Electrochemical Evaluation of Si-Incorporated Diamond-Like Carbon (DLC) Coatings Deposited on STS 316L and Ti Alloy for Biomedical Applications

  • Kim, Jung-Gu (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Lee, Kwang-Ryeol (Future Technology Research Division, Korea Institute of Science and Technology) ;
  • Kim, Young-Sik (School of Advanced Materials Engineering, Andong National University) ;
  • Hwang, Woon-Suk (School of Materials Science and Engineering, Inha University)
  • Published : 2007.02.01

Abstract

DLC coatings have been deposited onto substrate of STS 316L and Ti alloy using r.f. PACVD (plasma-assisted chemical vapor deposition) with a mixture of $C_{6}H_{6}$ and $SiH_{4}$ as the process gases. Corrosion performance of DLC coatings was investigated by electrochemical techniques (potentiodynamic polarization test and electrochemical impedance spectroscopy) and surface analysis (scanning electron microscopy). The electrolyte used in this test was a 0.89% NaCl solution of pH 7.4 at temperature $37^{\circ}C$. The porosity and protective efficiency of DLC coatings were obtained using potentiodynamic polarization test. Moreover, the delamination area and volume fraction of water uptake of DLC coatings as a function of immersion time were calculated using electrochemical impedance spectroscopy. This study provides the reliable and quantitative data for assessment of the effect of substrate on corrosion performance of Si-DLC coatings. The results showed that Si-DLC coating on Ti alloy could improve corrosion resistance more than that on STS 316L in the simulated body fluid environment. This could be attributed to the formation of a dense and low-porosity coating, which impedes the penetration of water and ions.

Keywords

References

  1. K. Bordji, J. Jouzeau, D. Mainard, E. Payan, J. Delagoutte, and P. Netter, Biomaterials, 17, 491 (1996)
  2. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, Biomaterials, 22, 1253 (2001) https://doi.org/10.1016/S0142-9612(00)00074-0
  3. I. S. Lee, Met. Mater. Int., 3, 144 (1997)
  4. R. Hauert, Diam. Relat. Mater., 12, 583 (2003)
  5. Y. Hayashi and G. Nakayama, Corrosion Science and Technology, 1, 491 (2002)
  6. H. Kim and J. J. Lee, J. Kor. Inst. Met. and Mater., 16, 11 (2003)
  7. P. Papakonstantinou, J. F Zhao, P. Lemoine, E. T. McAdams, and J. A. McLaughlin, Diam. Relat. Mater., 11, 1074 (2002)
  8. L. A. Thomson, F. C. Law, N. Rushton, and J. Franks, Biomaterials, 12, 37 (1991)
  9. D. P. Dowling, P. V. Kola, K. Donnelly, T. C. Kelly, K. Brumitt, L. Lloyd, R. Eloy, M. Therin, and N. Weill, Diam. Relat. Mater., 6, 390 (1997)
  10. R. Butter, M. Allen, L. Chandra, A. H. Lettington, and N. Rushton, Diam. Relat. Mater., 4, 857 (1995)
  11. B. Matthes, E. Brozeit, J. Aromaa, H. Ronkainen, S. P. Hannula, A. Leyland, and A. Matthews, Surf. Coat. Technol., 49, 489 (1991)
  12. Y. J. Yu, J. G. Kim, S. H. Cho, and J. H. Boo, Surf. Coat. Technol., 162, 161 (2003)
  13. T. H. Ha, D. K. Kim, J. H. Bae, H. G. Lee, and S. J. Lee, Corrosion Science and Technology, 1, 444 (2002)
  14. F. Mansfeld and C. H. Tsai, Corrosion, 49, 727 (1993)
  15. H. G. Kim, S. H. Ahn, and J. G. Kim, Diam. Relat. Mater, 14, 35 (2005)
  16. H. G. Kim, S. H. Ahn, and J. G. Kim, Thin Solid Films, 475, 291 (2005)