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TOPOLOGY FIELDS, TOPOLOGICAL FLOWS AND
TOPOLOGICAL ORGANISMS

Jae-Ryong Kim*

Abstract. Topology may described a pattern of existence of ele-
ments of a given set X. The family τ(X) of all topologies given on a
set X form a complete lattice. We will give some topologies on this
lattice τ(X) using a topology on X and regard τ(X) a topological
space.

A topology τ on X can be regarded a map from X to τ(X)
naturally. Such a map will be called topology field. Similarly we
can also define pe-topology field. If X is a topological flow group
with acting group T , then naturally we can get a another topological
flow τ(X) with same acting group T . If the topological flow X is
minimal, we can prove τ(X) is also minimal.

The disjoint unions of the topological spaces can describe some
topological systems (topological organisms). Here we will give a
definition of topological organism. Our purpose of this study is
to describe some properties concerning patterns of relationship be-
tween topology fields and topological organisms.

1. Introduction

Let X be a topological space with topology τ and p be a point of
X. The set of all nbds of p will be denoted by N(p). We can easily
verify that N(p) ∪ {∅ } become a topology on X for any point p in X.
Moreover the collection of all open nbds of p and empty set, that is,
{V ∈ τ |p ∈ V } ∪ {∅} becomes a topology on X for any point p ∈ X.
We will denote such a topology by τp and call localized topology of τ at
p. Clearly τp is weaker than N(p) ∪ {∅ }. We will denote the localized
topology of the discrete topology P(X) on X at p by 1p.
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It is easy to show that (X, τ) is T0 if and only if the localized topologies
of τ at any two points are different with each other. We may regard X
as the subset {1p| p ∈ X} of τ(X) since the localized topologies of
the discrete topology at distinct point are different. If we denote τ e

p by
τ e
p = {U ∈ τ |p /∈ U} ∪ {X}, then it is also a topology on X. Moreover

τp∩τ e
p = {∅, X} and τp∪τ e

p = τ . We will call it point p excluded topology
or pe-topology of τ at p.

Theorem 1.1. Let τ and η be two topologies on X . Then τ = η if
and only if the localized topologies τp, ηp are equal for every point p in
X. Moreover (τp)q = (τq)p.

This Theorem 1.1 tells us that if some points of the set X change
their nbds, that is, change their localized topologies, then the ”entire”
topology of X will be changed. The family τ(X) would consist of all
topologies on a given fixed set X. Here we want to study some conditions
concerning the family τ(X) of all the topologies of the given set X.

2. Topology fields and pe-topology fields on X.

The family τ(X) of all topologies on X form a complete lattice, that
is, given any collection of topologies on X, there is a smallest ( respec-
tively largest) topology on X containing( contained in) each member
of the collection. Of course, the partial order ≤ on τ(X) is defined by
inclusion ⊂ naturally.

Given a collection of topologies { τj | j ∈ J } ⊂ τ(X), we write ∧j∈J

τj and ∨j∈J τj for their infimum and supremum with respect to this
lattice. Of course, ∧j∈J τj is just ∩j∈J τj , whereas ∨j∈J τj has ∪j∈J τj

as a subbasis . The smallest topology in this lattice τ(X) is {∅, X} and
the largest one is P(X). These topologies will sometimes be denoted by
0 and 1 respectively.

Denote τp(X) = {ηp | η ∈ τ(X) } for a point p ∈ X. Since τ(X)
is a complete lattice, we can easily find that τp(X) is a sublattice of
τ(X). The smallest element of this sublattice τp(X) is 0p=0, the largest
element is P(X)p=1p 6=1. We will call this sublattice τp(X) as sublattice
of all localized topologies at p in X. Now we will regard any member τ of
τ(X) as a map from X to ∪pτp(X) ⊂ τ(X) defined by τ(p) = τp. Hence
this map τ acts like a vector field on X. Such a map f : X → τ(X)
defined by f(p)∈ τp(X) will be called topology field on X[7].
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Since τ(X) is a complete lattice, every topology field is a member of
τ(X)X consisting of all mappings from X to τ(X). Hence every topology
field acts as a τ(X)−fuzzy subset on X.

If f is a map from X to τ(X) defined by f(p)∈τp(X), can we find a
topology ζ such that ζp = f(p) ? In general, we can not find the correct
topology ζ such that ζp = f(p).[7]

Moreover, for every point p of X, we can have a map prp : τ(X) →
τp(X) defined by prp(τ) = τp. This map prp also will be called projection
from τ(X ) to τp(X ) [7]. And we can have naturally inclusion map
in : τp(X) → τ(X) defined by in(ζp) = ζp ∈ τ(X). It is easy to find that
the projections prp:τ(X)→τp(X) are monotone.

Similarly denote τ e
p (X) = {ηe

p | η ∈ τ(X) } for a point p ∈ X. Since
τ(X) is a complete lattice, we can easily observe that τ e

p (X) is a sublat-
tice of τ(X). The smallest element of this sublattice τ e

p (X) is 0e
p=0, but

the largest element is P(X)e
p=1e

p 6=1. We will call this sublattice τ e
p (X)

as sublattice of all pe-localized topologies at p in X.
Now we regard any member τ of τ(X) as a map from X to ∪pτ

e
p (X)

⊂ τ(X) defined by τ(p) = τ e
p . Hence this map τ acts also like a vec-

tor field on X. In order to avoid the confusion with topology field, we
will use symbol τ e instead of this map τ . Such a map g from X to
∪pτ

e
p (X) ⊂ τ(X) defined by g(p)∈ τ e

p (X) ⊂ τ(X) will be called pe-
topology field on X. And now we can have a map pre

p from τ(X) onto
τ e
p (X) ⊂ τ(X) defined by pre

p(τ) = τ e
p for every point p of X. This map

pre
p also will be called pe − projection from τ(X ) to τ e

p (X ).

Let (X, τ) be a topological space. We want to find some topologies
on τ(X) induced by the given topology τ which provides the continuity
of topology fields and projections.

Definition 2.1. [7] Let (X, τ) be a topological space, and G ∈ τ .
Let i(G)={ζ∈τ(X) |G∈ζ} and denote ε={i(G)|G∈τ}, a family of subset
of τ(X). Then there is exactly one topology Inτ on τ(X) with ε as a
subbasis. We will call this topology as inner topology induced by the
topology τ . And the relative topology of Inτ in τp(X) will be denoted
by RInτ briefly. Note that In1 need not be the discrete topology in
τ(X).

Theorem 2.2. (τ(X), In1) is T0 space.

Proof. Let η, ζ ∈ τ(X) with η 6= ζ. There there exists at least one
G ∈ 1 which is included in the one of them and is excluded from the
other one. Say, G ∈ η and G /∈ ζ. Hence η ∈ i(G) and ζ /∈ i(G).
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If ζ ≤ η, then ∀ G ∈ ζ, G ∈ η. That is, if i(G) 3 ζ, then i(G)∩{η} 6=
∅. This implies ζ ∈ {η}. Conversely ζ ∈ {η} implies ζ ≤ η. If this
relation holds we say that ζ is a specialization of η [9]. For any η ∈ τ(X)
we will denote the subset {ζ ∈ τ(X)|ζ ≥ η} by ↑ (η). (We shall also use
later the notation ↓ (η) for {ζ ∈ τ(X)|ζ ≤ η}. Then since i(G) = { ζ ∈
τ (X) | G ∈ ζ } , i(G) = ↑ ({∅, X, G}). Hence ζ ∈ {η} iff ζ ≤ η. Since
Alexandrov topology Υ on τ(X) is the collection of all upper sets in τ(X)
(i.e. sets U such that η ∈ U and η ≤ ζ imply ζ ∈ U) [9], i(G) ∈ Υ.
Hence we have the following result

Theorem 2.3. If τ ≤ ζ ≤ 1, then Inτ ≤ Inζ ≤ In1 ≤ Υ.

Proof. Let i(G) ∈ Inτ . Then G ∈ τ ≤ ζ. Hence G ∈ ζ. Consequently
i(G) = {α ∈ τ(X)|G ∈ α} ∈ Inζ . This implies Inτ ≤ Inζ . Since every
subbasic open set i(G) is a upper set, every open set must be an upper
set(cf. proposition 1.8 II [9]). This completes the proof.

Now we consider In as a map from τ(X) to τ(τ(X)) defined by
In(η) = Inη. Then we have some results:

Theorem 2.4. In : (τ(X), Υ) → (τ(τ(X)),Υ) is continuous.

Proof. Let ζ ∈ τ(X) and K is a neighborhood of In(ζ) = Inζ . Then
K is a upper set in τ(τ(X)). On the other hand the upper set ↑ (ζ) in
τ(X) is a nbd of ζ. We will show that In(↑ (ζ)) ⊂ K. Let δ ∈↑ (ζ).
Then δ ≥ ζ and Inδ ≥ Inζ . Hence we have Inδ ∈ K.

Theorem 2.5. ((τ(X), Inτ ), ∧) and ((τ(X), Υ), ∧) are topological
monoids.

Proof. We will prove only the case of ((τ(X), Inτ ), ∧). The other
case is similar. First closeness of the operation ∧ is trivial. Moreover
we can easily get the associative law. The largest element 1 in τ(X) is
the identity element for this operation ∧. Now we will prove that the
binary operation ∧ : τ(X) × τ(X) → τ(X) is continuous. Let i(G) be
an nbd of ζ ∧ η. Then G ∈ ζ and G ∈ η. Thus i(G) × i(G) is a nbd of
(ζ, η) and ∧(i(G)× i(G)) ⊂ i(G). This completes the theorem.

Theorem 2.6. [7] Topology field ζ:(X,τ) → (τ(X), Inτ ) and pro-
jection prp:(τ(X), Inτ ) → (τp(X), RInτ ) are continuous. Moreover
inclusion in : (τp(X), RInτ ) → (τ(X), Inτ ) is continuous.

Proof. Let p ∈X and i(G) be a subbasic open nbd of ζ(p)=ζp. Then
G∈ζp. This implies p∈G∈ζ. Moreover since G∈τ , G is a nbd of p. Hence
if q∈G, ζ(q)=ζq∈i(G), so that ζ(G) ⊂ i(G). This shows that topology
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field ζ is continuous. Now let η∈τ(X) and i(G)∩τp(X) be a subbasic
open nbd of prp(η) = ηp. Then G ∈ ηp. Consequently p ∈ G ∈ η. This
means that i(G) is a nbd of η. Moreover prp(i(G)) ⊂ i(G)∩τp(X). In
fact, if ζ ∈ i(G), then G ∈ ζ. Since p ∈ G, G ∈ ζp. Hence ζp ∈ i(G).
This means that projection prp is continuous. Finally the continuity of
inclusion is natural.

Let f :(X, τ) → (Y , η) be a continuous surjective map. If we define a
map f∗:τ(X) → τ(Y ) by f∗(w)={U ⊂ Y |f−1(U) ∈ w}, then f∗(0) = 0
and f∗(1) = 1. Let ω ∈ τ(X). For any subbasic open neighborhood
i(G) of f∗(ω), G ∈ f∗(ω). Thus f−1(G) ∈ ω. Hence ω ∈ i(f−1(G)).
So that i(f−1(G)) is an open neighborhood of ω. Conversely, if ζ ∈
i(f−1(G)) then f−1(G) ∈ ζ, G ∈ f∗(ζ), f∗(ζ) ∈ i(G), and ζ ∈ f−1∗ (i(G)).
Consequently we have

f−1
∗ (i(G)) = i(f−1(G)).

Note that i(G)∪ {0} is also complete sublattice of τ(X) for a G ∈ τ .
We will denote this sublattice i(G) ∪ {0} by iF (G). Then naturally we
can restrict domain of definition of this map f∗ to iF (H) for some open
H in X. Hence we can have f∗ : iF (f−1(G)) → iF (G) for each open G
in (Y, η).

Theorem 2.7. Let f :(X, τ) → (Y , η) be a continuous bijective map.
Then the induce map f∗ : iF (f−1(G)) → iF (G) is bijective for each open
G in (Y, η).

Proof. In fact, since f : X → Y is continuous, for each open G in
(Y, η), f−1(G) ∈ τ . If ζ ∈ iF (f−1(G)), then ζ = 0 or f−1(G) ∈ ζ.
Hence f∗(0) = 0 ∈ iF (G) or G ∈ f∗(ζ). This implies f∗(ζ) ∈ iF (G).
Now let f∗(α) = f∗(β) for α, β ∈ iF (f−1(G)). Then for all U ∈ α, U =
f−1(f(U)) ∈ α. So that f(U) ∈ f∗(α) = f∗(β). Hence U ∈ β. So that
α = β. This implies that f∗ is injective. Now let δ(6= 0) ∈ iF (G). Then
ϑ = {f−1(U)|U ∈ δ} ∈ iF (f−1(G)). And f∗(ϑ) = δ. This completes the
proof.

Theorem 2.8. Let f :(X, τ) → (Y , η) be a continuous map. If we
define a map f∗:τ(X) → τ(Y ) by f∗(w)={U ⊂ Y |f−1(U) ∈ w}, then
the map f∗ is continuous. If γ ≤ δ, then f∗(γ) ≤ f∗(δ) and f∗(τ)≥η.
And for any topology field ζ, the diagram

(X, τ)
f−→ (Y, η)

↓ ζ ↓ f∗(ζ)
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(τ(X), Inτ )
f∗−→ (τ(Y ), Inη)

↓ prp ↓ prf(p)

(τp(X),RInτ )
f∗−→ (τf(p)(Y ),RInη)

commutes. If, furthermore, (Z, θ) is a topological space and g: (Y , η)
→ (Z, θ) is a map, then

(g ◦ f)∗ = g∗ ◦ f∗.

Finally, if f :(X ,τ) → (X, τ) is the identity homeomorphism, then so is
f∗.

Proof. Let ω ∈ τ(X). For any subbasic open neighborhood i(G) of
f∗(ω), G ∈ f∗(ω). Thus f−1(G) ∈ ω. Hence ω ∈ i(f−1(G)). So that
i(f−1(G) is a open neighborhood of ω. Conversely if ζ ∈ i(f−1(G)), then
f−1(G) ∈ ζ. G ∈ f∗(ζ). f∗(ζ) ∈ i(G). ζ ∈ f−1∗ (i(G)). Consequently we
have

f−1
∗ (i(G)) = i(f−1(G)).

This means f∗ is continuous. Moreover

f∗(ζp) = {U |f−1(U) ∈ ζp} = {U |p ∈ f−1(U) ∈ ζ}
= {U |f(p) ∈ U, f−1(U) ∈ ζ} = {U |U ∈ f∗(ζ), f(p) ∈ U}
= f∗(ζ)f(p).

This implies upper diagram commutes. And similarly we can have the
lower diagram commutes. All other statements follow directly from the
definitions.

Consequently for a fixed topology ζ we can have a continuous map
defined by ∧ζ : τ(X) → τ(X),∧ζ(η) = ζ ∧ η. Let f :(X, τ) → (Y , η) be
a continuous map. If we define a map f∗:τ(X) → τ(Y ) by f∗(w)={U ⊂
Y |f−1(U) ∈ w}, then

f∗(ζ ∧ η) = {U |f−1(U) ∈ ζ ∧ η} = {U |f−1(U) ∈ ζ} ∧ {U |f−1(U) ∈ η}
= f∗(ζ) ∧ f∗(η).

Thus we have the following commutative diagram

(τ(X), Inτ )
f∗−→ (τ(Y ), Inη)

↓ ∧ζ ↓ ∧f∗(ζ)

(τ(X), Inτ )
f∗−→ (τ(Y ), Inη).

Using the same method we can also have next theorem
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Corollary 2.9. [7] Let f :(X, τ) → (Y , η) be a continuous map. If
we define a map fη

∗ :τ(X) → τ(Y ) by fη
∗ (w)={U ∈ η|f−1(U) ∈ w}, then

the map fη
∗ is continuous and fη

∗ (τ)=η. Moreover, for any topology field
ζ, the diagram

(X, τ)
f−→ (Y, η)

↓ ζ ↓ fη
∗ (ζ)

(τ(X), Inτ )
fη
∗−→ (τ(Y ), Inη)

↓ prp ↓ prf(p)

(τp(X),RInτ )
fη
∗−→ (τf(p)(Y ),RInη)

commutes. If, furthermore, (Z, θ) is a topological space and g: (Y , η)
→ (Z, θ) is a map, then

(g ◦ f)θ
∗ = gθ

∗ ◦ fη
∗ .

Now we will give another topology on τ(X) which provide the conti-
nuity of pe-topology fields and pe-projections.

Definition 2.10. Let (X, τ) be a topological space, and G ∈ τ . Let
o(G)={ζ∈τ(X) |G/∈ζ} and denote εo={o(G)|G∈τ}, a family of subset
of τ(X) with o(X)=o(∅)=∅. Then there is exactly one topology Outτ on
τ(X) with εo as a subbasis. We will call this topology outer topology
induced by the topology τ . And the relative topology of Outτ in τp(X)
will be denoted by ROutτ briefly.

Using the notation ↑ we can describe o(G) by τ(X)− i(G)=τ(X)− ↑
({∅, X, G}). Note that o(G) ∪ {1} is also complete lattice for a G ∈ τ .
Also we will denote this sublattice o(G) ∪ {1} by oF (G).

Theorem 2.11. (τ(X), Out1) is T0 space.

Proof. Let η, ζ ∈ τ(X) with η 6= ζ. There there exists at least one
G ∈ 1 which is included in one of them and is excluded from the other
one. Say, G ∈ η,G /∈ ζ. Hence η /∈ o(G), ζ ∈ o(G).

If ζ ≤ η, then ∀ G /∈ η, G /∈ ζ. That is, if o(G) 3 η, then o(G)∩{ζ} 6= ∅.
This implies η ∈ {ζ}. Conversely η ∈ {ζ} implies ζ ≤ η. Hence η ∈ {ζ}
iff ζ ≤ η. Since o(G) = { ζ ∈ τ (X) | G /∈ ζ } , o(G) = τ(X)−
↑ ({∅, X, G}) is a lower set(cf. 2.1 I [9]). Now we will define a topology
⊥ to be the collection of all lower sets in τ(X). It is clearly a topology,
since it is closed under arbitrary unions and intersections. Hence we
have
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Theorem 2.12. If τ ≤ ζ ≤ 1, then Outτ ≤ Outζ ≤ Out1 ≤ ⊥.

Proof. We will prove the case of Outτ ≤ Outζ . Let o(G) ∈ Outτ .
Then G ∈ τ and consequently G ∈ ζ. Hence o(G) = {α ∈ τ(X)|G /∈
α} ∈ Outζ . Since every subbasic open set o(G) is a lower set, every open
set must be an lower set. This completes the proof.

Now we consider Out as a map from τ(X) to τ(τ(X)) defined by Out(η) =
Outη. Then we have

Theorem 2.13. In : (τ(X),⊥) → (τ(τ(X)),⊥) is continuous.

Proof. Let ζ ∈ τ(X) and K be a neighborhood of Out(ζ) = Outζ .
Then K is a lower set in τ(τ(X)). On the other hand the lower set ↓ (ζ)
in τ(X) is a nbd of ζ. We will show that Out(↓ (ζ)) ⊂ K. Let δ ∈↓ (ζ).
Then δ ≤ ζ and Outδ ≤ Outζ . Hence we have Outδ ∈ K.

Theorem 2.14. ((τ(X), Outτ ), ∨) and ((τ(X),⊥), ∨) are topolog-
ical monoids.

Proof. We will prove only the case of ((τ(X), Outτ ), ∨). The other
case is similar. First closeness of the operation ∨ is trivial. Moreover
we can easily get the associative law. The smallest element 0 in τ(X)
is the identity element for this operation ∨. Now we will prove that the
binary operation ∨ : τ(X) × τ(X) → τ(X) is continuous. Let o(G) be
an nbd of ζ ∨ η. Then G /∈ ζ and G /∈ η. Thus o(G)× o(G) is a nbd of
(ζ, η) and ∨(o(G)× o(G)) ⊂ o(G). This completes the theorem.

Consequently for a fixed topology ζ we can have a continuous map
defined by ∨ζ : τ(X) → τ(X),∨ζ(η) = ζ ∨ η.

Theorem 2.15. Let τ ≤ δ. Then the pe-topology field δe : (X,τ) →
(τ(X), Outτ ) and pe-projection pre

p:(τ(X), Outτ ) → (τ e
p (X), ROutτ )

are also continuous.

Proof. Let p ∈ X and o(G) be a subbasic open nbd of δe(p)=δe
p. Then

G/∈δe
p={A ∈ δ|p /∈ A} ∪ {X}. This implies p∈G. Since G∈τ , G is a nbd

of p. If q ∈ G, G /∈ δe(q) = δe
q . Hence δe

q ∈ o(G). This implies that
δe(G) ⊂ o(G). It implies that the pe-topology field δe is continuous.

Now let η∈τ(X) and o(G)∩τ e
p (X) be a subbasic open nbd of pre

p(η)
= ηe

p. Hence we get p ∈ G. For any ζ ∈ o(G) we have G /∈ ζ and G /∈ ζe
p .

This implies ζe
p ∈ o(G)∩τ e

p (X). Consequently pre
p(o(G)) ⊂ o(G)∩τ e

p (X).
This means that pe-projection pre

p is continuous.
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Let f :(X, τ) → (Y , η) be a continuous surjective map. If we define a
map f∗:τ(X) → τ(Y ) by f∗(w)={U ⊂ Y |f−1(U) ∈ w}, then f∗(0) = 0
and f∗(1) = 1. Similarly as in the case of inner topology we can restrict
domain of definition of this map f∗ to oF (G) for some open G in X. We
then have f∗ : oF (f−1(H)) → oF (H) for each open H in (Y, η). In fact,
since f : X → Y is continuous, for each open H in (Y, η), f−1(H) ∈ τ . If
ζ ∈ oF (f−1(H)), then ζ = 1 or f−1(H) /∈ ζ. Hence f∗(1) = 1 ∈ oF (H) or
H /∈ f∗(ζ). This implies f∗(ζ) ∈ oF (H). Moreover if f :(X, τ) → (Y , η)
is injective, f∗ : oF (f−1(H))→ oF (H) is surjective. For δ(6= 1) ∈ oF (H),
ϑ = {f−1(U)|U ∈ δ} ∈ oF (f−1(H)). And f∗(ϑ) = δ. Hence we have

Theorem 2.16. Let f :(X, τ) → (Y , η) be a continuous bijective
map. Then the induce map f∗ : iF (f−1(H)) → iF (H) is bijective for
each open H in (Y, η).

Theorem 2.17. Let τ ≤ ζ. Let f :(X, τ) → (Y , η) be a continuous
map. If we define a map f∗:τ(X) → τ(Y ) by f∗(w)={U ⊂ Y |f−1(U) ∈
w}, then the map f∗ is continuous and f∗(τ)≥η. Moreover, for any
topology field ζ, the diagram

(X, τ)
f−→ (Y, η)

↓ ζe
p ↓ f∗(ζ)e

f(p)

(τ(X), Outτ )
f∗−→ (τ(Y ), Outη)

↓ pre
p ↓ pre

f(p)

(τp(X), ROutτ )
f∗−→ (τf(p)(Y ), ROutη)

commutes. If, furthermore, (Z, θ) is a topological space and g: (Y , η)
→ (Z, θ) is a map, then

(g ◦ f)∗ = g∗ ◦ f∗.

Finally, if f :(X ,τ) → (X, τ) is the identity homeomorphism, then so is
f∗.

Proof. Let ω ∈ τ(X). For any subbasic open neighborhood o(G) of
f∗(ω), G /∈ f∗(ω). Thus f−1(G) /∈ ω. Hence ω ∈ o(f−1(G)). So that
o(f−1(G) is a open neighborhood of ω. Conversely if ζ ∈ o(f−1(G)), then
f−1(G) /∈ ζ. G /∈ f∗(ζ). f∗(ζ) ∈ o(G). ζ ∈ f−1∗ (o(G)). Consequently we
have

f−1
∗ (o(G)) = o(f−1(G)).

This means f∗ is continuous. And we can easily see that the diagram
commutes. Moreover the other statements follow directly from the def-
initions.
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Using the same method in above theorem we can have

Corollary 2.18. Let τ ≤ ζ. Let f :(X, τ) → (Y , η) be a continuous
map. If we define a map fη

∗ :τ(X) → τ(Y ) by fη
∗ (w)={U ∈ η|f−1(U) ∈

w}, then the map fη
∗ is continuous and fη

∗ (τ)=η. Moreover, for any
topology field ζ, the diagram

(X, τ)
f−→ (Y, η)

↓ ζe
p ↓ fη

∗ (ζ)e
f(p)

(τ(X), Outτ )
fη
∗−→ (τ(Y ), Outη)

↓ pre
p ↓ pre

f(p)

(τp(X), ROutτ )
fη
∗−→ (τf(p)(Y ), ROutη)

commutes. If, furthermore, (Z, θ) is a topological space and g: (Y , η)
→ (Z, θ) is a map, then

(g ◦ f)θ
∗ = gθ

∗ ◦ fη
∗ .

Finally, if f :(X ,τ) → (X, τ) is the identity homeomorphism, then so is
f∗.

Let f :(X, τ) → (Y , η) be a continuous map. Then we have

f∗(ζ ∨ η) = {U |f−1(U) ∈ ζ ∨ η} ≥ {U |f−1(U) ∈ ζ} ∨ {U |f−1(U) ∈ η}

= f∗(ζ) ∨ f∗(η).

Thus if τ ≤ ζ, then we have the following commutative diagram

(τ(X), Outτ )
f∗−→ (τ(Y ), Outη)

↓ ∨ζ ↓ ∨f∗(ζ)

(τ(X), Outτ )
f∗−→ (τ)(Y ), Outη).
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3. Topological flow (X, T, π) and topologies on X

A topological flow(or transformation group) is a triple (X, T, π), where
X is a topological space(phase space), T is a topological group(acting
group), and π is a continuous map from X×T to X satisfying
(i)π(x, e) = x (x ∈ X, e the identity of T )
(ii)π(π(x, s), t) = π(x, st) (x ∈ X, s, t ∈ T ).

Each t∈T defines a continuous map πt from X to X by πt(x)=π(x, t).
If t, s∈T , then it is immediate that πsπt=πts; in particular, πtπt−1

=πe,
the identity map of X, so each πt is a homeomorphism of X onto itself,
with (πt)−1=πt−1

. In general, we will identify an element t∈T with the
homeomorphism πt of X. Thus T may be regard as a subgroup of the
total homeomorphism group of X. Moreover, the topology of acting
group is really not important. For this reason we will frequently assume
that the acting group T has the discrete topology.

Theorem 3.1. If (X, T, π) is a flow with discrete acting group T , we
have a flow (τ(X), T, π∗) with the same acting group T .

Proof. Here we will prove the theorem only in the case of τ(X) which
has outer topology Inτ induced by τ . The other case is due to the same
method. Since each t∈T defines a continuous map(homeomorphism)
πt(= t) of X to X by πt(x)(= t(x))=π(x, t)= xt, we can get induced
continuous map(homeomorphism) t∗ of τ(X) to itself by theorem 2.8.
Thus we can define a map π∗
π∗ : τ(X)×T −→ τ(X), π∗(ζ, t) = ζt = t∗(ζ) = {U ⊂ X|t−1(U) ∈ ζ}.
Then this map π∗ is well defined and continuous. Indeed, for a open
subset G of X, t−1(G) is also open. Moreover, by theorem 2.8, we can
get π∗(i(t−1(G)), t) ⊂ i(G). This implies that the map π∗ is continuous.
Finally we can easily find that π∗(ζ, e)=ζ and π∗(π∗(ζ, s), t)=π∗(ζ, st).

Theorem 3.2. [7] Let (X,T, π) be a flow with discrete acting group
T and (τ(X), T, π∗) be the induced flow with the same acting group T .
Then, between the projection maps prπ(x,t)=prxt and prx, the equation

prπ(x,t)(π∗(ζ, t)) = t∗(ζ)xt = t∗(ζx) = π∗(ζx, t)

holds.

A fixed point of the flow (X, T, π) is a point x0 such that x0t=x0,
for all t∈T . By the definition of π∗ : τ(X) × T → τ(X), we can have
π∗(P(X), t)=t∗(P(X))=P(X), and π∗({∅, X}, t)= {∅, X} for every t∈T .
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Theorem 3.3. Let (τ(X), T, π∗) be the induced flow with the same
acting group T by (X, T, π). Then the phase space topology τ on X is
a fixed point of (τ(X), T, π∗).

Proof. Since πt = t : (X, τ) → (X, τ) is a homeomorphism for every
t ∈ T , π∗(τ, t) = t∗(τ) = {U ⊂ X|t−1(U) ∈ τ} = τ . This completes the
proof.

In any mathematical system, one is interested in the maps which
respect the structure of the system. The appropriate maps in topological
dynamics are those which are continuous and equivariant. To be precise,
let (X, T ) and (Y, T ) be flows with same acting group. A homomorphism
from X to Y is a continuous map φ:X−→Y such that

φ(xt) = φ(x)t (x ∈ X, t ∈ T ).

Hence from the above theorems in section 2 and definitions, we have

Theorem 3.4. Let (X, T, π) be a flow with discrete acting group T
and (τ(X), T, π∗) be the induced flow with the same acting group T .
Then the topology field ζ : (X, τ) −→ (τ(X), Inτ ) is a homomorphism.

Proof. Since t is a bijective, we can easily have

ζ(xt) = {U |U ∈ ζ, xt ∈ U } ∪ {∅}
= {U |U ∈ ζ, x ∈ t−1 (U )} ∪ {∅}
= {U |x ∈ t−1 (U ) ∈ ζ} ∪ {∅}
= {U |t−1 (U ) ∈ ζx}
= t∗(ζx) = t∗(ζ(x)) = π∗(ζ(x), t) = ζ(x)t.

The point x and y of a flow X are said to be proximal [2] if there exists
a net {ti} of elements of T such that limxti = lim yti. The points x and y
are distal if either x = y or x and y are not proximal. A homomorphism
φ : X → Y is said to be distal(proximal) provided that whenever φ(x1) =
φ(x2), with x1 6= x2, then x1 and x2 are distal(proximal) [2].

Theorem 3.5. If x and y are proximal, then η(x) and η(y) are also
proximal. Hence every topology field preserves the proximity. Similarly
we can have every co topology field preserves the proximity.

Proof. We will prove theorem for case of the topology field. The
other case follows with the same method. Let G ∈ τ be any open. Let
lim π∗(η(x), ti) = lim ti∗(ηx) = lim{U ∈ τ |t−1

i (U) ∈ ηx} ∈ i(G), where
{ti} is a net of elements of T . Then for almost all i, {U ∈ τ |t−1

i (U) ∈
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ηx} ∈ i(G). Hence for almost all i, G ∈ {U ∈ τ |t−1
i (U) ∈ ηx}. That is,

for almost all i, t−1
i (G) ∈ ηx. Consequently x ∈ t−1

i (G), ti(x) ∈ G for
almost all i. Since x and y are proximal, ti(y) ∈ G for almost all i. This
implies y ∈ t−1

i (G) for almost all i. Hence limπ∗(η(y), ti) ∈ i(G).

By virtue of equation in the theorem 3.2 we have the following corol-
lary.

Corollary 3.6. If η and ζ are proximal, then η(x) and ζ(x) are also
proximal. Hence every projection preserves the proximity. Similarly we
can have every co projection preserves the proximity.

Given a flow X, we can look at the family of closed and non-empty
subsets of X. Each of these is called a subflow. We say that a flow is
minimal if it has no proper subflow.

Theorem 3.7. Let (X, T ) be a minimal flow. Let η : X → τ(X) be
a topology field. Then the induced flow (τ(X), T, π∗) has minimal sets

ηx0T . Moreover if ηx0 = ζx0 , the minimal sets η(x0)T and ζ(x0)T are
equal.

Proof. Let η ∈ τ(X) be a topology field. Then ηx0T is closed and
non-vacuous. Moreover since t∗ is a homeomorphism, π∗(ηx0T , t) =
t∗(ηx0T ) = t∗(ηx0T ) = (ηx0T )t = ηx0(Tt) = ηx0T . And we have ηx0T ⊂
ηT . In fact, if ζ ∈ ηx0T , for any subbasic nbd i(G) of ζ, there exists t ∈ T
such that π∗(ηx0 , t) = t∗(ηx0) ∈ i(G). Thus t−1(G) ∈ ηx0 . Consequently
t−1(G) ∈ η. Hence t∗(η) ∈ i(G). This implies ζ ∈ ηT . Hence ηx0T is
minimal. Moreover if ηx0 = ζx0 , then ηx0T = ζx0T .

Theorem 3.8. Let (X, τ) be a distal minimal flow. And Assume that
(τ(X), Outτ ) is distal. If η : X → τ(X) is a T0 topology field, then it is
a distal and proper homomorphism.

Proof. First by Theorem 3.4, we see that η is a homomorphism. Let
x1, x2 ∈ X, with x1 6= x2 such that ηx1 = ηx2 . Since η is T0, there are
G1 ∈ η such that x1 ∈ G1, x2 /∈ G1. This implies G1 ∈ ηx1 , G1 /∈ ηx2 .
This contradict to ηx1 = ηx2 . Hence there are no pairs of x1, x2 ∈ X,
with x1 6= x2 such that ηx1 = ηx2 . This means that every T0 topology
field η is distal. And since η is not onto, by virtue of Corollary in [1],
we see that the topology field η : X → τ(X) is proper.
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4. Topology fields and topological organism

Let X be state space, U the input space and Y the output space. A
deterministic dynamic system [8] is a complex

S = {X, U, Y, δ, γ}
where δ : X × U → X is the dynamics xt+1 = δ(xt, ut)
and γ : X → Y is the output map. Here we will give a generalization of
this system whose output maps are topology fields.

Definition 4.1. Let I be index set and Xt state space at t ∈ I. Let
U be an input space. Let X=

∐
t Xt ={∐xt|xt ∈ Xt} be the total space,

disjoint sum of spaces Xt. Denote τ(X) =
∐

τ(Xt) = {τt|τ ∈ τ(Xt)}.
The total topology τ on the total space X is induced by τ(X)

τ = {G | G =
∐

Gt|Gt ∈ τt}.
Hence we can get inner topology Inτ on τ(X) induced by τ like as in
section 2. A topological organism(or topological organic system) is a
complex

Og = {X,U, τ(X), δ, γ}
where δ:X×U→X is a dynamics and γ is a topology field (”will be called
output map”) from (X, τ) to (τ(X).Inτ ).

Here xt ∈ (Xt, τt) is the local states in the topological states (Xt, τt)
at time t. In this organic system the current state and input determine
the next state and output.

This definition is a generalization of the definition of system [8], con-
sidering not only the states in the topological spaces, but also the out-
puts as beings topologies. Hence we have called this system topological
organism(or topological organic system).

Example 4.2. Let I = R+
0 be the set of nonnegative real numbers.

Set Xt = {(x, y) ∈ R2|x2 +y2 = t2 , y ≥ 0} be the subspace of Euclidean
plane R2, t ∈ R+

0 . Let X=
∐

t Xt and τ(X) =
∐

τ(Xt). Then the total
space may be represented by the sum of all half circles and point (0, 0)
in the upper plane {(x, y) ∈ R2 | y ≥ 0}. We give the total topology as
above. Then the open set on total space can be represented by G ∩X
=

∐
t (G ∩Xt) for some open G in R2.

Define δ:X×R+
0 →X by δ((x,

√
t2 − x2), s) = (x,

√
(t + s)2 − x2). It

slides point (x,
√

t2 − x2) ∈ Xt to the point (x,
√

(t + s)2 − (x)2) ∈ Xt+s

vertically. Hence if s = 1, it slide the horizonal line {(x, 0)|x ∈ R} to
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the curve {(x,
√

2x + 1)|x ∈ R} vertically. Moreover for a fixed state
(0, 0) ∈ X0, δ((0, 0), s) = {(0, s)}. Hence the image δ((0, 0), R+

0 ) is the
vertical half line {(0, s)|s ≥ 0}. Finally if we define a natural topology
field γ : (X, τ) → (τ(X), Outτ ) by γ(xt) = τxt , the we can get topological
organism

Og = {X, R+
0 , τ(X), δ, γ}.

In this example, the input space R+
0 is not a group and hence the

dynamics is not a flow.
Considering a fixed input s, we can build maps

δs : X → X, δs(xt) = δ(xt, s),

δτ
s ∗ : τ(X) → τ(X), δτ

s ∗(τt) = {G ∈ τ |δs
−1(G) ∈ τt}

and will be called input map induced by input s and induced map by
input map, respectively.

Similarly consider a fixed state xt ∈ (Xt, τt), we can build maps

δ̄t : U → X, δ̄t(s) = δ(xt, s),

γ̄t : U → τ(X), γ̄t(s) = γxt+s

and will be called input map and output map induced by state xt respec-
tively.

Therefore, δ̄t(s) and γ̄t(s) are computed by starting the system in
state xt ∈ (Xt, τt), feeding in the input sequence s and looking at the
final state.

Definition 4.3. The topological organism Og is called totally reach-
able from the state xt ∈ (Xt, τt) if the map δ̄t is onto, that is δ(xt, U)
= X. And the topological organism Og is called almost reachable from
the state xt ∈ (Xt, τt) if δ(xt, U) = X. And topological organism Og

is called globally reachable from the state (Xt, τt) if δ(Xt, U) = X and
almost globally reachable from the state (Xt, τt) if δ(Xt, U) = X. Hence
(almost) totally reachable organism is (almost) globally reachable.

Above concept of almost reachable is closely related to the concepts of
almost periodic and minimal in the topological dynamics and is central
concept of the topological dynamics. Let x be an almost periodic point of
(X,R) where X is the plane and R is reals. Then the Poincare-Bendixon
theorem state xR is either a point or a circle.

Definition 4.4. The topological organism Og is called observable if
the map γ̄t is one to one.
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The topological organism defined in Example 1 is observable and not
totally reachable from the one any state xt ∈ (Xt, τt). Moreover it is not
globally reachable from the any state (Xt, τt).

The next example tells us there exist almost globally reachable from
the any state (Xt, τt).

Example 4.5. Let R be reals and Xt = {(e2πit, e2πiu)|u ∈ R} for
t ∈ R. Let X=

∐
t Xt and τ(X) =

∐
τ(Xt). Then the total space may

be representant by torus S1 × S1 in the Euclidean space R3. We give
the total topology as above. Then the open set on total space can be
represented by G ∩X =

∐
t (G ∩Xt) for some open G in R3. Consider

rationals Q as input space. Define δ:X×Q→X by δ((e2πt, e2πiu), s) =
(e2π(t+s), e2πiu). It slides point (e2πit, e2πiu)) ∈ Xt to the point (e2π(t+s),
e2πiu) ∈ Xt+s along the circle in the torus. Hence if s = 1, it slide
the circle Xt to the circle Xt+s along the horizontal circle. Moreover
for a fixed state (0, 0) ∈ X0, δ((0, 0), s) = {(e2πs, 0)}. Hence the image
δ((0, 0), Q) is the dense subset {(e2πis, 0)|s ∈ Q} of the horizontal circle

{(e2πir, 0)|r ∈ R}. Moreover δ((Xt, τ), Q) = X. Finally we can get
a natural topology field γ : (X, τ) → (τ(X), Inτ ) by γ(e2πt, e2πiu) =
τ(e2πt,e2πiu). Consequently we can have a topological organism

Og = {X, Q, τ(X), δ, γ}.
Thus this organism is almost globally reachable.

In this example, the input space Q is a additive group and hence
the dynamics is a flow. We will give a totally reachable and globally
reachable example.

Example 4.6. For the same index space and state spaces in the
above Example, consider another input space R × R. Define δ:X×R ×
R→X by δ((e2πt, e2πiu), (s, w)) = (e2π(t+s), e2πi(u+w)). It changes any

local state (e2πit, e2πiu) ∈ Xt to the local state (e2πi(t+s), e2πi(u+w)) in
Xt+s along the circular helix in the torus. Hence if s = 1, w = 1, it
changes the local state (e2πit, e2πiu) ∈ Xt to the local state (e2π(t+1) ,

e2πi(u+1)) on the circle Xt+s along the circular helix. Moreover for a fixed
local state (0, 0) ∈ X0, δ((0, 0), (s, w)) = (e2πis, e2πiw). Hence the image
δ((0, 0), R×R) is the space S1×S1. And if s = 1, w = 0, it changes the

local state (e2πit, e2πiu)) ∈ Xt to the local state (e2π(t+1) , e2πiu) on the
circle Xt+1 along the circle. Moreover for a fixed local state (1, 1) ∈ X0,
δ((1, 1), (s, 0)) = (e2πis, 1). Hence the image δ((1, 1), R×{0}) is the circle
S1 × {1}. Finally we get a topology field γ : (X, τ) → (τ(X), Outτ ) by
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γ(e2πt, e2πiu) = τ(e2πt,e2πiu). Thus we can get topological organism

Og = {X,R×R, τ(X), δ, γ}.
Hence this topological organism is totally reachable and globally reach-
able example.
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