Browse > Article
http://dx.doi.org/10.5695/JKISE.2012.45.3.123

A Comparative Study of CrN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering  

Seo, Dae-Han (Department of Advanced Materials Science and Engineering, Mokpo National University)
Chun, Sung-Yong (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Journal of the Korean institute of surface engineering / v.45, no.3, 2012 , pp. 123-129 More about this Journal
Abstract
Nanocrystalline CrN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 500 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has an significant influence on coating microstructure and mechanical properties of CrN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain size of CrN coatings were decreased from 11.7 nm to 6.6 nm with increase of ICP power. The maximum nanohardness of 23.0 GPa was obtained for the coatings deposited at ICP power of 500 W. Preferred orientation in CrN coatings also vary with ICP power, exerting an effective influence on film nanohardness.
Keywords
Inductively coupled plasma; ICP power; Grain size; Preferred orientation; Nanoindentation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Y. Chun, J. Kor. Inst. Surf. Eng., 44 (2011) 479.
2 N. Maazi, N. Rouag, J. Cryst. Growth., 243 (2002) 361.   DOI   ScienceOn
3 C. Barret, T. B. Massalski, Structure of Metals, Pergamon, Oxford, (1980) 204.
4 S. Tan, X. Zhang, X. Wu, F. Feng, J. Jiang, Thin Solid Films, 519 (2011) 2116.   DOI   ScienceOn
5 C. W. Zou, H. J. Wang, M. Li, C. S. Liu, L. P. Guo, D. J. Fu, Vacuum, 83 (2009) 1086.   DOI   ScienceOn
6 I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, J. E. Greene, Thin Solid Films, 169 (1989) 299.   DOI   ScienceOn
7 G. R. Lee, H. Kim, H. S. Choi, J. J. Lee, Surf. Coat. Tech., 201 (2007) 5207.   DOI
8 T. Polcar, N. M. G. Parreira, R. Novak, Surf. Coat. Technol., 201 (2007) 5228.   DOI
9 P. H. Mayrhofer, H. Willmann, C. Mitterer, Surf. Coat. Technol., 146-147 (2001) 222.   DOI
10 L. Cunha, M. Andritschky, K. Pischow, Z. Wang, Thin Solid Films, 355-356 (1999) 465.   DOI
11 Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Mater. Sci. Eng., B 176 (2011) 850.
12 J. H. Paik, W. K. Han, S. G. Kang, Kor. J. Mater. Res., 20 (2010) 187.   DOI   ScienceOn
13 B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, J. Kor. Inst. Surf. Eng., 37 (2004) 146.
14 S. J. Jung, K. H. Lee, J. J. Lee, J. H. Joo, Surf. Coat. Technol., 169-170 (2003) 363.   DOI   ScienceOn
15 D. K. Lee, J. J. Lee, J. J. Joo, Suf. Coat. Technol., 173-174 (2003) 1234.
16 I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Tech., A 21 (2003) 774.