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ON FACTORIZATIONS OF THE SUBGROUPS OF
SELF-HOMOTOPY EQUIVALENCES

YI1-YUN SHi AND Hao ZHAO

ABSTRACT. For a pointed space X, the subgroups of self-homotopy equiv-
alences Autyn (X), Auto(X), Aut.(X) and Auts(X) are considered,
where Autyy(X) is the group of all self-homotopy classes f of X such
that fy = 4d : 73(X) = m;(X) for all i < N < 0o, Autg(X) is the group
of all the above f such that Qf = id; Aut.{X) is the group of all self-
homotopy classes g of X such that g. = id : H;(X) — H;(X) for all
i < 00, Autx(X) is the group of all the above g such that ¥g = id. We
will prove that Autq(X1 X---X X, ) has two factorizations similar to those
of Autyy (X1 X -+~ X Xy,) in reference [10], and that Autp(X1 V-V X)),
Aut. (X1 V-V Xy) also have factorizations being dual to the former two
cases respectively.

1. Introduction

For a pointed space X, let Aut(X) denote the set of homotopy classes of
pointed self-maps of X that are homotopy equivalences. This set is a group,
called the group of self-homotopy equivalences, with respect to the operation
induced by the composition of maps. For a survey of the literature about
Aut(X) and related concepts, see [1] or [13]. In this paper, we consider the
subgroups of the group of self-homotopy equivalences.

For a pointed space X and a integer N with dimX < N < 0o, we define the
subgroups Autyy (X) and Autg(X) of Aut(X) by

Autyn(X) = {f € Aut(X)|fy = id : mi(X) = m(X) for all i < N}

and

Auto(X) = {f € Aut(X)|Qf = id},
where fy is the homomorphism on homotopy group induced by f and Q is
the loop functor. Since the homomorphisms induced by Qf on the homotopy
groups of X are the same (after a shift in dimension) as those induced by
f on the homotopy groups of X, Autg(X) is a subgroup of Autyn(X). The
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group Autyy (X) has been studied by many authors, see [2, 3, 4, 5, 8, 10]. For
example, in [5], Farjoun and Zabrodsky proved that the group Autyn(X) is
nilpotent whenever X is a finite-dimensional CW-complex; in [8], Maruyama
proved that, under the same assumption and given a set of primes P, the nat-
ural map Autyn(X) — Autyn(Xp) is the P-localization homomorphism of the
nilpotent group Autyny(X). In particular, in [10], Pavesié¢ proved that, for two
pointed CW-complexes X and Y, the self-equivalences in Autyn(X x Y) are
always reducible (see Section 2), hence Autyn (X x Y) can be decomposed as
the product of its two natural subgroups. This paves the way to decompose
Autgn (X7 X --- x X,,) as the n-fold product of its certain subgroups. Further-
more, Pavesié¢ developed another method named as LU factorization by which
Autyn (X1 X -+ X Xy,) can be decomposed as the product of its only two sub-
groups. In Section 2, we will prove that the self-equivalences in Autq(X x Y)
are also always reducible, so that Autq(X; x---x X,,) has factorizations similar
to those of Autyn (X1 x -+ x X,,).

For a pointed space X, we can also define the subgroups Aut.(X) and
Auty(X) of Aut(X) by

Aut,(X) = {9 € Aut(X)|g. = id: Hi(X) - H;(X) for all i > 0}

and
Auty(X) = {g € Aut(X)|Xg = id},

where g, is the homomorphism on homology group induced by g and X is
the suspension functor. Similar to Autyn(X) and Autq(X), we can see that
Auty(X) is a subgroup of Aut.(X). In [5], Farjoun and Zabrodsky also proved
that Aut,.(X) is nilpotent whenever X is a finite-dimensional CW-complex; in
[9], Maruyama proved that the natural map Aut.(X) — Aut,(Xp) is a P-
localization homomorphism. In Section 3, we will prove that, for any pointed
simply-connected CW-complexes X and Y, the self-equivalences in Aut.(XVY)
are always reducible (see Section 3), and for pointed simply-connected CW-
complexes X1,...,Xn, Aut.(X; V.-V X,,) has factorizations dual to those of
Autyn(X; x --- x X3,). In Section 4, we consider the group Auts(X) and show
that Autg(X) acts dually to Autg(X).

2. Autg(X; X -+ X X3,)

The group Auto(X) was first introduced by Felix and Murillo in [6], where
they showed that Auto(X) and Autyn(X) are generally different. In [11],
Pavesi¢ constructed a spectral sequence converging to Autq(X) by Cartan-
Eilenberg system. He proved that, if X is a Co-H-space, then Autg(X) is
trivial, and that if X is a Postnikov piece, then for any set of primes P, the
natural map Auto(X) — Auto(Xp) is the P-localization.

In order to state our results in this section, the following notations and
notions are needed. In this section, all the spaces are pointed connected CW-
complexes. Let ix and ¢y denote the inclusions of X and ¥ in X x Y, and
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let px and py be the projections of X x ¥ on X and Y. Given a self-map
F:XxY - XxY and I,J € {X,Y}, write ff : X xY — I for the
composition fr = prf (so that f is represented component-wise as f = (fx, fy)
by the universal property of product spaces), and write f;; : J — I for the
composition fry = prfiy. A self-homotopy equivalence f of X x Y is said
to be reducible if fxx and fyy are self-homotopy equivalences of X and YV
respectively.

Let Autx(X xY) = {f € Aut(X xY)|pxf = px} and Auty (X xY) =
{g € Aut(X x Y)|pvg = py }. In [12], Pavesié proved that Autx (X x Y) and
Auty (X xY) are subgroups of Aut(X xY'), and that if all the self-equivalences
of X x Y are reducible, then Aut(X x Y) is the product of Autx (X xY) and
Auty (X xY), ie,

Aut(X x Y) = Autx (X x V) Auty (X xY).

However, when considered the group Autyn(X x Y) in [10], Pavesi¢ found
that all the self-equivalences in Autyn(X x Y) are always reducible without
any restriction on X and Y, hence there is a corresponding decomposition of
AutﬁN(X x Y), i.e.,

Autyn (X x V) = Autxyn (X X V) Autyyn (X x Y),

where Autxyn (X xY) = Autx (X xY)NAutyn (X xY) and Autyyn (X xY) =
Auty (X x Y) N Autyn (X x Y). This paves the way for a generation of our
approach to factorization of self-equivalences of products of more than two
CW-complexes, i.e.,

Autyn(Xg x - x Xp) = HAUtH, av (X1 x - x Xy),
i=1
where [], denotes the subproduct of X; x --- x X, obtained by omitting X;,
ie, [I, =X1 x -+ x Xj x - x X, (refer to [10]).
For the group Autg(X x V), we will also prove that all its self-equivalences
are always reducible, that is,

Lemma 2.1. For any f € Autq(X x Y), we have fxx € Autq(X) and
fry € Autq(Y).

Proof. Since Autq(X X Y) C Autyn(X x Y) and all the self-equivalences in
Autyn (X x Y) are reducible by Lemma 2.1 of [10], we have fxx € Autyn(X)
and fyy € Autyn(Y). Since

Qfxx = Qpx fix) = (wx)(Qf)(Qix) = Qpxix) = id,

we can get fxx € Autq(X) and similarly fyy € Auto(Y). This shows the
result. O

Now we can derive the following factorization from Theorem 2.5 of [12].



1092 YI-YUN SHI AND HAO ZHAO

Theorem 2.2.
Ath(X xY)= AutXQ(X X Y) Autyq(X x Y),

where Autxo(X xY) = Autx (X X Y)NAutq(X X Y) and Autyo(X xY) =
Auty (X xY) N Autq(X x Y) are the subgroups of Autq(X xY).

Proof. Given any h € Autq(X xY) C Aut(X x Y), since h is reducible, then
by Theorem 2.5 of [12], h can be decomposed as

h = (px, f){(9,pv) = (9, f(9,pv)),
where (px, f) € Autx (X xY) and (g,py) € Auty (X xY). And since

Qg,py) = Uhx,py) = (Qpxh), Opy)
= ((px)(Qh), Uy ) = Upx,py) = id
by Qth = id, this implies that Q(g,py) € Autyo(X X Y) and then follows
(px,f) € Autax(X xY). As Autxq(X xY) and Autyq(X x Y) have trivial
intersection, the above factorization is unique and then follows the desired
theorem. ]

By applying Theorem 2.2 and a completely same proof as that of Theorem
2.4 in [10], we can get the generalization of Theorem 2.2 as follows.

Theorem 2.3. Autq(Xy x -+ x Xn) = [[iL; Autyp o(X1 x -+~ x Xo,).

Also we can decompose Auto(X; X -+ x X,,) as the product of its only two
subgroups as follows.

Theorem 2.4.
Auto(Xq x --- x Xp) = LX) x - x X)U(Xy x -+ x Xp),

where L(X1x---xXy) = {f € Auto(X1 %---xXp)|fx, = Fx e, k=1,...,n},
U(X1 X o+ X Xn) = {f S Ath(Xl X - X Xn)lka = kauk,kaXk = Zd,k =
1,...,n}; lx and uy are self-maps of X1 X -+ x X,, defined by lx(z1,...,2s) =
(T1y- s @y, oo yk) and ug (21, ..., Tn) = (%,. .., %, Zp, ..., Tn) TESPectively.

The above factorization is called LU factorization as in Theorem 3.2 of [10]
and their proofs are similar.

3. Aut, (X V---V X,)

In this section, we will prove that for any pointed simply-connected CW-
complexes Xy, ..., X,,, Aut.(X;V---VX,) has two factorizations dual to those
of Autyn (X1 x -+ x X,,) as in [10].

Before stating our main results, we first fix some notions and notations. In
this section, all the spaces are pointed simply-connected CW-complexes. For
two spaces X and Y, let ix : X - X VY and iy : Y —» X VY be inclusions;
px : XVY = X and py : X VY — Y be projections. Given a self-map
F:XVY 5 XVY and I,J € {X,Y}, we denote fi; by fr (so that we have
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f = (fx, fy) by the universal property of wedge spaces) and psfir by fr;. We
say f € Aut{X VY) is reducible if fxx € Aut(X) and fyy € Aut(Y).

We must mention that the above notations have the same forms as those
defined in Section 2, but they have different senses in this section.

Let Aut*(X VY) = {f € Aut(X VY)|fix =ix} and Aut* (X VY) = {g €
Aut(X VY)|giy = iy}. In [14], H. B. Yu and W. H. Shen proved the following
theorem:

Theorem 3.1 ([14]). Awt* (X VY) and Aut¥ (XVY) are subgroups of Aut(XV
Y), and that if all the self-equivalences in Aut(X VYY) are reducible, then
Aut(X VY) = Aut¥ (X vY) Aut¥ (X VY).

In the follows, we will prove that all the self-equivalences in Aut. (X VY)
are always reducible, and then we use this result to derive factorizations of
Aut,(X VY) and their generalizations to Aut.(X; V---V X,,).

Lemma 3.2. For any f € Aut.(X VY), we have fxx € Aut.(X) and
fry € Aut,(Y), which implies that all the self-equivalences in Aut,(X VY)
are reducible.

Proof. Given any f € Aut,(X vY), its induced endomorphism on H;(X) @
H;(Y)is H;(f) : Hi(X) @ H;(Y) — H;(X) ® H;(Y) which can be represented
by the following 2 x 2-matrix according to [14]:
Hi(fxx) Hi(fxy) )
Hi(f)= .
) ( Hi(fyx) Hi(fry)

Since f is in Aut.(X VY'), then we have H;(f) = 1n,(x)on,(v)- It follows that
Hi(fxx) = lu,x) and Hi(fyy) = lp,(v)- By Whitehead theorem, we know
that fxx € Aut.(X) and fyy € Aut.(Y). a

Let AutX (X VY) = Aut,(X VY)NAut* (X VY). Then we have
Lemma 3.3. For any f € Aut, (X VY), we have (ix, fy) € AwtF (X VY).
Proof. The endomorphism on H;(X)®H;(Y) induced by (ix, fy) is H;(ix, fy):
H,(X)® H;(Y) —» H;(X) @ H;(Y) which can be represented by the following
2 x 2-matrix according to [14]:

‘ nar Hi(fxy)
s G )

Since f € Aut,(X VYY) is reducible by Lemma 3.2, we have H;(fyx) = 0
and H;(fyy) = 1g,v) which means that H;(ix, fy) = lHi(X)EBHi(Y)- By
Whitehead theorem, we know that (ix, fy) € AutX (X VY). O

Similarly we let Aut) (X VY) = Aut,(X VY)NAut” (X VY), then we can
derive a factorization of Aut.(X VY) dual to that of Autyn(X VY).

Theorem 3.4. Aut, (X VY) = AutX (X VY)AutY (X VY).
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Proof. For any h € Aut,(XVY), his reducible according to Lemma 3.2. By the
Theorem 3.1, h has a unique factorization h = (ix, f){(g,7v) = ((ix, )g, ),
where (ix, f) € Aut®(X VY) and (g,iy) € Aut¥ (X VY). Then by Lemma
3.3, we have (ix,hy) = (ix, f) € AutX (X VY). Since h and (ix, f) are both
in Aut,(X VY), we have (g,iy) € Aut, (X VY), ie., (g,iy) € AutY (X VY).
This shows the result. d

Actually, the above AutX (X VY) and Auty (X vV Y) can be further de-
composed. If we let Auty (X VY) = {f € AntX(X vY)|pyf = py} and
Aut¥ (X VYY) = {f € AwtY (X VY)|pxf = px}, then we have the following
result:

Proposition 3.5. AutX (X VY) is the semi-direct product of Aut,(Y) and
Auty, (X VY).

Proof. Define a map ¢y : AutX (X VY) = Aut(Y) by ¢y (ix, fv) = pyfy =
fry, it is easy to verify that Ker ¢y = Auty, (X VY'). We begin to prove that
¢y is a homomorphism.

Since

py fypy = (py fypyix,py fypyiv)
= (pvix,py fvr) = py (ix, fv),
then for any (ix, fv), (ix,gy) € Auty (X VY), we have
oy ((ix, fr)(ix, gv)) = pr(ix, fr)(ix, gv)iv
= py fy Py gy
= ¢y (ix, fr)dy (ix, gv)-

It is follows that ¢y is a homomorphism which has a right inverse

Yy : Aut(Y) - AutX (X VY)
given by ¥y (f) = (ix,iyf), where f € Aut(Y). Then we have the following
split short exact sequence:

0 — Aut¥, (X VY) 25 AutX (X VY) — Aut, (V) — 0.

Tt means that AutX (X VY') is the semi-direct product of Aut,(¥) and Auts, (X
vY). a

Similarly, we can prove that AutY (X VY) is also the semi-direct product of
Aut,(X) and Aut¥ (X vY).

We can now apply inductively Theorem 3.4 to obtain a factorization of
Aut,. (X1 V.-V X,). First, we need the following lemma:

Lemma 3.6. AutX (X VYV Z)=AutXVY (X vYV Z)AutXVZ (X VYV Z).
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Proof. Since AutZV¥ (X vY vV Z)nAwtXVZ(X VY v Z) = id, it is sufficient
to prove that for any f € Autf(X VYV Z), we have f = gh, where g €
AutXVY(X VY VZ) and h e AutXV4(X VY Vv Z).

Since f € Aut,(X VY V Z) can be represented by (ix, fy, fz), by Lemma
3.3 we have (ix,iy,fz), (ix, fy,iz) € Aut*(X vY v Z), ie, (ix,iy,fz) €
AtXYY(X VYV Z) and (ix, fy,iz) € AutXVZ(X vY v Z). It follows that

(ix, fy, fz) = (ix,iv, fz)(ix, (ix, iy, f2z) " fv,iz)

Since (ix, iy, fz)™' (ix, fv,iz) = (ix, (ix, iv, fz) " fv, (ix, iy, fz)"iz) is
also in Aut, (X VY Vv Z), also by Lemma 3.3 we get that (ix, (ix, iy, fz) ' fv,
iz) € Aut (X VY V Z), ie.

(ix,(ix,iy, fz) " fyr,iz) € AutXVZ(X vY Vv Z).
This shows the result. O

For pointed simply-connec}ed CW complexes X1,..., X,, let V; denote X;V
.-V X; V-V X, where X; means that X; is omitted. Then we have the
generalization of Theorem 3.4 as follows.

Theorem 3.7. Aut,(X; V.-V X,) =]l AutY{(X; V.-V X,).
Proof. By Lemma 3.6, for £k = 2,3,...,n, we have
AtV VX=X Ve v X) = AutX Y VYRR (X Ve VX ) AutYE (X V- V).
Then by Theorem 3.4, we get
Aut, (X3 v---vX,)
= AutF (X3 V-V X)) AutY (X, V-V Xy)
= AutZV* (X, Ve v X)) AutY2 (KXo VeV X)) AutY (X V-V X)

I

Auty™ (X3 VoV Xp) - Autd T (X, VooV X)

[T Aut) (X, v v X,).
i=1

This shows our result. (Y

Similar to Proposition 3.5, every Aut)*(X; V ---V X,,) can also be further
decomposed as follows.

Proposition 3.8. Aut* (X, V---V X,) is the semi-direct product of Aut,(X;)
and Auty (X1 V-V X,).

We now turn to give another factorization of Aut.(X; v ---V X,,) which is
dual to that of Autyy (X x -+ x X,;) named as LU factorization.

We first fix some notations. For a self-map f: X;V---VX,, - X;V---VX,,
let fr = fix, and fi; = px, fix,. Moreover, let ¢5 and ¥, be two self-maps of
X V.-V X, defined by
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e TR N T JUNUIE - 1<k
¢k(*,-..,*,.’Ei,*,...,*):{ i” » TR T ) )a z;
and
E I SR P RPN 3 1>k
"/)k(*,...,*,.’lti,*,...,*)—{ )(k’a g Fydigy Ty ) ), 12

respectively, where z; € X;. It is easy to verify that ¢rd; = ¢;0k = dmin{r,j}
and Yrh; = Y;9e = Ymax{k,j}-

We now define the factors of our new factorization. For any Xq,...,X,, let

@(Xl,...,Xn) = {f € Aut*(Xl VeV X)) | fo =oefr, k= 1,...,n}

and
‘I’(Xl, .. -,Xn) = {f S AUt*(Xl\/' . 'VXn) | fe =Yefe, o =id, k=1,... ,n}.
Defining relations for ®(X1, ..., X,) and ¥(X3,...,X,) are non-additive ana-
logues of relations that define upper-triangular matrices and lower-triangular
matrices respectively. Indeed, if we identify formally an element f € Aut. (X1 V
-V X,) with a n x n-matrix (f;x) with entries f;z, then the elements of
®(Xy,...,X,) yield upper-triangular matrices and those of ¥(X,,...,X})
yield lower-triangular matrices with identities on the diagonal entries.

Proposition 3.9. &(X;,...,X,,) C®(X;VXs,...,Xpn) C-- CO(X1 V-V
Xp)=Aut, (X1 V- VXy) and ¥(Xq,..., X)) DU(X;VXs,..., X)) D+ D
U(X1V---VX,) = {id}.

Proof. Forany f € ®(X; V-V X1, Xp, ..., Xn), k= 2,...,n, in order to
prove that f € ®(X; V ---V X, Xpi41,..., Xn), it is obviously sufficient to

prove that ¢X1\/~--VkaiX1\/~~-\/Xk = f?:X1\/'--\/Xk7 ie., ¢X1\/~~~VXk (fl, .. .,fk) =

(fis--., fr), where f; = fix;.
For j < k, we have

bxyvevx (fis -5 fr)ix;
= ¢xyvevxy fi = O v vx, Ox v v X (Fis -5 fro1)ix;
= dxyvevXp_: (fo -0 fo-1)ix;

= (f1,-. ., fr—1)ix; = (f15.- -, fr)ix;
and for j = k, we have ¢x,v..vx,(f1,---, fe)ix, = (f1,--., fe)ix, for f €
(X, V-V Xgo1,Xp,...,Xn). By the universal property of wedge spaces,
we see that ¢x,v...vx, (f1,--+, fk) = (f1,-., fr). This finishes the proof of the
first inclusions. The second inclusions can be proved similarly. O

Proposition 3.10. ®(X;,...,X,,) and ¥(X,,...,X,) are both subgroups of
Aut, (X1 V-V Xp).

Proof. Let f,g € ®(X1,...,Xyn), then fi; = f; = ¢;f;, where i; = ix;.
Therefore for 7 < k, we have

fij = ¢ifi = budifi = o fij.
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Since ¢ri; = ij, we have fori; = ¢r fort; according to the above result. Then

by the universal property of wedge spaces, we have fér = ¢ fdr and then

fgix = forgir = drforgir = drfgix.

It follows that fg € ®(Xy,...,X,), hence ®(X,,...,X,) is closed under mul-

tiplication.

In the follows, we prove inductively that for any f € ®(Xy,..., X,), we have
e d(Xy,...,X,).

When n =2, f € (X, X») can be decomposed as

f=1fGafrn,i2) "G frrsie) = [FGLfTT )] fuasia).

Since

Flfntii = fisfn' = o fifi =i AfL = ifufiy =i,
we have f(i1 f;l,42) € AutX (X; V X3) C (X1, Xo). Since AutX*(X; v Xo)
is a group, we have
[FGLfi i)™ = (nfin,dn) £ € Autd (X1 V Xp) € @(Xy, Xa).
It is easy to verify that (i, f;7,42) € ®(X1, X»), so we have
Fh =G ft i) (i fin, i) 1 € (X0, Xo).

This means that ®(X;, X2) is closed under formation of inverses.

Suppose that ®(X7,..., X} _,) is closed under formation of inverses for any
simply connected CW-complexes X7,..., X!, withn > 2. Then given any f €
®(Xy,...,X,) C®(X1V Xy, Xs,...,X,) (by Proposition 3.9), we get f~! €
®(X; V Xg, Xs,...,X,) according to the inductive step. It remains to prove
that f~4; = ¢;f 11, or equivalently that px,vx,f Yix,vx, € ®(X1, X2).
Since px,vx, fix,vx, € (X1, X2) which is a group, it follows that

pX]\/XzfﬂliX1VX2 = (lengfinsz)_l € (P(Xl,XQ).

According to the above results, we see that &(X;,...,X,,) is a group.
Similarly, we can prove that ¥(Xy,...,X,) is also a group. 0
Now we can prove our main result as follows.

Theorem 3.11. Aut.(X; V.-V X,) =¥(Xy,..., Xn)®(X1,..., X5).

Proof. Since ¥(X;,...,X,) N®(X,,...,X,) = id, it is sufficient to prove in-
ductively the existence of the factorization of the self-equivalence in Aut.(X; V
\\7(7}‘?2;1)11 =2, any f € Aut.(X; V X3) can be decomposed as
F=10fa) @ fat )G fu, i) (fui2) 7 )
For (f1,42)(i1f;7,2) € Aut* (X, V X2), since
pi(fr i) o) = pi(frin)in fi' = fufit = idx,,
then (f1,12) (i1 fi1»42) € ¥(X1, Xa).
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From (f1,i2) " (f1,i2) = ((f1,2) f1,d2) = idx,vx, = (i1,i2), we get
(f1,42) 7 f1 = i1. Tt follows that

(fi,42) 7 f = (f1,i2) 7N (1, f2) = ((Fr,82) T fus (fry62) 7 f2) = (6, (f1,52) 7 o)

Then we have (f1,i2)"'f € AutX*(X; vV X3) C ®(X;,Xs). Since obviously
(ilfll,ig) (S ‘I’(Xl,XQ), we have (ilfll,iz)(fl,ig)-lf € ‘I’(Xl,X2).

For any f € Aut.(X3 V.-V X,) = Aut,.((X; VX)) VX3 V-V X,), we
can assume inductively that f = f f , where f € ¥(X;V Xy, X3,...,X,) and
fled(XV Xy, Xs,y. ., X))

Let p12 = px,vxys 112 = 1X;vX, and deﬁne_f = p12f”?:12. Since f” is
reducible, we have f € Auty(X; V X») and then f = ¢¢, where ¢ € ¥(X;1, X>)
and ¢ € ®(X;,X,). Define ¥ := (i12%,13,...,1n), then ¢ € ¥(X;,...,X,) N
®(X1V Xa, X3,...,X,). Since f € ®(X;V X3, Xs,...,X,), we have f i1 =
dxivxof B1a = Giapiaf d12. Then for =1 € ®(X1V X2, X3,...,Xy,), we
have

P f e = (pra¥Vine) (praf i12) =Y TH = ¢ € B(X1, Xa).

This implies that =1 f" € ®(X1, ..., X,). It follows that f = (f P)(@~1f"),
where f'i € ®(Xy,...,X,) and ¥~1f" € &(Xy,...,X,). This finishes the
proof of the theorem. O

4. Autz (X)

As a subgroup of Aut.(X), Autx(X) is dual to Autq(X). However, we can
not find Auty(X) appears in any other reference. So in the follows, we will
simply describe the general property of Auty;(X) and also list some problems
related to it.

First we give a characterization of Auty(X) as follows.

Proposition 4.1. For any pointed space X, f € Auts(X) if and only if f €
Aut(X) and f* =id: [X, QY] — [X, QY] for every pointed space Y.

Proof. (=) Suppose that f € Auts(X), then for any pointed space ¥ and
g € [X,QY], we have §(Xf) = g for £f =id, where §: XX — Y is the adjoint
of g. Take the adjoint of the equation, we have gf = g, i.e., f*(g) = ¢g. This
implies that f* = id.

(<) Given any f € Aut(X) such that f* = id: [X,QY] — [X,QY] for
every pointed space, we take Y = XX and a : X — QXX be the adjoint of
id : XX — XX, then we have f*(a) = af = a. By taking adjoint, we get
Y f = id which implies that f € Autx(X). O

In [5], Pavesié proved that if X is a Co-H-space, then the group Auto(X) is
trivial. Dually, we have the following result:

Corollary 4.2. If X is a H-space, then Auts(X) is trivial.
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Proof. Since X is a H-space, X is a retract of QY for some space Y (see p.201
of [7]). Then there exist maps 7 : QY — X and ¢ : X — QY such that
ri = id. Given any f € Auts(X), we have f*(i) = if = i by Proposition
4.1. By applying r to both sides, we get f = id which shows that Auts(X) is
trivial. O

In [11], Pavesié asked that if there is a finite CW-complex X such that
Auto(X) # Autyeo(X). Since Autg(X) is trivial when X is a Co-H-space,
we may find a finite Co-H-space X such that Autye(X) # {id}. Dually for
Autx(X), we have a conjecture as follows.

Conjecture 4.3. There is a finite CW complex X such that Autp(X) #
Aut,(X).

By Corollary 4.2, a possible approach to Conjecture 4.3 is to find a finite
H-space X such that Aut.(X) # {id}.

In [6], Felix and Murillo showed that for pointed CW-complex X, Auto(X)
is a nilpotent group and its order of nilpotency is bounded by the Ljusternik-
Schnirelman category of X. Naturally we have the following conjecture:

Conjecture 4.4. For any pointed CW-compler X, Auts(X) is a nilpotent
group, and its order of nilpotency is bounded by the Ljusternik-Schnirelman
cocategory of X.

According to the theorem of Maruyama [9], if the above conjecture is correct,
then we will ask whether the natural map Autg(X) — Autg(Xp) is a P-
localization for any set of primes P.

Now we turn to the factorization of Auty(X; V ---V X,,) for any pointed
simply-connected CW-complexes X,...,X,. Since we have already proved
that, for pointed simply-connected CW-complexes X and Y, all the self-equi-
valences in Aut.(X VY') are always reducible (see Lemma 3.2), so by a similar
proof to that of Lemma 2.1, we have

Proposition 4.5. For pointed simply-connected CW-complezes X andY , given
any f € Auts(X VY), we have fxx € Auts(X) and fry € Auts(Y).

This enables us to get the following theorem by a proof similar to that of
Theorem 3.7.
Theorem 4.6. Auts (X1 V-V X,) =[], Autd (X1 V-V Xy,).

Also we can decompose Auty (X7 V.-V X,,) as the product of its only two
subgroups similarly to Theorem 3.11.
Theorem 4.7. Autg(X1 V-V Xn) =¥ (X1,...,Xn)® (X1,...,X,), where
\Il’(Xl, oo, Xp) and iy (X1,...,Xn) are defined similarly to U(Xy,...,X,) and
®(Xy,...,X,) in Section 3 respectively.
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