• Title/Summary/Keyword: X-group

Search Result 4,328, Processing Time 0.044 seconds

A Study on the Rating of the Insureds' Anthropometric Data IV. Standard Body Weight (피보험체계측치(被保險體計測値)의 평가(評價)에 관한 연구(硏究) 제4보(第4報) 표준체중(標準體重))

  • Im, Young-Hoon
    • The Journal of the Korean life insurance medical association
    • /
    • v.4 no.1
    • /
    • pp.101-109
    • /
    • 1987
  • The present study was undertaken to establish the standard body weight by height in Korean adults by using the actually measured heights and weights of a total of 5,496 insured persons who were examined medically at the Honam Medical Room of Dong Bang Life Insurance Company, Ltd. from January, 1983 to January, 1986. The results were as follows: 1. The linear regression equations to establish the standard body weight of Korean adults were as follows: In male, for $18{\sim}19$ age group, $y=7.272{\times}10^{-6}{\times}x^3+23.560$ for $20{\sim}29$ age group, $y=8.187{\times}10^{-6}{\times}x^3+22.031$ for $30{\sim}39$ age group, $y=8.627{\times}10^{-6}{\times}x^3+23.169$ for $40{\sim}49$ age group, $y=9.561{\times}10^{-6}{\times}x^3+20.994$ and for $50{\sim}59$ age group, $y=8.604{\times}10^{-6}{\times}x^3+23.801$ In female, for $18{\sim}19$ age group, $y=8.252{\times}10^{-6}{\times}x^3+18.920$ for $20{\sim}29$ age group, $y=7.715{\times}10^{-6}{\times}x^3+22.409$ for $30{\sim}39$ age group, $y=8.808{\times}10^{-6}{\times}x^3+21.439$ for $40{\sim}49$ age group, $y=9.691{\times}10^{-6}{\times}x^3+21.940$ and for $50{\sim}59$ age group, $y=12.500{\times}10^{-6}{\times}x^3+11.031$ 2. The standard age, height, and weight tables by author were presented with the aid of linear regression equations. 3. The values of standard body weight by height established by author reveal to be a little higher than those of other Korean reports through all age groups of both sexes, and reveal to be considerably similar, compared with those of the reports in Japan for fourth and sixth decade of female group.

  • PDF

ON FACTORIZATIONS OF THE SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES

  • Shi, Yi-Yun;Zhao, Hao
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1089-1100
    • /
    • 2008
  • For a pointed space X, the subgroups of self-homotopy equivalences $Aut_{\sharp}_N(X)$, $Aut_{\Omega}(X)$, $Aut_*(X)$ and $Aut_{\Sigma}(X)$ are considered, where $Aut_{\sharp}_N(X)$ is the group of all self-homotopy classes f of X such that $f_{\sharp}=id\;:\;{\pi_i}(X){\rightarrow}{\pi_i}(X)$ for all $i{\leq}N{\leq}{\infty}$, $Aut_{\Omega}(X)$ is the group of all the above f such that ${\Omega}f=id;\;Aut_*(X)$ is the group of all self-homotopy classes g of X such that $g_*=id\;:\;H_i(X){\rightarrow}H_i(X)$ for all $i{\leq}{\infty}$, $Aut_{\Sigma}(X)$ is the group of all the above g such that ${\Sigma}g=id$. We will prove that $Aut_{\Omega}(X_1{\times}\cdots{\times}X_n)$ has two factorizations similar to those of $Aut_{\sharp}_N(X_1{\times}\cdots{\times}\;X_n)$ in reference [10], and that $Aut_{\Sigma}(X_1{\vee}\cdots{\vee}X_n)$, $Aut_*(X_1{\vee}\cdots{\vee}X_n)$ also have factorizations being dual to the former two cases respectively.

Quantitative Structure-Activity Relationships of Salicylic Acid Derivatives by Quantum Chemical Calculations (양자화학적 계산에 의한 살리씰산유도체의 정량적 구조-활성 상관관계)

  • Rhee, Jong-Dal
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.80-85
    • /
    • 1988
  • QSAR of Salicylic acid derivatives, as anti-inflammatory agent, classified into Group I (not-having-5-phenyl ones) and Group II (having-5-phenyl ones) were investigated by quantum chemical calculations. The results are below: not significant statistically for both of Group I and Group II, but significant for each Group. $potency=-8.46X_{5}+1.639\;n=5\;r=0.77\;se=0.31\;for\;Group\;I.$ $({\pm}4.05)\;({\pm}0.5)$ where $X_5$ means charge of carbon atom bonded to hydroxyl radical. $potency=0.16X_{19}+7427.38HO-6629.85X_{15}+4977.40X_{10}+351.51X_5+3378.84$ $({\pm}0.17)\;({\pm}10.18)\;({\pm}11.70)\;({\pm}33.78)\;({\pm}4.41)\;({\pm}13.13)$ n=7 r=0.99 se=0.019 for Group II. where $X_{19}$ and $X_{15}$ stand for charges of the para carbon and the first carbon atoms in phenyl radical, respectively and $X_{10}$, charge of carboxylic carbon atom, HO, HOMO energy. It seems to be possible to qualitatively predict potency of drug by Pearson's HSAB theory. It means that drug should possess low LUMO energy and high HOMO energy.

  • PDF

CEPHALOMETRIC CHARACTERISTICS OF OPEN-BITE CASES WITH DEGENERATIVE JOINT DISEASE(DJD) OF TMJ

  • Kim, Tae-Woo
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.665-674
    • /
    • 1995
  • The purpose of this study is to investigate the cephalometric characteristics of the open-bite patients with DJD of TMJ. The DJD open-bite cases were compared with normal samples and Class II open-bite cases with normal TMJ respectively. Twenty three open-bite patients with bilateral DJD of TMJ($13.9\~35.3$ yens old, Group I) were selected from the Department of Orthodontics, SNUDH. Group ll consisted of thirteen Class II open-bite cases($13.2\~27.4$ years old) with no TMD signs/symtoms and good condylar shapes. Group III samples were the forty eight healthy dental students who have Class I molar relationships with no history of orthodontic treatment, good facial balance and no TMD symptoms($20.0\~26.8$ years old). First, sixty measurements in the lateral cephalometric radiographs and analysis of variance(P<0.05, Scheffe) were used to compare these three groups. The seven measurements showed significant difference(p<0.05) between Group I and Group II. After analysis of variance, six of them were used for the discriminant analysis(Wilks' stepwise analysis) and the discrminant function for Group I/Group II was obtained. The results and conclusions were as follows : In most of the measurments, Group I and Group II showed the same skeletal and dental characteristics. But seven of the sixty measurements(FH-PP angle, SNB, FH-ArGo angle, articulare angle, genial angle, upper gonial angle and Ar-Go length) were significantly different(p<0.05) between Group I and Group II. These differences may be explained by the fact that in DJD cases the mandible rotated backward due to the shortening of the ramus following the degenerative destruction of condylar head and its surrounding structures. The resulting discriminant function was : $D={-0.120X}_1+{0.066X}_2+{0.144X}_3-{0.058X}_4+2000,\;where\;X_1=ArGo\;length(mm),\;X_2=SArGo\;angle(degree),\;X_3=FH-PP\;angle(degree),\;X_4=Gonial\;angle(degree)$. Mean of the group centroids was -0.555 and percent of the 'grouped' cases correctly classified was $88.89\%$.

  • PDF

DERIVED LIMITS AND GROUPS OF PURE EXTENSIONS

  • LEE, H.J.;KIM, S.J.;HAN, Y.H.;LEE, W.H.;LEE, D.W.
    • Honam Mathematical Journal
    • /
    • v.21 no.1
    • /
    • pp.157-169
    • /
    • 1999
  • For a k-connected inverse system $({\scr{X}},\;*)=((X_{\lambda},\;*),p_{{\lambda}{{\lambda}}^{\prime}},\;{\Lambda})$ of pointed topological spaces and pointed preserving weak fibrations, inducting epimorphic chain maps, over a directed set, we show that the homotopy group ${\pi}_k(lim{\scr{X}},\;*)$ of the inverse limit is isomorphic to the integral homology group $$H_k(lim{\scr{X}};\mathbb{Z})$. Using the result of S. $Marde{\check{s}}i{\acute{c}}$, we prove that the group of pure extension $Pext(colimH^n({\scr{X}},\;A)$ is isomorphic to the group of extension $Ext({\Delta}({\lambda}),\;Hom(H^n({\scr{X}}),\;A))$.

  • PDF

POSTNIKOV SECTIONS AND GROUPS OF SELF PAIR HOMOTOPY EQUIVALENCES

  • Lee, Kee-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.393-401
    • /
    • 2004
  • In this paper, we apply the concept of the group \ulcorner(X,A) of self pair homotopy equivalences of a CW-pair (X, A) to the Postnikov system. By using a short exact sequence related to the group of self pair homotopy equivalences, we obtain the following result: for any Postnikov section X$\sub$n/ of a CW-complex X, the group \ulcorner(X$\sub$n/, A) of self pair homotopy equivalences on the pair (X$\sub$n/, X) is isomorphic to the group \ulcorner(X) of self homotopy equivalences on X. As a corollary, we have, \ulcorner(K($\pi$, n), M($\pi$, n)) ≡ \ulcorner(M($\pi$, n)) for each n$\pi$1, where K($\pi$,n) is an Eilenberg-Mclane space and M($\pi$,n) is a Moore space.

A Study on the Rating of the Insureds' Anthropometric Data III. A study on the Modified Broca's Index to Estimate Standard Body Weight of Korean Adults (피보험체계측치(被保險體計測値)의 평가(評價)에 관한 연구(硏究) 제3보(第3報) 한국성인(韓國成人)의 표준체중(標準休重) 산출(算出)을 위한 변형(變形)Broca지수(指數)에 관한 연구(硏究))

  • Im, Young-Hoon
    • The Journal of the Korean life insurance medical association
    • /
    • v.4 no.1
    • /
    • pp.44-76
    • /
    • 1987
  • Present study was undertaken to establish the modified Broca's indices to estimate standard body weight by using a total of 5,496 insured persons who were medically examined at the Honam Medical Room of Dong Bang Life Insurance Company Ltd. from January, 1983 to January, 1986. The results were as follows: 1. The linear regression equations of body weight to $height^3$ to estimate standard body weight were as follows: In male, for $18{\sim}19$ age group $y=7.272{\times}10^{-6}{\times}x^3+23.560$ for $20{\sim}29$ age group $y=8.187{\times}10^{-6}{\times}x^3+22.031$ for $30{\sim}39$ age group $y=8.627{\times}10^{-6}{\times}x^3+23.169$ for $40{\sim}49$ age group $y=9.561{\times}10^{-6}{\times}x^3+20.994$ for $50{\sim}59$ age group $y=8.604{\times}10^{-6}{\times}x^3+23.081$ and for all ages group $y=7.778{\times}10^{-6}{\times}x^3+25.929$ In female, for $18{\sim}19$ age group $y=8.252{\times}10^{-6}{\times}x^3+18.920$ for $20{\sim}29$ age group $y=7.715{\times}10^{-6}{\times}x^3+22.409$ for $30{\sim}39$ age group $y=8.808{\times}10^{-6}{\times}x^3+21.440$ for $40{\sim}49$ age group $y=9.691{\times}10^{-6}{\times}x^3+21.940$ for $50{\sim}59$ age group $y=12.550{\times}10^{-6}{\times}x^3+11.031$ and for all ages group $y=7.300{\times}10^{-6}{\times}x^3+26.601$ In both sexes, for all ages group $y=8.342{\times}10^{-6}{\times}x^3+22.998$ 2. The modified Broca's index is expressed by formula $\{height(cm)-100\}{\times}K(kg)$. K is obtained from the following formula standard weight to average height estimated $\frac{by\;means\;of\;linear\;regression\;equation(kg)}{\{Average\;height(cm)-100\}{\times}K(kg)}$=1 Author's modified Broca's indices are as follows: In male, for $18{\sim}19$ age group $\{height(cm)-100\}{\times}0.85(kg)$ for $20{\sim}29$ age group $\{height(cm)-100\}{\times}0.90(kg)$ for $30{\sim}39$ age group $\{height(cm)-100\}{\times}0.95(kg)$ for $40{\sim}49$ age group $\{height(cm)-100\}{\times}1.00(kg)$ for $50{\sim}59$ age group $\{height(cm)-100\}{\times}0.95(kg)$ and for all ages group $\{height(cm)-100\}{\times}0.95(kg)$ In female, for $18{\sim}19$ age group $\{height(cm)-100\}{\times}0.90(kg)$ for $20{\sim}29$ age group $\{height(cm)-100\}{\times}0.90(kg)$ for $30{\sim}39$ age group $\{height(cm)-100\}{\times}1.00(kg)$ for $40{\sim}49$ age group $\{height(cm)-100\}{\times}1.05(kg)$ for $50{\sim}59$ age group $\{height(cm)-100\}{\times}1.05(kg)$ and for all ages group $\{height(cm)-100\}{\times}1.00(kg)$ In both sexes, for all age group $\{height(cm)-100\}{\times}0.95(kg)$ 3. Several types of modified Broca's index recommended by author are as follows: I. In male, for $18{\sim}29$ age group $\{height(cm)-100\}{\times}0.90(kg)$ and for $30{\sim}59$ age group $\{height(cm)-100\}{\times}0.95(kg)$ In female, for $18{\sim}29$ age group $\{height(cm)-100\}{\times}0.90(kg)$ and for $30{\sim}39$ age group $\{height(cm)-100\}{\times}1.00(kg)$ II. In male, for all ages group $\{height(cm)-100\}{\times}0.95(kg)$ In female, for all ages group $\{height(cm)-100\}{\times}1.00(kg)$ III. In both sexes, for all ages group $\{height(cm)-100\}{\times}0.95(kg)$ Note: The first type of modified Broca's index is the most precise one in estimating standard body weight among several types established by author. 4. Error of estimated standard body weight appearing by applying modified Broca's indices is generally greater in short build persons than in tall build persons and is more dominant especially in female group.

  • PDF

THE AUTOMORPHISM GROUP OF COMMUTING GRAPH OF A FINITE GROUP

  • Mirzargar, Mahsa;Pach, Peter P.;Ashrafi, A.R.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1145-1153
    • /
    • 2014
  • Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and $x,y{\in}X$ ($x{\neq}y$) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ${\Delta}(G)$. The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(${\Delta}(G)$) is abelian if and only if ${\mid}G{\mid}{\leq}2$; ${\mid}Aut({\Delta}(G)){\mid}$ is of prime power if and only if ${\mid}G{\mid}{\leq}2$, and ${\mid}Aut({\Delta}(G)){\mid}$ is square-free if and only if ${\mid}G{\mid}{\leq}3$. Some new graphs that are useful in studying the automorphism group of ${\Delta}(G)$ are presented and their main properties are investigated.

TOPOLOGY FIELDS, TOPOLOGICAL FLOWS AND TOPOLOGICAL ORGANISMS

  • Kim, Jae-Ryong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.53-69
    • /
    • 2013
  • Topology may described a pattern of existence of elements of a given set X. The family ${\tau}(X)$ of all topologies given on a set X form a complete lattice. We will give some topologies on this lattice ${\tau}(X)$ using a topology on X and regard ${\tau}(X)$ a topological space. A topology ${\tau}$ on X can be regarded a map from X to ${\tau}(X)$ naturally. Such a map will be called topology field. Similarly we can also define pe-topology field. If X is a topological flow group with acting group T, then naturally we can get a another topological flow ${\tau}(X)$ with same acting group T. If the topological flow X is minimal, we can prove ${\tau}(X)$ is also minimal. The disjoint unions of the topological spaces can describe some topological systems (topological organisms). Here we will give a definition of topological organism. Our purpose of this study is to describe some properties concerning patterns of relationship between topology fields and topological organisms.

CHOW GROUPS OF COMPLETE REGULAR LOCAL RINGS III

  • Lee, Si-Chang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.221-227
    • /
    • 2002
  • In this paper we will show that the followings ; (1) Let R be a regular local ring of dimension n. Then $A_{n-2}$(R) = 0. (2) Let R be a regular local ring of dimension n and I be an ideal in R of height 3 such that R/I is a Gorenstein ring. Then [I] = 0 in $A_{n-3}$(R). (3) Let R = V[[ $X_1$, $X_2$, …, $X_{5}$ ]]/(p+ $X_1$$^{t1}$ + $X_2$$^{t2}$ + $X_3$$^{t3}$ + $X_4$$^2$+ $X_{5}$ $^2$/), where p $\neq$2, $t_1$, $t_2$, $t_3$ are arbitrary positive integers and V is a complete discrete valuation ring with (p) = mv. Assume that R/m is algebraically closed. Then all the Chow group for R is 0 except the last Chow group.group.oup.