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THE AUTOMORPHISM GROUP OF COMMUTING GRAPH

OF A FINITE GROUP

Mahsa Mirzargar, Peter P. Pach, and A. R. Ashrafi

Abstract. Let G be a finite group and X be a union of conjugacy classes
of G. Define C(G,X) to be the graph with vertex set X and x, y ∈ X

(x 6= y) joined by an edge whenever they commute. In the case that X =
G, this graph is named commuting graph of G, denoted by ∆(G). The
aim of this paper is to study the automorphism group of the commuting
graph. It is proved that Aut(∆(G)) is abelian if and only if |G| ≤ 2;
|Aut(∆(G))| is of prime power if and only if |G| ≤ 2, and |Aut(∆(G))|
is square-free if and only if |G| ≤ 3. Some new graphs that are useful in

studying the automorphism group of ∆(G) are presented and their main
properties are investigated.

1. Introduction

In this section we recall some definitions that will be used in the paper. Let
G be a group andX a union of its conjugacy classes. Then C(G,X) is the graph
whose vertex set is X with x, y ∈ X , x 6= y, joined by an edge whenever they
commute. The graph C(G,X) has been considered in many different ways, by
several authors. The case X = G \ Z(G) is denoted by Γ(G), the complement
of this graph has been studied in [1, 10]. This graph has long been an object
of interest in group theory [7, 11]. We investigated the metric structure of the
complement of Γ(G), for finite groups, [8]. In the case that X = G, this graph
is called a commuting graph of G and denoted by ∆(G).

We consider simple graphs which are undirected, without loops or multiple
edges. For any graph Γ, we denote the sets of the vertices and the edges of Γ
by V (Γ) and E(Γ), respectively. Suppose v ∈ V (Γ) and V1(Γ) ⊆ V (Γ). Then
N(v) is the set of neighbors of v and 〈V1(Γ)〉 is the subgraph of Γ induced by
V1(Γ). The complement of Γ is the graph Γ̄ on the same vertices such that two
vertices of Γ̄ are adjacent if and only if they are not adjacent in Γ. For two
graphs with disjoint vertex sets V1 and V2 their union is the graph H in which
V (H) = V1 ∪ V2 and E(H) = E1 ∪E2. Define nH to be the union of n disjoint
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copies of H . The set of all automorphisms of a graph Γ forms a permutation
group, Aut(Γ), acting on the object set V (Γ).

Let A and B be permutation groups acting on object sets X and Y , re-
spectively. Define B ≀ A = {(a, f) | a ∈ A, f : X → B}, (a, f)(x, y) = (ax, bxy)
where f(x) = bx. B ≀A is called the wreath product. It acts on X×Y as follows:
for each a ∈ A and any sequence b1, b2, . . . , bn (where n = |X |) in B, there is a
unique permutation in A ≀B written (a; b1, . . . , bn), and (a; b1, . . . , bn)(xi, yi) =
(axi, biyi).

Suppose Sn denotes the symmetric group on {1, 2, . . . , n}. In what follows,
we describe some important results relating the automorphism group of a graph
which are crucial in this paper. Frucht [4] described if Γ is a connected graph,
then Aut(nΓ) ∼= (Aut(Γ)) ≀Sn, by [3], if no component of Γ1 is isomorphic with
a component of Γ2, then Aut(Γ1 ∪ Γ2) ∼= Aut(Γ1)×Aut(Γ2) and applying the
last two theorems we have the result: Let Γ = n1Γ1 ∪ n2Γ2 ∪ · · · ∪nrΓr, where
ni is the number of components of Γ isomorphic to Γi, then

Aut(Γ) ∼= ((Aut(Γ1)) ≀ Sn1
)× ((Aut(Γ2)) ≀ Sn2

)× · · · × ((Aut(Γr)) ≀ Snr
).

Throughout this paper our notation is standard and taken mainly from
[2, 12, 14].

2. Main result

The commuting graphs were important in the 1960s and 70s as they pro-
vided early constructions of the modern sporadic simple groups and played an
important role in the classification of {2, 3}-transposition groups. Since then,
various authors have continued to study these graphs determining many com-
binatorial quantities associated with graphs such as their diameter and their
clique number and giving a similar treatment to closely related graphs such
as the commuting involution graphs. With the best of our knowledge there
is noting in literature that considered the automorphism group structure on
commuting or non-commuting graphs.

Lemma 1. Let X be a subset of G of size k such that CG(x) = CG(y) for

all x, y ∈ X. Then Aut(∆(G)) contains a symmetric group Sk that acts k-
transitively on X while fixing G \X point-wise. We stress three specific cases

we shall need:

(i) X = Z(G);
(ii) X = {xi | (i, n) = 1}, where x ∈ G has order n (in which case |X | =

φ(n));
(iii) X = {x, zx, x−1, zx−1}, where x ∈ G, z ∈ Z(G) (in which case |X | = 4

provided z 6= 1 and x2 6∈ {1, z}).

Proof. Obvious. �

Lemma 2. Let |G| ≥ 3 and |Z(G)| = 2. Then Aut(∆(G)) is nonabelian, and

|Aut(∆(G))| is neither a prime power nor square-free.
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Proof. If there exists x ∈ G such that x2 6∈ Z(G), then we may apply Lemma
1(iii) to obtain an S4 in Aut(∆(G)), and the result follows. Thus we assume
x2 ∈ Z(G) for all x ∈ G. But this means G

Z(G) is an elementary abelian 2-

group, i.e., G is extraspecial of order 22m+1 for somem ≥ 1 [15]. Ifm = 1, then
G ∼= D8 or Q8 and we have Aut(∆(G)) ∼= (Z2 ≀S3)×Z2 and |Aut(∆(G))| = 864,

as desired. If m > 2, then Aut(G)
Inn(G) is isomorphic to one of the two orthogonal

groups O±(2m; 2) and by [6, Table I] these are not prime power or square-free
order group. This completes the proof. �

Lemma 3. Let G 6= 1 be a finite group with Z(G) = 1. Then

(i) Aut(∆(G)) is non-abelian,

(ii) |Aut(∆(G))| is not a prime power,

(iii) |Aut(∆(G))| is not square-free.

Proof. Since G is centerless, we see at once that G cannot be abelian, nor can it
be a p-group for any prime p. Moreover, G embeds in Aut(∆(G)) in this case,
whence (i) and (ii) both follow. Suppose that |Aut(∆(G))| is square-free, in
which case |G| is square-free as well. By Lemma 1(ii), we have π(G) = {2, 3}.
Thus, since G is non-abelian, we have G ∼= S3. But Aut(∆(S3)) ∼= S3 × Z2,
which establishes (iii). �

We are now ready to prove one of our main results as follows:

Theorem 1. Let G be a finite group. Then the following are hold:

(i) Aut(∆(G)) is abelian if and only if |G| ≤ 2,
(ii) |Aut(∆(G))| is a prime power if and only if |G| ≤ 2,
(iii) |Aut(∆(G))| is square-free if and only if |G| ≤ 3.

Proof. Since Aut(∆(Z2)) ∼= Z2 and Aut(∆(Z3)) ∼= S3, all statements are ver-
ified in the reverse direction. To establish these statements in the forward
direction, we may assume Z(G) 6= 1 by virtue of Lemma 3. First assume
that Aut(∆(G)) is either abelian or a p-group. As Aut(∆(G)) cannot con-
tain S3, we conclude from Lemma 1(i) that |Z(G)| = 2. The result now
follows from Lemma 2. To establish (iii), we assume that |Aut(∆(G))| is
square-free. Then |Z(G)| ≤ 3 follows at once from Lemma 1(i), as does
π(G) = {2, 3} from Lemma 1(ii). Hence, as G

Z(G)
∼= Inn(G) must also have

square-free order, it is clear that | G
Z(G) | divides 6. Suppose that G

Z(G)
∼= S3.

Let θ ∈ Aut(∆(G)) interchange 1 and z and fix all remaining vertices of ∆(G),
where Z(G) = 〈z〉. Then 〈θ, ιx〉 ∼= Z2×Z2, where ιx is any involution in Inn(G).
Thus 4 divides |Aut(∆(G))|, and we reach a contradiction. This proves that

G
Z(G) must be cyclic, whence G is abelian, and the proof now follows since

|G| = |Z(G)| ≤ 3. �

Lemma 4. Let G be a finite group. Then

(1) Aut(G) = Aut(∆(G)) if and only if |G| = 1.
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(2) Aut(∆(G)) ∼= Aut(Γ(G)) × S|Z(G)|.

Proof. (1) It is easily seen that the map φ : x → x−1 is an automorphism
of the graph ∆(G), but it is an automorphism of the group G if and only if
G is abelian. If Aut(G) = Aut(∆(G)) and |G| = n, then G is abelian and
Aut(G) = Aut(∆(G)) ∼= Sn. We conclude that |G| = 1.

(2) Suppose σ ∈ S|Z(G)|. Define A = {f ∈ Aut(∆(G)) | ∀z ∈ Z(G) ; f(z) =
z} and B = {fσ | σ ∈ S|Z(G)|}, where fσ : G −→ G is defined by

fσ(x) =

{

x x /∈ Z(G),
σ(x) x ∈ Z(G).

Then by the definition of Γ(G) and ∆(G), Aut(Γ(G)) ∼= AEAut(∆(G)), B E

Aut(∆(G)) and A∩B = 1. Since Aut(∆(G)) = 〈A∪B〉, Aut(∆(G)) ∼= A×B ∼=
Aut(Γ(G))× S|Z(G)|, proving the result. �

Suppose that G is a finite group. Then it is clear that Aut(Γ(G)) and Aut(G)
are subgroups of Aut(∆(G)). Define two permutations Φx,y, φ : G → G as
follows: Φx,y = (x, y) and the permutation φ is inverse mapping x→ x−1. We
also define Aut∗(G) = 〈Aut(G), φ〉 and restrict our attention to the equality of
the subgroup and the main group.

Theorem 2. Aut∗(G) = Aut(∆(G)) if and only if G ∼= S3.

Proof. We first notice that if G ∼= S3, then Aut(∆(S3)) = Aut(Γ(S3)). Since
Γ(S3) is a union of three isolated vertices and one edge, Aut(∆(S3)) ∼= Z2×S3.
On the other hand, Aut∗(S3) = 〈S3, φ〉 ∼= Z2 ⋉ S3, as desired.

Conversely, suppose that Aut∗(G) = Aut(∆(G)). We first prove |Z(G)| = 1.
If there exists 1 6= a ∈ Z(G), then the map fa : G→ G, x→ ax, is an element
of Aut(∆(G)). Since φ is an automorphism of order 2 and each f ∈ Aut(G)
commute with φ, fa = f1 ◦ φ, where f1 ∈ Aut(G). By definition of fa and φ it
can easily seen that for each x ∈ G, f1(x) = x−1a−1, a contradiction. Therefore
|Z(G)| = 1. Consider an element x ∈ G and define ψx : G→ G which sends the
elements x, x−1 ∈ G to their inverses and assigns each element of G\{x, x−1} to
itself. We claim that ψx ∈ Aut(∆(G))\Aut(G), when o(x) > 2. To do this, we
notice that ψx ∈ Aut(G) if and only if o(x) = 2. Suppose ψx ∈ Aut(G). Since
|Z(G)| = 1 and G is a non-abelian group, |G| > 5. Choose t ∈ G \ {1, x−2}.
Then xt = ψx(xt) = ψx(x)ψx(t) = x−1t and so x2 = 1. Notice that if G
is an elementary abelian group of order 2m, then we have a contradiction by
|Z(G)| = 1. Now consider x ∈ G with o(x) ≥ 3. Since ψx ∈ Aut(∆(G)) =
Aut∗(G), ψx = f ◦ φ, where f ∈ Aut(G). Thus, f(x) = x, f(x−1) = x−1, and
f(y) = y−1 for y ∈ G \ {x, x−1}. We claim that G has exactly two elements
of order three and other non-identity elements are involutions. If there exists
x ∈ G with o(x) ≥ 4, then we choose t ∈ G \ {x, x−1} and consider the image
of x2t under f . If x2t = x, then t = x−1, a contradiction. If x2t = x−1, then
x−1 = f(x2t) = f(x2)f(t) = x−2t and x = t, which is impossible. Finally,
x2t 6= x, x−1 and so f(x2t) = t−1x−2 and f(x2)f(t) = x−2t−1 which implies
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that x−2t−1 = t−1x−2. The later shows that x2 ∈ Z(G) = 1, leads to our final
contradiction. Hence, G does not have elements of order ≥ 4.

On the other hand, if o(x) = 3, then f(x2t) = f(x2)f(t) and we have t−1xt =
x−1. Since G is not an elementary abelian 3-group, G has an element z with
o(z) = 2. Suppose G has an element y 6= x, x−1 with o(y) = 3. Then we have
three choices for f(y2z). If y2z = x, then f(y2z) = y2z and f(y2)f(z) = yz.
Therefore, y = 1 which is impossible. A similar argument shows that y2z
cannot be equal to x−1. If f(y2z) = zy and f(y2)f(z) = yz, then y ∈ CG(z)
which implies that o(yz) = 6, a contradiction. Therefore, {x, x−1} is the unique
G-conjugacy class of elements of order 3.

Our discussion above shows that G = 〈x, t1, t2, . . . , tn〉 such that o(ti) = 2,
o(x) = 3 and t−1

i xti = x−1 where 1 ≤ i ≤ n. We have two cases:

1) If for 1 ≤ i 6= j ≤ n, titj = tjti and n ≥ 2, then t−1
1 xt1 = x−1 and

t−1
2 xt2 = x−1. So (t1t2)

−1x(t1t2) = x or (t1t2)x = x(t1t2). Hence t1t2 ∈ Z(G),
which is a contradiction. Therefore n = 1 and G ∼= S3.

2) Suppose t1t2 6= t2t1 then o(t1t2) = 3, t1t2 = x and t2t1 = x−1. If for
every ti, tit1 = t1ti and tit2 = t2ti, then x

−1 = t−1
i xti = t−1

i (t1t2)ti = t1t2 = x,
which is a contradiction. So, tit2 = x−1 and t2ti = x. If tit1 = t1ti, then
x−1 = t−1

1 xt1 = t−1
1 t2tit1 = t−1

1 t2t1ti = t−1
1 x−1ti = xt1ti, therefore t1ti = x

which is impossible. Finally, we consider the group G = 〈t1, t2, t3〉 such that
t1t2 = t2t3 = t3t1 = x. According to the above, it is obvious that G ∼= S3. If
n ≥ 4, then {t1, t2, t3} ⊆ CG(t4) and so G is isomorphic to S3, as desired. �

We consider the right cosets Z(G)x1, Z(G)x2, . . . , Z(G)xm−1 of the group
G and define a new graph ∆u(G) with

V (∆u(G)) = {x0 = 1, x1, . . . , xm−1},

E(∆u(G)) = {xixj |xixj = xjxi, 0 ≤ i < j ≤ m− 1}.

Notice when |Z(G)| = 1 then ∆(G) ∼= ∆u(G) [9]. It is clear that every two
elements in one of these cosets commute. Hence we have complete graph in any
of these cosets. On the other hand, if there exist xi ∈ Z(G)xi, xj ∈ Z(G)xj
satisfying xixj = xjxi, then for every yi ∈ Z(G)xi, yj ∈ Z(G)xj we have
yiyj = yjyi. Finally, the set of all φ ∈ Aut(∆(G)) such that for all a, b ∈ G,
ab−1 ∈ Z(G) implies that φ(a)φ(b)−1 ∈ Z(G) is denoted by T .

Theorem 3. Let G be a finite group. Then,

(1) Aut(∆u(G)) is a subgroup of Aut(∆(G)). Moreover, Aut(∆u(G)) =
Aut(∆(G)) if and only if |Z(G)| = 1.

(2) If G is not centerless, then T is a subgroup of Aut(∆(G)), and

Aut(∆(G)) = T if and only if for each pair a, b of elements of G with

CG(a) = CG(b), we have ab−1 ∈ Z(G).

Proof. (1) Suppose for every 0 ≤ i ≤ m− 1, Z(G)xi = {xi,1, . . . , xi,|Z(G)|}. For
every φ ∈ Aut(∆u(G)) we define the automorphism φ′ ∈ Aut(∆(G)) in this
way: φ′(xi,k) = xj,k, where φ(xi) = xj . The set of all such automorphisms is
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isomorphic to Aut(∆u(G)) and also this set is a subgroup of Aut(∆(G)). If
Aut(∆u(G)) = Aut(∆(G)) and x0,1, x0,2 ∈ Z(G), then Φx0,1,x0,2

∈ Aut(∆(G))
but not in Aut(∆u(G)). Therefore |Z(G)| = 1. The converse of equality is
trivial.

(2) It is enough to prove that if φ1, φ2 ∈ T , then φ1 ◦ φ2 ∈ T . Suppose
ab−1 ∈ Z(G) and Z(G)φ1(a) = Z(G)φ1(b) then Z(G)φ1 ◦ φ2(a) = Z(G)φ1 ◦
φ2(b) as desired. For equality suppose Aut(∆(G)) = T , a, b ∈ G such that
CG(a) = CG(b) and ab−1 /∈ Z(G). Since |Z(G)| > 1, there is an element
a′ ∈ Z(G)a such that a 6= a′. If φa′,b ∈ Aut(∆(G)), then aa′−1 ∈ Z(G) and
φ(a)φ(a′)−1 /∈ Z(G), leads to a contradiction. Suppose φ ∈ Aut(∆(G)) and
a, b ∈ G satisfying ab−1 ∈ Z(G) and CG(a) = CG(b) then CG(φ(a)) = CG(φ(b))
and by assumption we obtain that φ(a)φ(b)−1 ∈ Z(G). Therefore φ ∈ T . �

Corollary 1. Let |Z(G)| ≥ 2, where G be a non-abelian group. If T =
Aut(∆(G)), then G/Z(G) is an elementary abelian 2-group.

Proof. By Theorem 3, for every x ∈ G, x2 ∈ Z(G). Therefore G/Z(G) is an
elementary abelian 2-group. �

Suppose | G
Z(G) | = 4, then T = Aut(∆(G)) if and only if ∆u(G) is a star. So,

it is natural to ask the following question:

Question. What can be the graph ∆u(G) when T = Aut(∆(G)) and G
Z(G) is

an elementary abelian group of order 2n, for n > 2?

For a finite group G we define a labeled graph ∆v(G) as follows. For a, b ∈
G let a ∼ b if CG(a) = CG(b). Clearly, ∼ is an equivalence relation, the
equivalence class of a ∈ G is A(a) = {x |CG(x) = CG(a)}. Let us denote
the equivalence classes by A1, . . . , Ak, these are the vertices of ∆v(G). Two
vertices Ai and Aj are connected if and only if aiaj = ajai for some ai ∈
Ai, aj ∈ Aj . At first we note that if there exist ai ∈ Ai, aj ∈ Aj satisfying
aiaj = ajai, then for every bi ∈ Ai, bj ∈ Aj we have aj ∈ CG(ai) = CG(bi).
So, bi ∈ CG(aj) = CG(bj) implies that bibj = bjbi. Each equivalence class is
the union of some sets of the form tZ(G), hence there exists a positive integers
ci such that |Ai| = ci|Z(G)|. Let α(Ai) = ci be the label of the vertex Ai in
∆v(G). We say that φ : V (∆v(G)) → V (∆v(G)) is an automorphism of the
labeled graph ∆v(G) if φ is a bijection, it preserves the edges (and the non-
edges) and it preserves the labels. The automorphism group formed by these
automorphisms is denoted by Aut(∆v(G)).

Define SAi
= {fσ | σ ∈ S|Ai|, ∀x ∈ Ai, fσ(x) = σ(x), ∀x /∈ Ai, fσ(x) = x},

1 ≤ i ≤ k. Clearly, SAi
is a subgroup of Aut(∆(G)). The connection between

Aut(∆(G)) and Aut(∆v(G)) is described by the following theorem:

Theorem 4. There is a subgroup A of Aut(∆(G)) such that A ∼= Aut(∆v(G))
and Aut(∆(G)) = 〈SA1

, . . . , SAk
〉⋊A.
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Proof. Suppose Ai={ai,1, ai,2, . . . , ai,|Ai|}, 1≤ i≤ k. For each f ∈Aut(∆v(G)),

define f̄(ai,r) = aj,r such that f(Ai) = Aj , 1 ≤ i, j ≤ k, 1 ≤ r ≤ |Ai|. Then
f̄ ∈ Aut(∆(G)). Set A to be the set of all such automorphisms. Clearly,
A ∼= Aut(∆v(G)) and A is a subgroup of Aut(∆(G)). We prove for every
f ∈ Aut(∆(G)), f is a composition of some automorphisms of A and SAi

,
1 ≤ i ≤ k. Define ψ : V (∆v(G)) → V (∆v(G)), such that ψ(Ai) = f(Ai), for
each i. Note that if f(ai,r) ∈ Aj , then f(Ai) = Aj , because for each b ∈ Ai,
CG(b) = CG(ai,r) and CG(f(b)) = CG(f(ai,r)). So, f(b) ∈ Aj and ψ is an
element of Aut(∆v(G)), because if ArAs is an edge of ∆v(G), then there exist
ar ∈ Ar and as ∈ As such that aras is an edge of ∆(G). Thus, f(ar)f(as) ∈
E(∆(G)). We conclude that ψ(Ar)ψ(As) = f(Ar)f(As) ∈ E(∆v(G)). On the
other hand, ψ preserves the labels, because |Ai| = |f(Ai)| = |ψ(Ai)|. Therefore
ψ ∈ Aut(∆v(G)). Suppose ψ̄ ∈ A corresponds to ψ. If ai,r is arbitrary and
f(ai,r) = aj,s, then there exists fσj

∈ SAj
such that fσj

(aj,r) = aj,s. For

1 ≤ i ≤ k we can choose fσi
∈ SAi

such that f = fσ1
◦fσ2

◦· · ·◦fσk
◦ψ̄. Therefore,

Aut(∆(G)) = 〈SA1
, . . . , SAk

〉A. Finally, for each g ∈ Aut(∆(G)) and f ∈
〈SA1

, . . . , SAk
〉, there exists i, 1 ≤ i ≤ k such that g−1fg is a permutation on

Ai and we conclude that 〈SA1
, . . . , SAk

〉 is a normal subgroup of Aut(∆(G)).
This completes our proof. �

In the end of this paper the automorphism group of ∆(G) is computed, when
G is an AC group. To describe this concept, we first review some important
properties of dihedral groups.

The dihedral group D2n, can be presented as follows:

D2n = 〈x, y | xn = y2 = 1, y−1xy = x−1〉.

If n is odd, then |Z(D2n)| = 1, CD2n
(ai) = 〈a〉 and CD2n

(aib) = 〈aib〉, 0 ≤ i ≤
n − 1. If n is even, then Z(D2n) = 〈a

n
2 〉, CD2n

(ai) = 〈a〉, 1 ≤ i 6= n
2 ≤ n − 1,

and CD2n
(aib) = 〈aib, a

n
2 〉, 0 ≤ i ≤ n − 1. By above calculations, the graph

Γ(D2n) is:

• The union of complete graph Kn−1 and n isolated vertices, when n is
odd. In this case, Aut(Γ(D2n)) ∼= Sn × Sn−1.

• The union of complete graph Kn−2 and n
2 copies of K2, which all

vertices are adjacent by the elements of the center of G, when n is
even. In this case, Aut(Γ(D2n)) ∼= Sn−2 × (S2 ≀ Sn

2
)× S2.

For the dihedral group, the map θi,t : {x, y} → D2n such that x → xt and
y → xiy, 0 ≤ i ≤ n − 1, 1 ≤ t ≤ n − 1 and (t, n) = 1 can be extended to an
automorphism γi,t of D2n. Therefore, Aut(D2n) = {γi,t | 0 ≤ i ≤ n−1, 1 ≤ t ≤
n− 1, (t, n) = 1}. Thus |Aut(D2n)| = nφ(n), where φ(n) is the Euler’s totient
function. On the other hand, we proved that |Aut(Γ(D2n))| = n!(n−1)!, when
n is odd and |Aut(Γ(D2n))| = (n− 2)!(n2 )!2

n
2
+1, otherwise.

We say a group G has abelian centralizers, if for each non-central element
x ∈ G, the centralizer of x in G is abelian. A groupG is an AC-group, whenever
the centralizers of non-central elements are abelian. The dihedral group D2n
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is an example of an AC-group. In [13], Rocke proved that the following are
equivalent:

(1) G has abelian centralizers;
(2) If xy = yx, then CG(x) = CG(y) whenever x, y 6∈ Z(G);
(3) If xy = yx and xz = zx, then yz = zy whenever x 6∈ Z(G);
(4) If U and B are subgroups of G and Z(G) < CG(U) ≤ CG(B) < G,

then CG(U) = CG(B).

Therefore, the intersection of two proper element centralizers of an AC-group
is the center of G. If G is an AC-group, then ∆(G) is a union of some complete
graphs which all vertices are adjacent to the elements of Z(G). So, ∆(G) is
n1(CG(x1) \ Z(G)) ∪ n2(CG(x2) \ Z(G)) ∪ · · · ∪ nr(CG(xr) \ Z(G)) and also
every elements of Z(G) is adjacent to all elements of G, such that for each
i, 1 ≤ i ≤ r, we have ni isomorphic components with complete graph of size
|CG(xi) \ Z(G)|. Hence, we prove the following theorem:

Theorem 5. Let G be an AC-group, with the above notation

Aut(∆(G)) ∼= ((S|CG(x1)|−|Z(G)|) ≀ Sn1
)× ((S|CG(x2)|−|Z(G)|) ≀ Sn2

)× · · ·

× ((S|CG(xn)|−|Z(G)|) ≀ Snr
)× S|Z(G)|.
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