}
\end{gather*}
$$

for any $X, Y \in \chi(\bar{M})$, where $\chi(\bar{M})$ denotes the Lie algebra of all vector fields on \bar{M}.

For a contact metric manifold $(\bar{M}, \phi, \xi, \eta, g)$, we define a $(1,1)$ tensor field h by $h=\frac{1}{2} \mathcal{L}_{\xi} \phi$ and \mathcal{L} is the usual Lie derivative. Then h is symmetric and satisfies the following relations

$$
\begin{equation*}
h \xi=0, \quad h \phi=-\phi h, \quad \operatorname{tr}(h)=\operatorname{tr}(\phi h)=0, \quad \eta(h X)=0 \tag{2.4}
\end{equation*}
$$

for any $X, Y \in \chi(\bar{M})$.

Moreover, if $\bar{\nabla}$ denotes the Levi-Civita connection with respect to g, then the following relation holds

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-\phi X-\phi h X \tag{2.5}
\end{equation*}
$$

A connected manifold \bar{M} with almost contact metric structure (ϕ, ξ, η, g) is called a trans-Sasakian manifold [23] if $(\bar{M} \times R, J, G)$ belongs to the class W_{4} [13], where J is an almost complex structure on $\bar{M} \times R$ which is defined by

$$
J\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)
$$

for any vector field X on \bar{M} and the smooth function f on $\bar{M} \times R$, and G is the usual product metric on $\bar{M} \times R$. According to [4], an almost contact metric manifold is a trans-Sasakian manifold if and only if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.6}
\end{equation*}
$$

for smooth functions α, β on \bar{M}, where $\bar{\nabla}$ denote the covariant derivative with respect to g. Generally, \bar{M}, is said to be a trans-Sasakian manifold of type (α, β). In a three-dimensional trans-Sasakian manifold the curvature tensor with respect to the Levi-Civita connection $\bar{\nabla}$ is as follows [7]:

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
& -g(Y, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -\eta(X)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi] \\
& +g(X, Y)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -\eta(Y)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+(Y \beta+(\phi Y) \alpha) \xi] \\
& -[(Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right] X \\
& +[(Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right] Y \tag{2.7}
\end{align*}
$$

where r is the scalar curvature of the manifold.
Let $M^{m}(m<n)$ be the submanifold of a contact metric manifold \bar{M}^{n}. Let ∇ and $\bar{\nabla}$ be the Levi-Civita connections of M and \bar{M}, respectively. Then for any vector fields $X, Y \in \chi(M)$, the second fundamental form σ is defined by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \tag{2.8}
\end{equation*}
$$

For any section of the normal bundle $T^{\perp} M$, we have

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla^{\perp} N \tag{2.9}
\end{equation*}
$$

where ∇^{\perp} denotes the normal bundle connection of M. The second fundamental form σ and the shape operator A_{N} are related by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(\sigma(X, Y), N) . \tag{2.10}
\end{equation*}
$$

For any vector field $X \in \chi(M)$, we can right

$$
\begin{equation*}
\phi X=T X+N X, \tag{2.11}
\end{equation*}
$$

where $T X$ is the tangential component of ϕX and $N X$ is the normal component of ϕX. Similarly, for any vector field V in normal bundle we have

$$
\begin{equation*}
\phi V=t V+n V \tag{2.12}
\end{equation*}
$$

where $t V$ and $n V$ are the tangential and normal components of ϕV.
The submanifold M is said to be invariant if $\phi X \in T M$ for any vector field X. On other hand M is said to be an anti-invariant submanifold if $\phi X \in T^{\perp} M$ for any vector field X

3. f-biharmonic Submanifolds of Three-dimensional Trans-Sasakian Manifolds

We know for a isometric immersion $\psi[24]$

$$
\begin{equation*}
\tau(\psi)=\operatorname{tr} \nabla d \psi=\operatorname{tr} \sigma=m H, \tag{3.1}
\end{equation*}
$$

where H is the mean curvature. Now using the equation (1.1) in the above equation we have

$$
\begin{equation*}
\tau_{2}(\psi)=m \Delta H-\operatorname{tr}(R(d \psi, m H) d \psi) . \tag{3.2}
\end{equation*}
$$

By some classical and straightforward computations, we have

$$
\begin{equation*}
\Delta H=\frac{m}{2} \operatorname{grad}|H|^{2}+\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right)+2 \operatorname{tr}\left(A_{\nabla \perp_{H}}(.)\right)+\Delta^{\perp} H . \tag{3.3}
\end{equation*}
$$

Using (3.3) in (3.2), we have
$\tau_{2}(\psi)=\frac{m^{2}}{2} \operatorname{grad}|H|^{2}+m \operatorname{tr}\left(\sigma\left(., A_{H}.\right)\right)+2 m \operatorname{tr}\left(A_{\nabla^{\perp} H}().\right)+m \Delta^{\perp} H-\operatorname{tr}(R(d \psi, m H) d \psi)$.
From the equation (1.3), we have the submanifold M is f-biharmonic if and only if

$$
\begin{equation*}
\tau_{2, f}(\psi)=f \tau_{2}(\psi)+(\Delta f) \tau(\psi)+2 \nabla_{(\mathrm{grad} f)}^{\psi} \tau(\psi)=0 . \tag{3.5}
\end{equation*}
$$

By simple calculation we have the above equation is equivalent to

$$
\begin{equation*}
\tau_{2}(\psi)+m \frac{\Delta f}{f} H+2 m\left(-A_{H} \operatorname{grad}(\ln f)+\nabla_{\operatorname{grad}(\ln f)}^{\perp} H\right)=0 . \tag{3.6}
\end{equation*}
$$

For a f-biharmonic submanifold of a three-dimensional trans-Sasakian manifold we have the following:

Theorem 3.1. Let M be a submanifold of a three dimensional trans-Sasakian manifold M. Then M is f-biharmonic if and only if the following equations hold

$$
\begin{aligned}
& \Delta^{\perp} H+\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
&=-2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{\perp}\right. \\
&-\eta(H)(N \operatorname{grad} \alpha-N \operatorname{grad} \beta)+\xi \beta H-\xi \alpha n(H)] \\
&+\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 \operatorname{tr} A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& = \\
& \quad 2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}-\eta(H)(T \operatorname{grad} \alpha-T \operatorname{grad} \beta)\right. \\
& \quad+t(H) \xi \alpha]-\left[(\operatorname{grad} \beta)^{T} \eta(H)+g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad} \alpha, \phi H) \xi^{T}\right. \\
& \left.\quad+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}\right] .
\end{aligned}
$$

Proof. Form (2.7) we have

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
& -g(Y, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
& -\eta(X)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi] \\
& +g(X, Y)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
& -\eta(Y)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+(Y \beta+(\phi Y) \alpha) \xi] \\
& -[(Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right] X \\
& +[(Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right] Y \tag{3.7}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}\right\}$ be an orthogonal basis of the tangent space at a point of M. Then we have from above

$$
\begin{align*}
R\left(e_{i}, Y\right) e_{i}= & \left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)\left(g\left(H, e_{i}\right) e_{i}-g\left(e_{i}, e_{i}\right) H\right) \\
& -g\left(H, e_{i}\right)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta\left(e_{i}\right) \xi\right. \\
& \left.-\eta\left(e_{i}\right)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+\left(e_{i} \beta+\left(\phi e_{i}\right) \alpha\right) \xi\right] \\
& +g\left(e_{i}, e_{i}\right)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi\right. \\
& -\eta(H)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+(H \beta+(\phi H) \alpha) \xi] \\
& -\left[\left(e_{i} \beta+\left(\phi e_{i}\right) \alpha\right) \eta(H)+(H \beta+(\phi H) \alpha) \eta\left(e_{i}\right)\right. \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \eta\left(e_{i}\right)\right] e_{i} \\
& +\left[\left(e_{i} \beta+\left(\phi e_{i}\right) \alpha\right) \eta\left(e_{i}\right)+\left(e_{i} \beta+\left(\phi e_{i}\right) \alpha\right) \eta\left(e_{i}\right)\right. \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta\left(e_{i}\right) \eta\left(e_{i}\right)\right] H . \tag{3.8}
\end{align*}
$$

Taking trace and using the equations (2.1), (2.11) and (2.12) we obtain

$$
\begin{aligned}
\operatorname{tr}(R(., H) .)= & -2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi\right. \\
& -\eta(H)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+\xi \beta H-\xi \alpha \phi(H)]-\left[(\operatorname{grad} \beta)^{T} \eta(H)\right. \\
& \left.+g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad} \alpha, \phi H) \xi^{T}+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}\right] \\
& +\left[2 \eta(\operatorname{grad} \beta)+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H .
\end{aligned}
$$

Using the equations (3.4) and (3.6) we can obtain

$$
\begin{aligned}
\operatorname{tr}(R(., H) .)= & \operatorname{grad}|H|^{2}+\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}(.)\right) \\
& +\Delta^{\perp} H+\frac{\Delta f}{f} H-2\left(A_{H} \operatorname{grad}(\ln f)\right)+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}+\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}(.)\right) \\
&+\Delta^{\perp} H+\frac{\Delta f}{f} H-2\left(A_{H} \operatorname{grad}(\ln f)\right)+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
&=-2\left(\frac{r}{2}+\xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H \\
&+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi-\eta(H)(\phi \operatorname{grad} \alpha-\phi \operatorname{grad} \beta)+\xi \beta H-\xi \alpha \phi(H)\right] \\
&-\left[(\operatorname{grad} \beta)^{T} \eta(H)+g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad} \alpha, \phi H) \xi^{T}\right. \\
&\left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}\right]+\left[2 \eta(\operatorname{grad} \beta)+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H
\end{aligned}
$$

Comparing the tangent and normal components we have the result of the theorem.
Now we have the following as particular cases of the above theorem.
Corollary 3.1. Let M be a submanifold of a three-dimensional trans-Sasakian manifold \bar{M}.
(1) If M is anti-invariant, M is f-biharmonic if and only if

$$
\begin{aligned}
& \Delta^{\perp} H+\operatorname{tr}\left(\sigma\left(., A_{H} \cdot\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
&=-2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{\perp}\right. \\
&+\xi \beta H-\xi \alpha n(H)]+\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H,
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 t r A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& =2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}-\eta(H)(\text { Tgrad } \alpha-\text { Tgrad } \beta)\right. \\
& \quad+t(H) \xi \alpha]-\left[(\operatorname{grad} \beta)^{T} \eta(H)+g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad} \alpha, \phi H) \xi^{T}\right. \\
& \left.\quad+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}\right] .
\end{aligned}
$$

(2) If M is invariant M is f-biharmonic if and only if

$$
\begin{aligned}
\Delta^{\perp} & H+\operatorname{tr}\left(\sigma\left(., A_{H} \cdot\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
= & -2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{\perp}\right. \\
& -\eta(H)(N \operatorname{grad} \alpha-N \operatorname{grad} \beta)+\xi \beta H-\xi \alpha n(H)] \\
& +\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H,
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 \operatorname{tr} A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& =2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}+t(H) \xi \alpha\right]-\left[(\operatorname{grad} \beta)^{T} \eta(H)+\right. \\
& \left.\quad g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad\alpha }, \phi H) \xi^{T}+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}\right] .
\end{aligned}
$$

(3) If ξ is normal to M, M is -biharmonic if and only if

$$
\begin{aligned}
& \Delta^{\perp} H+\operatorname{tr}\left(\sigma\left(., A_{H} \cdot\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
&=-2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{\perp}\right. \\
&-\eta(H)(N \operatorname{grad} \alpha-N \operatorname{grad} \beta)+\xi \beta H-\xi \alpha n(H)] \\
&+\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H,
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 \operatorname{tr} A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& =2[-\eta(H)(T \operatorname{grad} \alpha-T \operatorname{grad} \beta)+t(H) \xi \alpha]-\left[(\operatorname{grad} \beta)^{T} \eta(H)\right] .
\end{aligned}
$$

(4) If ξ is tangent to M, M is f-biharmonic if and only if

$$
\begin{aligned}
& \Delta^{\perp} H+\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
& = \\
& \left.\quad-2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+\xi \beta H-\xi \alpha n(H)\right] \\
& \quad+\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 \operatorname{tr} A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& =2 t(H) \xi \alpha-\left[g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad} \alpha, \phi H) \xi^{T}\right]
\end{aligned}
$$

(5) If M is a hypersurface, M is f-biharmonic if and only if

$$
\begin{aligned}
& \Delta^{\perp} H+\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{g r a d(\ln f)}^{\perp} H \\
&=-2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{\perp}\right. \\
&-\eta(H)(N \operatorname{grad} \alpha-N \operatorname{grad} \beta)+\xi \beta H-\xi \alpha n(H)] \\
&+\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 t r A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& =2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}-\eta(H)(\text { Tgrad } \alpha-\text { Tgrad } \beta]\right. \\
& \quad-\left[(\operatorname{grad} \beta)^{T} \eta(H)+g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad} \alpha, \phi H) \xi^{T}\right. \\
& \left.\quad+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{T}\right] .
\end{aligned}
$$

Proof. Proof of the results is directly obtained from Theorem 3.1, using the following facts, respectively.
(1) If M is invariant then $N=0$.
(2) If M is anti-invariant then $T=0$.
(3) If ξ is normal to M then $\xi^{T}=0$.
(4) If ξ is tangent to M then $\eta(H)=0$ and $\xi^{\perp}=0$.
(5) If M is a hypersurface then $t H=0$.

Theorem 3.2. Let M be a submanifold of a three dimensional trans-Sasakian manifold \bar{M} with non zero constant mean curvature H and ξ is tangent to M, then M proper f-biharmonic if and only if

$$
|\sigma|^{2}=-\frac{3 r}{2}-7 \xi \beta+7\left(\alpha^{2}-\beta^{2}\right)-\frac{\Delta f}{f},
$$

and $A_{H} \operatorname{grad}(\ln f)=0$, or equivalent if and only if

$$
\mathrm{Scal}_{M}=\frac{3 r}{2}+9 \xi \beta-8\left(\alpha^{2}-\beta^{2}\right)+\frac{\Delta f}{f}-3|H|^{2} .
$$

Proof. Let M be a f biharmonic submanifold of \bar{M} with constant mean curvature and ξ tangent to M then from the previous corollary we have

$$
\begin{aligned}
\Delta^{\perp} & H+\operatorname{tr}\left(\sigma\left(., A_{H} \cdot\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
= & -2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{\perp}\right. \\
& -\eta(H)(N \operatorname{grad} \alpha-N \operatorname{grad} \beta)+\xi \beta H-\xi \alpha n(H)] \\
& +\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H,
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 \operatorname{tr} A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& =2[-\eta(H)(T \operatorname{grad} \alpha-T \operatorname{grad} \beta)+t(H) \xi \alpha]-\left[(\operatorname{grad} \beta)^{T} \eta(H)\right] .
\end{aligned}
$$

Since ξ is tangent to M then the equations are of the form

$$
\begin{aligned}
\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right)= & -2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+2\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(H) \xi^{\perp}\right. \\
& -\eta(H)(N \operatorname{grad} \alpha-N \operatorname{grad} \beta)+\xi \beta H-\xi \alpha n(H)] \\
& +\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H-\frac{\Delta f}{f} H,
\end{aligned}
$$

and $A_{H} \operatorname{grad}(\ln f)=0$. Thus, the second equation is trivial and the first equation becomes

$$
\begin{equation*}
\operatorname{tr} \sigma\left(., A_{H} .\right)=\left[-\frac{3 r}{2}-7 \xi \beta+7\left(\alpha^{2}-\beta^{2}\right)-\frac{\Delta f}{f}\right] H . \tag{3.9}
\end{equation*}
$$

Now since $\operatorname{tr} \sigma\left(., A_{H}.\right)=|\sigma|^{2} H$ and H is non zero, so we have form above equation

$$
|\sigma|^{2}=-\frac{3 r}{2}-7 \xi \beta+7\left(\alpha^{2}-\beta^{2}\right)-\frac{\Delta f}{f} .
$$

Now from the Gauss formula we have

$$
\begin{equation*}
\mathrm{Scal}_{M}=\sum_{i, j} g\left(R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right)-|\sigma|^{2}-2 H^{2} \tag{3.10}
\end{equation*}
$$

Using (2.7) in the above equation we have

$$
\mathrm{Scal}_{M}=\frac{3 r}{2} 9 \xi \beta-8\left(\alpha^{2}-\beta^{2}\right)+\frac{\Delta f}{f}-3|H|^{2}
$$

Corollary 3.2. Let M be a submanifold of a three dimensional trans-Sasakian manifold \bar{M} with non zero constant mean curvature H and ξ is tangent to M. If the functions α, β satisfy the inequality

$$
-\frac{3 r}{2}-7 \xi \beta+7\left(\alpha^{2}-\beta^{2}\right) \leq \frac{\Delta f}{f}
$$

then M is not f-biharmonic.
Proof. Form the Theorem 3.2 we know that M is f-biharmonic if and only if its second fundamental form σ satisfies the inequality

$$
|\sigma|^{2}=-\frac{3 r}{2}-7 \xi \beta+7\left(\alpha^{2}-\beta^{2}\right)-\frac{\Delta f}{f}
$$

Since $|\sigma|^{2} \geq 0$, this is not possible if

$$
\begin{equation*}
-\frac{3 r}{2}-7 \xi \beta+7\left(\alpha^{2}-\beta^{2}\right) \leq \frac{\Delta f}{f} \tag{3.11}
\end{equation*}
$$

Theorem 3.3. Let M be a submanifold of a three dimensional trans-Sasakian manifold \bar{M} with non zero constant mean curvature H such that ξ and ϕH are tangent to M. Define $F(f, \alpha, \beta)$ on M by

$$
F(f, \alpha, \beta)=-2 r-9 \xi \beta+9\left(\alpha^{2}-\beta^{2}\right)-\frac{\Delta f}{f}
$$

Then
(1) if $\inf F(f, \alpha, \beta)$ is non-positive, M is not f-biharmonic.
(2) if $F(f, \alpha, \beta)$ is positive and M is proper f-biharmonic then

$$
0<|H|^{2} \leq \frac{1}{2} F(f, \alpha, \beta)
$$

Proof. M is proper f-biharmonic submanifold with constant mean curvature H and ξ is tangent to M, so we have form Corollary 3.1

$$
\begin{aligned}
& \Delta^{\perp} H+\operatorname{tr}\left(\sigma\left(., A_{H} \cdot\right)\right)+\frac{\Delta f}{f} H+2 \nabla_{\operatorname{grad}(\ln f)}^{\perp} H \\
& = \\
& \left.\quad-2\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right) H+\xi \beta H-\xi \alpha n(H)\right] \\
& \quad+\left[2 \xi \beta+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\right] H
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{grad}|H|^{2}-2 \operatorname{tr} A_{H} \operatorname{grad}(\ln f)+2 \operatorname{tr}\left(A_{\nabla^{\perp} H}, .\right) \\
& =2 t(H) \xi \alpha-\left[g(\operatorname{grad} \beta, H) \xi^{T}+g(\operatorname{grad} \alpha, \phi H) \xi^{T}\right] .
\end{aligned}
$$

Given that ϕH is tangent to M, so $t H=0$. Therefore form the above equation we have

$$
\begin{aligned}
\Delta^{\perp} H+\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right) & =\left[-2 r-9 \xi \beta+9\left(\alpha^{2}-\beta^{2}\right)-\frac{\Delta f}{f}\right] \\
& =F(f, \alpha, \beta) H,
\end{aligned}
$$

where

$$
F(f, \alpha, \beta)=-2 r-9 \xi \beta+9\left(\alpha^{2}-\beta^{2}\right)-\frac{\Delta f}{f} .
$$

Taking inner product by H of the equation (??), we have

$$
<\Delta^{\perp} H, H>+<\operatorname{tr}\left(\sigma\left(., A_{H} .\right)\right), H>=F(f, \alpha, \beta)|H|^{2} .
$$

Now using the results $<\operatorname{tr}\left(\sigma\left(., A_{H}.\right)\right), H>=\left|A_{H}\right|^{2}$, and $\Delta|H|^{2}=2\left(<\Delta^{\perp} H, H>\right.$ $-\left|\nabla^{\perp} H\right|^{2}$), in the above equation we have

$$
\begin{equation*}
\left|A_{H}\right|^{2}+\left|\Delta^{\perp} H\right|^{2}=F(f, \alpha, \beta)|H|^{2} . \tag{3.12}
\end{equation*}
$$

By using the Cauchy-Schwarz inequality $\left|A_{H}\right|^{2} \geq \frac{1}{2} \operatorname{tr}\left(A_{H}\right)=2|H|^{4}$, the equation reduces to

$$
F(f, \alpha, \beta)|H|^{2}=\left|A_{H}\right|^{2}+\left|\nabla^{\perp} H\right|^{2} \geq 2|H|^{4}+\left|\nabla^{\perp} H\right|^{2} \geq 2|H|^{4} .
$$

Therefore $F(f, \alpha, \beta) \geq 2|H|^{2}$, since $|H|$ is positive. This proves the theorem.
Acknowledgements. The authors are thankful to the referee for his valuable suggestions towards the improvement of the paper.

References

[1] M. A. Akyol and Y. L. Ou, Biharmonic Riemannian submersions, Ann. Mat. Pura Appl., 198(2019), 559-570.
[2] P. Baird, A. Fardom and S. Ouakkas, Conformal and semi-conformal biharmonic maps, Ann. Global Anal. Geom., 34(2008), 403-414.
[3] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhauser, 2002.
[4] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat., 34(1990), 199-207.
[5] R. Caddeo, S. Montaldo and P. Piu, On biharmonic maps, Global Differential Geometry: The Mathematical Legacy of Alfred Gray, 286--290, Contemp. Math. 288, Amer. Math. Soc., Providence, RI, 2001.
[6] D. Chinea and P. S. Perestelo, Invariant submanifolds of a trans-Sasakian manifold, Publ. Math. Debrecen, 38(1991), 103-109.
[7] U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J., 43(2003), 247-255.
[8] U. C. De and A. Sarkar, On three dimensional trans-Sasakian manifolds, Extracta Math., 23(2008), 265-277.
[9] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics 50, Amer. Math. Soc, 1983.
$[10]$ D. Fetcu, E. Loubeau, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of $\mathbb{C P}^{n}$, Math. Z., 266(2010), 505-531.
[11] D. Fetcu and C. Oniciuc, Explicit formulas for biharmonic submanifolds in Sasakian space forms, Pacific J. Math., 240(2009), 85-107.
[12] D. Fetcu, C. Oniciuc and H. Rosenberg, Biharmonic submanifolds with parallel mean curvature in $S^{n} \times R$, J. Geom. Anal. 23(2013), 2158--2176.
[13] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(1980), 35-58.
[14] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math J., 4(1981), 1-27.
[15] F. Karaca and C. Ozgur, f-Biharmonic and Bi-f-harmonic submanifolds of product spaces, Sarajevo J. Math., 13(2017), 115-129.
[16] B. E. Loubeau and C. Oniciuc, Constant mean curvature proper-biharmonic surfaces of constant Gaussian curvature in spheres, J. Math. Soc. Japan, 68(2016), 997-1024.
[17] W. J. Lu, On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds, Sci. China Math., 58(2015), 1483-1498.
[18] S. Montaldo and C. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina, 47(2007), 1-22.
[19] C. Oniciuc and V. Branding, Unique continuation theorem for biharmonic maps, Bull. Lond. Math. Soc., 51(2019), 603-621.
[20] Y. L. Ou, On f-biharmonic maps and f-biharmonic submanifolds, Pacific J. Math., 271(2014), 467-477.
[21] Y. L. Ou, Some recent progress of biharmonic submanifolds, Contemp. Math. 674, Amer. Math. Soc., Providence, RI, 2016.
[22] Y. L. Ou, f-biharmonic maps and f-biharmonic submanifolds II, J. Math. Anal. Appl., 455(2017), 1285-1296.
[23] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32(1985), 187-193.
[24] J. Roth and A. Upadhyay, f-biharmonic submanifolds of generalized space forms, Results Math., 75(2020), Paper No. 20, 25 pp.
[25] A. Sarkar and D. Biswas, Legendre curves on three-dimensional Heisenberg group, Facta Univ. Ser. Math. Inform., 28(2013), 241-248.
[26] A. Sarkar and A. Mondal, Cretain curves in trans-Sasakian manifolds, Facta Univ. Ser. Math. Inform., 31(2016), 187-200.
[27] Z. Wang, Y. L. Ou and H. Yang, Biharmonic maps form tori into a 2-sphere Chinese Ann. Math. Ser. B, 39(2018), 861-878.

