References
- M. Kang, S. Je, K. Kim, B. Shin, D. Kwon, and J. Kim, "Cutting Performance of CrN-based Coatings Tool Deposited by Hybrid Coating Method for Micro Drilling Applications," Surf. Coat. Tech., 202 [22-23] 5629-32 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.130
- S. Shin, M. Kim, M. Kang, K. Kim, D. Kwon, and J. Kim, "Cutting Performance of CrN and Cr-Si-N Coated End-mill Deposited by Hybrid Coating System for Ultra-High Speed Micro Machining," Surf. Coat. Tech., 202 [22-23] 5613-16 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.128
- K. Weng, T. Lin, and D. Wang, "Tribological Property Enhancement of CrN Films by Metal Vapor Vacuum Arc Implantation of Vanadium and Carbon Ions," Thin Solid Films, 516 [6] 1012-19 (2008). https://doi.org/10.1016/j.tsf.2007.06.162
-
F. Zhou, K. Chen, M. Wang, X. Xu, H. Meng, M. Yu, and Z. Dai, "Friction and Wear Properties of CrN Coatings Sliding Against
$Si_3N_4$ Balls in Water and Air," Wear, 265 [7-8] 1029-37 (2008). https://doi.org/10.1016/j.wear.2008.02.010 - Q. Sun and Z. Fu, "An Anode Material of CrN for LithiumIon Batteries," Electrochemical. Solid State Lett., 10 [8] A189-93 (2007). https://doi.org/10.1149/1.2745087
- S. W. Lee, J.-S. Ha, H.-J. Lee, H.-J. Lee, H. Goto, T. Hanada, T. Goto, K. Fujii, M. W. Cho, and T. Yao, "Lattice Strain in Bulk GaN Epilayers Grown on CrN/Sapphire Template," Appl. Phys. Lett., 94 [8] 082105-082107 (2009). https://doi.org/10.1063/1.3086890
- S. Tan, X. Zhang, X. Wu, F. Feng, and J. Jiang, "Comparison of Chromium Nitride Coating Deposited by DC and RF Magnetron Sputtering," Thin Solid Films, 519 [7] 2116-20 (2011). https://doi.org/10.1016/j.tsf.2010.10.067
- S. J. Jung, K. H. Lee, J. J. Lee, and J. H. Joo, "Study of Chromium and Chromium Nitride Coating Deposited by Inductively Coupled Plasma-Assisted Evaporation," Surf. Coat. Tech., 169-170 [6] 363-66 (2003). https://doi.org/10.1016/S0257-8972(03)00035-5
- B. D. Cullity, and S. R. Stock, "Element of X-ray Diffraction," 3rd. ed., pp. 167-171, Addison-wesley Publishing Conpany Inc, United States of America, 2001.
- I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, "Microstructural Evolution During Film Growth" J. Vac. Sci. Tech., A 21 [5] S117-128 (2003). https://doi.org/10.1116/1.1601610
- S. Y. Chun, "Microstructure and Mechanical Properties of Nanocrystalline TiN Films Through Increasing Substrate Bias," J. Kor. Ceram. Soc., 47 [6] 479-84 (2010). https://doi.org/10.4191/KCERS.2010.47.6.479
- N. Maazi and N. Rouag, "Consideration of Zener Drag Effect by Introducing a Limiting Radius for Neighbourhood in Grain Growth Simulation," J. Cryst. Growth, 243 [2] 361-69 (2002). https://doi.org/10.1016/S0022-0248(02)01420-3
- M. K. Lee, W. W. Kim, S. J. Kim. C. K. Lee, and Y. S. Kim, "A Study on the Characteristics of TiN Film Deposited Reactive Magnetron Sputter Ion Plating," J. Kor. Inst. Surf. Eng., 33 [2] 115-25 (2000).
- Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, and H. Zhou, "Influence of Substrate Bias Voltage on the Microstructure and Residual Stress of CrN Films Deposited by Medium Frequency Magnetron Sputtering," Mater. Sci. Eng. B., 176 [11] 850-54 (2011) https://doi.org/10.1016/j.mseb.2011.04.015
- G. R. Lee, H. Kim, H. S. Choi, and J. J. Lee, "Superhard Tantalum-Nitride Films Formed by Inductively Coupled Plasma-Assisted Sputtering," Surf. Coat. Tech., 201 [9-11] 5207-10 (2007). https://doi.org/10.1016/j.surfcoat.2006.07.207
Cited by
- Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.447
- A Study of Characteristic based on Working Pressure of ITO Electrode for Display vol.20, pp.4, 2016, https://doi.org/10.7471/ikeee.2016.20.4.392
- 직류 및 유도결합 플라즈마 마그네트론 스퍼터링법으로 제조된 HfN 코팅막의 미세구조 및 기계적 물성연구 vol.53, pp.2, 2012, https://doi.org/10.5695/jkise.2020.53.2.67
- Characteristics of HfN coatings by inductively coupled plasma-assisted magnetron sputtering vol.58, pp.2, 2012, https://doi.org/10.1007/s43207-020-00084-3