Browse > Article
http://dx.doi.org/10.5695/JKISE.2015.48.4.136

A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering  

Chun, Sung-Yong (Department of Advanced Materials Science and Engineering, Mokpo National University)
Oh, Bok-Hyun (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Journal of the Korean institute of surface engineering / v.48, no.4, 2015 , pp. 136-141 More about this Journal
Abstract
The paper presents the comparative results of NbN coatings deposited by DC and pulsed DC asymmetric bipolar magnetron sputtering systems. The results show that, with the decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar to a dense structure, with finer grains. The Pulsed sputtered NbN coatings showed higher hardness, higher residual stress, and smaller grain sizes than those of DC prepared NbN coatings. Moreover residual stress of pulsed sputtered NbN coatings increased on increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.
Keywords
Pulsed DC Sputtering; NbN; Asymmetric Bipolar; Duty cycle; Pulse frequency;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 S. Y. Chun, J. W. Baek, J. Kor. Inst. Surf. Eng., 47 (2014) 86.   DOI   ScienceOn
2 S. Y. Chun, T. Y. Lee, J. Kor. Inst. Surf. Eng., 47 (2014) 168.   DOI
3 S. Y. Lee, S. H. Kim, J. Kor. Inst. Surf. Eng., 44 (2011) 233.   DOI
4 M. A. Mamun, A. H. Farha , A. O. Er, Y. Ufuktepe, D. Gu, H. E. Elsayed-Ali, A. A. Elmustafa., Appl. Surf. Sci.258 (2012) 4308.   DOI
5 V. N. Zhitomirskyae, I.. Grimbergb, L. Rapoportc, N. A. Travitzky, R. L. Boxmana, S. Goldsmith, A. Raihel, I. Lapsker, B. Z. Weissb, Appl. Surf. Sci., 258 (2012) 4308.   DOI
6 S. Y. Yoon, Y. B. Lee, K.H. Kim Kor. Inst. Surf. Eng., 35 (2002) 199.
7 K. Baba, R. Hatada, K. Udoh, K. Yasuda, Nucl. Instru. Meth. Phys. Res. B 127/128 (1997) 841.   DOI
8 R. D. Arnell, P. J. Kelly, Surf. Coat. Technol., 112 (1999) 170.   DOI
9 S. Y. Tan, X. H. Zhang, X. J. Wu, F. Fang, J. Q. Jiang, Thin Solid Films, 519 (2011) 2116.   DOI   ScienceOn
10 R. D. Arnell, P. J. Kelly, J. W. Bradley, Surf. Coat. Tech., 188-189 (2004) 158.
11 H. C. Barshilia, K.S. Rajam, Surf. Coat. Tech., 201 (2006) 1827.   DOI   ScienceOn
12 S. H. Jun, J. H. Kim , S. K. Kim, Y. Z. You, B. C. Cha, J. Kor. Inst. Surf. Eng., 46 (2013) 187.   DOI   ScienceOn
13 E. Arslan, Surf. Eng., 26 (2010) 615.   DOI
14 S. Y. Chun, J. W. Baek, J. Kor. Inst. Surf. Eng.. 47 (2014) 100.
15 I. Petrov, P. B. Barna, L. Hultman, J. E. Greene, J. Vac. Sci. Tech. A, 21 (2003) 774.
16 N. Maazi, N. Rouag, J. Cryst, Growth, 243 (2002)
17 H. C. Barshilia, K. Yogesh, K. S. Rajam, Vacuum, 83 (2009) 427.
18 M. Ahlgren, H. Blomqvist, Surf. Coat. Tech., 200 (2005) 157.   DOI   ScienceOn
19 I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgern, J. E. Green, Thin Solid Films, 169 (1989) 299.   DOI
20 L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, J. E. Greene, J. Appl. Phys., 61 (1987)
21 J. M. Lee, C. J. Lee, K. H. Lee, B. M. Kim, Trans. Nonferrous Met. Soc. China, 22 (2012) 585.   DOI   ScienceOn
22 S. Kim, D. M. Kim, S. Kang, H. J. Kim, J. Kor. Ceram. Soc., 46 (2009) 116.   DOI   ScienceOn