• 제목/요약/키워드: advanced coatings

검색결과 258건 처리시간 0.023초

DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 증착된 NbN 코팅막의 물성 비교연구 (A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering)

  • 전성용;오복현
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.136-141
    • /
    • 2015
  • The paper presents the comparative results of NbN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. The Pulsed sputtered NbN coatings showed higher hardness, higher residual stress, and smaller grain sizes than those of DC prepared NbN coatings. Moreover residual stress of pulsed sputtered NbN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 증착된 나노결정질 CrN 코팅막의 성장 (Growth Behavior of Nanocrystalline CrN Coatings by Inductively Coupled Plasma (ICP) Assisted Magnetron Sputtering)

  • 서대한;전성용
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.556-560
    • /
    • 2012
  • Nanocrystalline CrN coatings were deposited by DC and ICP-assisted magnetron sputtering on Si (100) substrates. The influences of the ICP power on the microstructural and crystallographic properties of the coatings were investigated. For the generation of the ICP, radio frequency was applied using a dielectric-encapsulated coil antenna installed inside the deposition chamber. As the ICP power increased from 0 to 500W, the crystalline grain size decreased. It is believed that the decrease in the crystal grain size at higher ICP powers is due to resputtering of the coatings as a result of ion bombardment as well as film densification. The preferential orientation of CrN coatings changed from (111) to (200) with an increase in the ICP power. The ICP magnetron sputtering CrN coatings showed excellent surface roughness compared to the DC magnetron sputtering coatings.

고체산화물 연료전지를 위한 플라즈마 용사코팅 Ni/YSZ 음극 복합체의 특성평가 (Characterization of Ni/YSZ Anode Coating for Solid Oxide Fuel Cells by Atmospheric Plasma Spray Method)

  • 박수동;윤상훈;강기철;이창희
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.50-54
    • /
    • 2008
  • In this research, anode for SOFC has been manufactured from two different kinds of feedstock materials through thermal spraying process and the properties of the coatings were characterized and compared. One kind of feedstock was manufactured from spray drying method which includes nano-components of NiO, YSZ (300 nm) and graphite. And the other is manufactured by blending the micron size NiO coated graphite, YSZ and graphite powders as feedstock materials. Microstructure, mechanical properties and electrical conductivity of the coatings as-sprayed, after oxidation and after hydrogen reduction containing nano composite which is prepared from spray-dried powders were evaluated and compared with the same properties of the coatings prepared from blended powder feedstock. The coatings prepared from the spray dried powders has better properties as they provide larger triple phase boundaries for hydrogen oxidation reaction and is expected to have lower polarization loss for SOFC anode applications than that of the coatings prepared from blended feedstock. A maximum electrical conductivity of 651 S/cm at $800^{\circ}C$ was achieved for the coatings from spray dried powders which much more than that of the average value.

A Study on Corrosion Characteristics of Multilayered WC- $Ti_{1-x}$A $l_{x}$N Coatings Deposited on AISI D2 Steel

  • Ahn, S.H.;Yoo, J.H.;Kim, J.G.;Lee, H.Y.;Han, J.G.
    • 한국표면공학회지
    • /
    • 제36권1호
    • /
    • pp.79-84
    • /
    • 2003
  • $WC-Ti_{1}$ -xA $l_{x}$ N multilayered coatings are performed by their periodically repeated structures of lamellae of WC-Ti/$WC-Ti_{1}$ -xA $l_{x}$ Nmaterials. The $WC-Ti_{1}$ -xA $l_{x}$ N coatings with variable Al content were deposited onto AISI D2 steel by cathodic arc deposition (CAD) method. The electrochemical behavior of multilayered $WC-Ti_{1}$ -xA $l_{x}$ N coatings with different phases (WC- Ti$0.6/Al_{0.4}$ N, $WC-Ti_{0.53}$$Al_{0.47}$N, $WC-Ti_{0.5}$ $Al_{0.5}$ N and $WC-Ti_{ 0.43}$$Al_{0.57}$ N) was investigated in deaerated 3.5% NaCl solution at room temperature. The corrosion behaviors for the multilayered coatings were investigated by electrochemical techniques (potentiodynamic polarization) and surface analyses (X-ray diffraction (XRD), scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES)). In the petentiodynamic polarization test, the corrosion current density of $WC-Ti_{0.5}$$Al_{0.5}$N was lower than others.

DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구 (A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering)

  • 전성용;김세철
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

Electrochemical Evaluation of Si-Incorporated Diamond-Like Carbon (DLC) Coatings Deposited on STS 316L and Ti Alloy for Biomedical Applications

  • Kim, Jung-Gu;Lee, Kwang-Ryeol;Kim, Young-Sik;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.18-23
    • /
    • 2007
  • DLC coatings have been deposited onto substrate of STS 316L and Ti alloy using r.f. PACVD (plasma-assisted chemical vapor deposition) with a mixture of $C_{6}H_{6}$ and $SiH_{4}$ as the process gases. Corrosion performance of DLC coatings was investigated by electrochemical techniques (potentiodynamic polarization test and electrochemical impedance spectroscopy) and surface analysis (scanning electron microscopy). The electrolyte used in this test was a 0.89% NaCl solution of pH 7.4 at temperature $37^{\circ}C$. The porosity and protective efficiency of DLC coatings were obtained using potentiodynamic polarization test. Moreover, the delamination area and volume fraction of water uptake of DLC coatings as a function of immersion time were calculated using electrochemical impedance spectroscopy. This study provides the reliable and quantitative data for assessment of the effect of substrate on corrosion performance of Si-DLC coatings. The results showed that Si-DLC coating on Ti alloy could improve corrosion resistance more than that on STS 316L in the simulated body fluid environment. This could be attributed to the formation of a dense and low-porosity coating, which impedes the penetration of water and ions.

유도결합 플라즈마 파워가 VN 코팅막의 미세구조, 결정구조 및 기계적 특성에 미치는 영향에 관한 연구 (Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of VN Coatings)

  • 전성용;이소연
    • 한국표면공학회지
    • /
    • 제49권4호
    • /
    • pp.376-381
    • /
    • 2016
  • The effects of ICP (Inductively Coupled Plasma) power, ranging from 0 to 200 W, on the crystal structure, microstructure, surface roughness and mechanical properties of magnetron sputtered VN coatings were systematically investigated with FE-SEM, AFM, XRD and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of VN coatings. With the increasing of ICP power, coating microstructure evolves from a porous columnar structure to a highly dense one. Average crystal grain size of single phase cubic fcc VN coatings was decreased from 10.1 nm to 4.0 nm with increase of ICP power. The maximum hardness of 28.2 GPa was obtained for the coatings deposited at ICP power of 200 W. The smoothest surface morphology with Ra roughness of 1.7 nm was obtained from the VN coating sputtered at ICP power of 200 W.

DC 스퍼터법과 유도결합 플라즈마 마그네트론 스퍼터법으로 증착된 CrN 코팅막의 물성 비교연구 (A Comparative Study of CrN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering)

  • 서대한;전성용
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.123-129
    • /
    • 2012
  • Nanocrystalline CrN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 500 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has an significant influence on coating microstructure and mechanical properties of CrN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain size of CrN coatings were decreased from 11.7 nm to 6.6 nm with increase of ICP power. The maximum nanohardness of 23.0 GPa was obtained for the coatings deposited at ICP power of 500 W. Preferred orientation in CrN coatings also vary with ICP power, exerting an effective influence on film nanohardness.

Influence of Silver Ions in HA Film on Morphology of Macrophages

  • Feng, Q.L.;Kim, T.N.;Kim, J.W.
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.50-56
    • /
    • 1998
  • Ion beam assisted deposition (IBAD) was successfully used to produce a dense and ultra-adherent Hydroxyapatite (HA) film on titanium alloy and alumina. Recently it is also proved that the HA coatings on alumina substrate treated with 20 ppm $AgNO_3$ had the structure of $(Ag, Ca)_10(PO_4)6(OH)_2$, which exhibited excellent antimicrobial effects. The present paper aims to morphlogically characterize the adhesion of macrophages on newly developed Ag-HA coated alumina and Ti6A14V substrates and to evaluate the biocompatibility of the coatings in vitro. It can be found that the cell number on alumina of the concentration of $AgNO_3$ in the treatment, the cell number on Ag-HA coatings decreased. Up to 20 ppm $AgNO_3$ by Ag-treatment, the morphological development of the cells on Ag-HA coating was similar to that of the cells on HA coating, suggesting the biotolerance of the Ag-HA coatings.

  • PDF

DC 스퍼터법과 비대칭 바이폴라 펄스 DC 스퍼터법으로 제작된 CrN 코팅막의 물성 비교연구 (A Comparative Study of CrN Coatings Deposited by DC and Asymmetric Bipolar Pulsed DC Sputtering)

  • 전성용;백지원
    • 한국표면공학회지
    • /
    • 제47권2호
    • /
    • pp.86-92
    • /
    • 2014
  • The purpose of this comparative study was to investigate the properties of chromium nitride coatings deposited by asymmetric bipolar pulsed DC sputtering and DC sputtering system. Oscilloscope traces of the I-V waveforms indicate high power and high current density outputs during the asymmetric bipolar pulsed mode. The grain size decreases with decreasing duty cycle. The duty cycle has a strong influence not only on the microstructural properties but also on the mechanical properties of chromium nitride coatings. Comparing with the continuous DC sputtering, the chromium nitride coatings prepared by pulsed DC asymmetric bipolar process also exhibit better surface roughness.