Browse > Article
http://dx.doi.org/10.4134/JKMS.2008.45.4.1089

ON FACTORIZATIONS OF THE SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES  

Shi, Yi-Yun (School of Mathematical Sciences South China Normal University)
Zhao, Hao (School of Mathematical Sciences Nankai University)
Publication Information
Journal of the Korean Mathematical Society / v.45, no.4, 2008 , pp. 1089-1100 More about this Journal
Abstract
For a pointed space X, the subgroups of self-homotopy equivalences $Aut_{\sharp}_N(X)$, $Aut_{\Omega}(X)$, $Aut_*(X)$ and $Aut_{\Sigma}(X)$ are considered, where $Aut_{\sharp}_N(X)$ is the group of all self-homotopy classes f of X such that $f_{\sharp}=id\;:\;{\pi_i}(X){\rightarrow}{\pi_i}(X)$ for all $i{\leq}N{\leq}{\infty}$, $Aut_{\Omega}(X)$ is the group of all the above f such that ${\Omega}f=id;\;Aut_*(X)$ is the group of all self-homotopy classes g of X such that $g_*=id\;:\;H_i(X){\rightarrow}H_i(X)$ for all $i{\leq}{\infty}$, $Aut_{\Sigma}(X)$ is the group of all the above g such that ${\Sigma}g=id$. We will prove that $Aut_{\Omega}(X_1{\times}\cdots{\times}X_n)$ has two factorizations similar to those of $Aut_{\sharp}_N(X_1{\times}\cdots{\times}\;X_n)$ in reference [10], and that $Aut_{\Sigma}(X_1{\vee}\cdots{\vee}X_n)$, $Aut_*(X_1{\vee}\cdots{\vee}X_n)$ also have factorizations being dual to the former two cases respectively.
Keywords
self-homotopy equivalences; wedge spaces; product spaces; loop spaces; suspension;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989), no. 2, 293-301   DOI
2 M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154   DOI   ScienceOn
3 P. J. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Publishers, New York-London-Paris 1965
4 K. Maruyama, Localization of self-homotopy equivalences inducing the identity on homology, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 291-297   DOI
5 E. D. Farjoun and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology 18 (1979), no. 3, 187-197   DOI   ScienceOn
6 M. Arkowitz, The group of self-homotopy equivalences-a survey, Groups of selfe-quivalences and related topics (Montreal, PQ, 1988), 170-203, Lecture Notes in Math., 1425, Springer, Berlin, 1990
7 M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, The Cech centennial (Boston, MA, 1993), 1-25, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995   DOI
8 M. Arkowitz and G. Lupton, On the nilpotency of subgroups of self-homotopy equivalences, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guixols, 1994), 1-22, Progr. Math., 136, Birkhauser, Basel, 1996
9 Y. Felix and A. Murillo, A bound for the nilpotency of a group of self homotopy equivalences, Proc. Amer. Math. Soc. 126 (1998), no. 2, 625-627   DOI   ScienceOn
10 P. Pavesic, On the group Aut#($X_{1}$ $\times$ . . . $\times$ $X_{n}$), Topology Appl. 153 (2005), no. 2-3, 485-492   DOI   ScienceOn
11 H. B. Yu and W. H. Shen, The self-homotopy equivalence group of wedge spaces, Acta Math. Sinica (Chin. Ser.) 48 (2005), no. 5, 895-900
12 P. Pavesic, On the group $Aut_{\Omega}$(X), Proc. Edinb. Math. Soc. (2) 45 (2002), no. 3, 673-680
13 P. Pavesic, Self-homotopy equivalences of product spaces, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 1, 181-197   DOI   ScienceOn
14 J. Rutter, Spaces of Homotopy Self-Equivalences, A survey. Lecture Notes in Mathematics, 1662. Springer-Verlag, Berlin, 1997