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CHOW GROUPS OF COMPLETE
REGULAR LOCAL RINGS III

SICHANG LEE

ABSTRACT. In this paper we will show that the followings ; (1) Let
R be a regular local ring of dimension n. Then A,_2(R) = 0. (2)
Let R be a regular local ring of dimension n and I be an ideal in
R of height 3 such that R/I is a Gorenstein ring. Then [I] =0 in
An_3(R). (3) Let R=V[[X1, X2, -+, X5]]/(p+ X1 +X32 +X}3
+Xf +X2), where p # 2, t1, {2, t3 are arbitrary positive integers
and V is a complete discrete valuation ring with (p) = my. Assume
that R/m is algebraically closed. Then all the Chow group for R
is O except the last Chow group.

1. Introduction

We define the i-th Chow group A;{R) for a Noetherian Cohen
-Macaulay ring R of dimension n by Z;(R)/Rat;(R), where Z;(R) is
the free abelian group generated by prime ideals in R of height(ht)
n — 4 and Rat;(R) is the subgroup of Z;(R) generated by the cycles
of the form ) I(Rp,/(q+ (x))Rp,)[P;], where ¢ is a prime ideal of height
n—i—1, z ¢ q and P; ranges over the minimal associated prime ideals of
R/(g+ (z)) satisfying dim R/P = dim R/(q+ (z)). When M is a finitely
generated R-module, we have [M] = ) [(Mp,)[P;], where P; ranges over
the minimal associated prime ideals of M satisfying dim R/P; = dim M.
From Claborn and Fossum [2], if R is a regular local ring, then the above
definition is equivalent to the group Z;(R)/ < R/(x1,%2, - ,Tn_i) >,

where < R/(z1,22, -+ ,Zn-;) > is the subgroup of Z;(R) generated
by S U((R/(z1,22, -+ yZn—;))p)[P], and P ranges over the associated
prime ideals of R/(z1,22, -+ ,Zn-;), for all R-sequence z1, Ta, ** -+, Tn_;.

From this definition, when R is a regular local ring of dimension n, we

Received April 16, 2001. Revised September 25, 2001.

2000 Mathematics Subject Classification: 11G50, 13D07.

Key words and phrases: Chow group, complete regular local ring, Gorenstein
ideal of codimension 3, dimension 5, height 3 ideal.



222 Sichang Lee

have Ag(R) = 0, A,_1(R) = 0, A,(R) = Z(the ring of integers) and
from [3], we get A;(R) = 0. Because of the hardness of the prob-
lem, there are a few results on this problem. Even in a dimension 5
case, we can not characterize the Chow group completely. In Section
2, we shall discuss A,,_2(R) for a complete regular local ring R of di-
mension n. In Section 3, we will show that when R is a regular local
ring of dimension n and I is an ideal in R of height 3 such that R/I
is a Gorenstein ring, [I] = 0 in A,_3(R) by using linkage class tech-
nique. In the dimension 5 case, to calculate A,(R) still remains open.
In section 4, we shall discuss A5(R) for the ring R = V|[[X;, X2, -+,
Xs]l/(p + X1 + X + X5 + X7 4+ X2), where p # 2, t1, to, t3 are
arbitrary positive integers and V is a complete discrete valuation ring
with (p) = my, and A,_2(R) for arbitrary complete regular local ring
R. We also show that how the Chow group process is going on in the
dimension 5 case.

2. Determination of A, _»(R)

In calculating Chow group of complete regular local ring, Claborn
and Fossum cleared unramified case by using generalized ideal class
technique [2]. Thus only ramified case remains open. In a ramified
regular local ring R of dimension n, we know Ag(R) =0, 4,,_1(R) =0,
A, (R) = Z from the definition; A;(R) = 0 follows from [3, Theorem
1.1]. In order to characterize A, _2(R) we need the following Theorem
due to W. Smoke.

THEOREM 2.1 (W. Smoke [8], Theorem 5.2). Let R be a regular lo-
cal ring of dimension n. Then the group Ko(R,) is generated by the
elements [R/(z1,z2)], where R, is the category of all finitely generated
R-modules M such that Mp = 0 for all prime ideals of height less than
2, Ko(R,) is the corresponding Grothendieck group and x1, z forms a
regular sequence on R.

THEOREM 2.2. Let R be a regular local ring of dimension n. Then
A,—2(R)=0.

PrOOF. In the proof of Theorem 2.1, W. Smoke first showed that
every [M] in Ko(R,) is generated by [R/I] and [R/(z1,z2)], where 1,
x9 in I form an R-sequence and I is a perfect ideal of codimension
2. Next, he showed that [I/(z1,z2)] is generated by elements of the
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form [R/(z1,z2)]. We know that [R/(z1,z2)] = 0 in A,_2(R). Thus
[I/(z1,22)] =01in A, _2(R). Now from the following exact sequence

0— I/(z1,22) — R/(z1,22) = R/I =0

we conclude that [R/I] = 0 in A,_o(R). Hence [M] = 0 in A,_2(R)
and therefore A, _2(R) = 0 by the choice of M. d

3. Linkage class of codimension 3 Gorenstein ideals

In this section, we will discuss the linkage class of codimension 3
Gorenstein ideals.

The following Theorem (S. Lee and K. B. Hwang [6], Theorem 2.1)
was already proved by using the lifting property of a Gorenstein ideal
of codimension 3 and a lifting Theorem. In this paper, we are going
to present a completely different approach which is an easier way than
the previous approach to the Theorem-the idea of linkage of ideals for
height 3 Gorenstein ideals. Qur main tool is Watanabe’s Theorem.

THEOREM 3.1. Let R be a regular local ring of dimension n and I
be an ideal in R of height 3 such that R/I is a Gorenstein ring. Then
[I]=01in A,_3(R).

For the proof of this theorem, we need the following definition (for
the details about linkage class, refer to [7]).

DEFINITION 3.2. Let I and J be ideals of a Cohen-Macaulay ring
R of same grade g. We say [ is linked to J if there is an R-sequence
x1, -+, g = € I'NJ such that J =z : I (ie.,, I and J are linked
if Hom(R/I,R/z) = J/z). The linkage class of a perfect ideal I is the
set of all ideals which can be obtained from I by iterating the linkage
procedure.

We now state the following theorem due to J. Watanabe.

THEOREM 3.3 (J. Watanabe [9], Theorem). Let (R, m, k) be a regular
local ring and I be an ideal in R of height 3 such that R/I is a Gorenstein
ring. Then I is minimally generated by an odd number of elements.

REMARK. In his proof, when I is a Gorenstein ideal minimally gen-
erated by n elements, J. Watanabe constructed an almost complete in-
tersection ideal .J of height 3 which is linked to I, and in turn J is linked
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to a Gorenstein ideal with n — 2 generators (he used this to show that
n must be odd). From this after a finite number of steps of linkage
procedure, we get a complete intersection ideal J’ which is in the same
linkage class of a complete intersection ideal.

LEMMA 3.4. Let I and J be perfect ideals of same grade g in a
Gorenstein local ring R of dimension n. Suppose I is a Gorenstein
ideal.

(1) IfI is linked to J by an R-sequence z1,--- ,&4 = &, then [I] =0

in Ap_y4(R) if and only if [J] =0 in A,_4(R).
(2) IfI and J are in the same linkage class, then [I] = 0 in A,_4(R)
if and only if [J] =0 in A,_4(R).

PrOOF. (2) follows (1). Let’s show (1). Since I is linked to J by
an R-sequence z1,- -+ ,%, = z, we have Hom(R/I, R/z) = J/x. By the
definition of Gorenstein ideal, we have Ext}%(R/I,R/z) = R/I. On the
other hand, Ext%(R/I, R) = Hom(R/I,R/z) = J/z, and thus [I} = 0
in A,,_4(R) if and only if [J/z] = 0 in A,_4(R). Moreover, we have an
exact sequence

0—J/z—R/z— R/J—0.

Since [R/z] = 0 in A,,_4(R), from the exact sequence, we have [J] = 0 in
An—y(R) if and only if [J/z] = 0 in A,,_4(R). Hence [I] =0 in A,_4(R)
if and only if [J] =0 in A,_4(R). O

PRrROOF OF THEOREM 3.1. Since I is a Gorenstein ideal of grade 3,
by our remark above, I is in the linkage class of a complete intersection
ideal. Thus we can find a linkage relation between I and a complete
intersection ideal by iterating the linkage procedure starting from I. By
Lemma 3.4, we have the required result. O

In a dimension 5 case, from the Theorem 2.2 and the discussion at
the introduction, we only remains to calculate Az(R).

4. Dimension of R is 5

Let R = V[[X1,Xs, -+, Xn]l/(p+ X2+ X2+ -+ X2), where p # 2
and V is a complete discrete valuation ring with (p) = my. Assume
that R/m is algebraically closed. M. Levine showed A;(R) = 0 for
0 < ¢ < n for this ring by using K-theoretic techniques [4]. Later S.
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P. Dutta showed this by using commutative algebra techniques [3]. In
dimension 5, we have the following :

THEOREM 4.1. Suppose that p # 2, t1,ts,t3 are arbitrary positive
integers and V is a complete discrete valuation ring with (p) = my.
Let R=VI[[X1, X2, -, Xs]]/(p+ X' + X3» + XP + X? + X2). Then
Ai(R) =0 for 0 <1< 5.

In the course of our proof of Theorem 4.1, we need the following result
due to S. P. Dutta.

PROPOSITION 4.2 (S. P. Dutta [3], Proposition 2.2). Let (S, m, k), k
infinite, be a Cohen-Macaulay local ring of dimension n and let f be a
non-zero-divisor in m. Let I be an ideal in S of height i such that [I] =0
in A,,_;(S) and let f be a non-zcro-divisor on S/I. Then [I+fS/f5} =0
in A,,L_l_i(S/fS).

PROOF OF THEOREM 4.1. It suffices to show that A,(R) = 0. Let P
be a prime ideal of height 3 such that [P] € A2(R). Since R/m is infinite
and htP > 2, by applying non-singular transformation, if necessary, we
may assume R/P is a module finite extension of T' = V[[z1, 2, z3]]([1],
(23.5)). Since R/m is algebraically closed and p # 2, there is a unit j in
R such that j2 = —1. Write a = p+ X' + X2 + X, Z = X5 + j X4,
Z' = X5 — jX4. Then R =TI[[Z,2')]/(a + ZZ"). Let’s denote T[[Z']]
by S. Then R = S[[Z)]/(a + ZZ"). Let Q = PN S. Then R/P(= A)
is a module finite extension of $/Q(= S). Hence the image z of Z in A
satisfies a monic polynomial F(Y) € S[Y]. By the Henselian property,
the coefficients of F', except that of the highest degree term, are in mg.
Let B = (S[Z]/(a + ZZ"))(m,.z) and J = PN B. Then B (completion
of B) = R and B/J = R/P : when we denote by F'(z) and F"(z)
the liftings of F'(z) in B and R respectively and denote both as F'(z),
B/(F(z)) = R/(F(%)) and hence JR = P. If P contains any of a,z or
', then P contains z or z’. So [P/zR] = 0 in A2(R/zR) or [P/2'R] =0
in A>(R/Zz’'R). Hence [P] = 0 in Ax(R). Suppose P does not contain
any of a, z or 2. Note that S[1/2'] = B[1/2’]. A primary decomposition
of @B in B is of the form

RQB=JnNnJ,N---NJy.
Let Q; denote the prime ideal corresponding to J; for each t = 2,--- ,d.

By the definition of Chow group, we may assume that height of Q; is 3
for all t. Then each J; contains z’. Hence every prime ideal P; which
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occurs in the primary decomposition of QR in R, except P contains 2’
It follows that the corresponding primary component [I5] = 0 in A2(R).
Moreover, [Q] = 0 in A2(S) implies that [Q[[Z]]] = 0 in A3(S[[Z]]) and
hence [QR] = 0 in A3(R) by Proposition 4.2. Thus our required result
follows from the following short exact sequence:

0—R/QR— R/P®R/NI; — R/(P+NI;) — 0. O

REMARK. The arguments, in the proof of Theorem 4.1, do not work
in general. The main difficulty comes from the fact that we do not know
how to tackle the case when the Eisenstein polynomial is of the form
X2 +aX, +b. It was shown in [3], that in several very important cases
of Chow group problem, for arbitrary Eisenstein polynomials, we could
get the desired result if we could handle the case of quadratic equations
properly. The example below demonstrates this fact even for polynomi-
als which are “very nice”. Let f =p+X?+---+X2_,+ X3 , +X2 and
R=V|[[X1,---,X,]]/(f) where V,p as above. Let T = [[X1,--- , X,,_5]]
and a = p+ X? + -+ X2_,. As in the proof of Theorem 3.1, we
can find a unit j in R such that j2 = —1. Let Z = X2_, + jX2,
2" = X2_{—jX2and B = T[[Z,Z'))/(a + ZZ'). Then Ay(B) = 0
for i =0,1,---,n—1. Let C = B[[X,,1])/(X2_, — (Z + Z")/2) and
D = C[[X.])/(X: — (Z — 2')/2j). Then C = T([Z,Z', X,-1])/(a +
zZZ'\ X2 ,—(Z+2))2) =T(|Z,Xn-1]]/(a+Z(2X3%_,—Z)) and R = D.
Moreover, B — C and C — D are integral flat extension (for flat-
ness see, Matsumura [5] Theorem23.1). As of the construction, proving
A;(R) =0for i =0,1,--- ,n~— 1 is the same as proving A4;(C) = 0 for
i =01, ,n—1 Let C' = T[[Z,X2_]|/(a + Z(2X2_, - Z)) =
T([Z,2X2_, — Z]|/(a + Z(2X%2_, — Z)). Then A;(C’) = 0 for i =
0,1,---,n — 1. This could be shown by using similar techniques as
in Theorem. Now C is a quadratic extension of C’ and D is a quadratic
extension of C'. Both involve the simplest quadratic equations, but still
we do not know how to get the required results in the above cases.
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