ON FACTORIZATIONS OF THE SUBGROUPS OF SELF-HOMOTOPY EQUIVALENCES

YI-YUN SHI AND HAO ZHAO

ABSTRACT. For a pointed space X, the subgroups of self-homotopy equivalences $\operatorname{Aut}_{\sharp N}(X)$, $\operatorname{Aut}_{\Omega}(X)$, $\operatorname{Aut}_{\star}(X)$ and $\operatorname{Aut}_{\Sigma}(X)$ are considered, where $\operatorname{Aut}_{\sharp N}(X)$ is the group of all self-homotopy classes f of X such that $f_{\sharp}=id:\pi_i(X)\to\pi_i(X)$ for all $i\leq N\leq\infty$, $\operatorname{Aut}_{\Omega}(X)$ is the group of all the above f such that $\Omega f=id$; $\operatorname{Aut}_{\star}(X)$ is the group of all self-homotopy classes g of X such that $g_{\star}=id:H_i(X)\to H_i(X)$ for all $i\leq\infty$, $\operatorname{Aut}_{\Sigma}(X)$ is the group of all the above g such that $\Sigma g=id$. We will prove that $\operatorname{Aut}_{\Omega}(X_1\times\cdots\times X_n)$ has two factorizations similar to those of $\operatorname{Aut}_{\sharp N}(X_1\times\cdots\times X_n)$ in reference [10], and that $\operatorname{Aut}_{\Sigma}(X_1\vee\cdots\vee X_n)$, $\operatorname{Aut}_{\star}(X_1\vee\cdots\vee X_n)$ also have factorizations being dual to the former two cases respectively.

1. Introduction

For a pointed space X, let $\operatorname{Aut}(X)$ denote the set of homotopy classes of pointed self-maps of X that are homotopy equivalences. This set is a group, called the group of self-homotopy equivalences, with respect to the operation induced by the composition of maps. For a survey of the literature about $\operatorname{Aut}(X)$ and related concepts, see [1] or [13]. In this paper, we consider the subgroups of the group of self-homotopy equivalences.

For a pointed space X and a integer N with $\dim X \leq N \leq \infty$, we define the subgroups $\operatorname{Aut}_{\sharp N}(X)$ and $\operatorname{Aut}_{\Omega}(X)$ of $\operatorname{Aut}(X)$ by

$$\operatorname{Aut}_{\sharp N}(X) = \{ f \in \operatorname{Aut}(X) | f_{\sharp} = id : \pi_i(X) \to \pi_i(X) \text{ for all } i \leq N \}$$

and

$$\operatorname{Aut}_{\Omega}(X) = \{ f \in \operatorname{Aut}(X) | \Omega f = id \},$$

where f_{\sharp} is the homomorphism on homotopy group induced by f and Ω is the loop functor. Since the homomorphisms induced by Ωf on the homotopy groups of ΩX are the same (after a shift in dimension) as those induced by f on the homotopy groups of X, $\operatorname{Aut}_{\Omega}(X)$ is a subgroup of $\operatorname{Aut}_{\sharp N}(X)$. The

Received December 8, 2006; Revised February 27, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 55P10.

Key words and phrases. self-homotopy equivalences, wedge spaces, product spaces, loop spaces, suspension.

group $\operatorname{Aut}_{\sharp N}(X)$ has been studied by many authors, see [2, 3, 4, 5, 8, 10]. For example, in [5], Farjoun and Zabrodsky proved that the group $\operatorname{Aut}_{\sharp N}(X)$ is nilpotent whenever X is a finite-dimensional CW-complex; in [8], Maruyama proved that, under the same assumption and given a set of primes P, the natural map $\operatorname{Aut}_{\sharp N}(X) \to \operatorname{Aut}_{\sharp N}(X_P)$ is the P-localization homomorphism of the nilpotent group $\operatorname{Aut}_{\sharp N}(X)$. In particular, in [10], Pavešić proved that, for two pointed CW-complexes X and Y, the self-equivalences in $\operatorname{Aut}_{\sharp N}(X \times Y)$ are always reducible (see Section 2), hence $\operatorname{Aut}_{\sharp N}(X \times Y)$ can be decomposed as the product of its two natural subgroups. This paves the way to decompose $\operatorname{Aut}_{\sharp N}(X_1 \times \cdots \times X_n)$ as the n-fold product of its certain subgroups. Furthermore, Pavešić developed another method named as LU factorization by which $\operatorname{Aut}_{\sharp N}(X_1 \times \cdots \times X_n)$ can be decomposed as the product of its only two subgroups. In Section 2, we will prove that the self-equivalences in $\operatorname{Aut}_{\Omega}(X \times Y)$ are also always reducible, so that $\operatorname{Aut}_{\Omega}(X_1 \times \cdots \times X_n)$ has factorizations similar to those of $\operatorname{Aut}_{\sharp N}(X_1 \times \cdots \times X_n)$.

For a pointed space X, we can also define the subgroups $\operatorname{Aut}_*(X)$ and $\operatorname{Aut}_{\Sigma}(X)$ of $\operatorname{Aut}(X)$ by

$$\operatorname{Aut}_*(X) = \{ g \in \operatorname{Aut}(X) | g_* = id : H_i(X) \to H_i(X) \text{ for all } i \ge 0 \}$$

and

$$\operatorname{Aut}_{\Sigma}(X) = \{ g \in \operatorname{Aut}(X) | \Sigma g = id \},\$$

where g_* is the homomorphism on homology group induced by g and Σ is the suspension functor. Similar to $\operatorname{Aut}_{\sharp N}(X)$ and $\operatorname{Aut}_{\Omega}(X)$, we can see that $\operatorname{Aut}_{\Sigma}(X)$ is a subgroup of $\operatorname{Aut}_*(X)$. In [5], Farjoun and Zabrodsky also proved that $\operatorname{Aut}_*(X)$ is nilpotent whenever X is a finite-dimensional CW-complex; in [9], Maruyama proved that the natural map $\operatorname{Aut}_*(X) \to \operatorname{Aut}_*(X_P)$ is a P-localization homomorphism. In Section 3, we will prove that, for any pointed simply-connected CW-complexes X and Y, the self-equivalences in $\operatorname{Aut}_*(X \vee Y)$ are always reducible (see Section 3), and for pointed simply-connected CW-complexes X_1, \ldots, X_n , $\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$ has factorizations dual to those of $\operatorname{Aut}_{\sharp N}(X_1 \times \cdots \times X_n)$. In Section 4, we consider the group $\operatorname{Aut}_{\Sigma}(X)$ and show that $\operatorname{Aut}_{\Sigma}(X)$ acts dually to $\operatorname{Aut}_{\Omega}(X)$.

2.
$$\operatorname{Aut}_{\Omega}(X_1 \times \cdots \times X_n)$$

The group $\operatorname{Aut}_{\Omega}(X)$ was first introduced by Felix and Murillo in [6], where they showed that $\operatorname{Aut}_{\Omega}(X)$ and $\operatorname{Aut}_{\sharp N}(X)$ are generally different. In [11], Pavešić constructed a spectral sequence converging to $\operatorname{Aut}_{\Omega}(X)$ by Cartan-Eilenberg system. He proved that, if X is a Co-H-space, then $\operatorname{Aut}_{\Omega}(X)$ is trivial, and that if X is a Postnikov piece, then for any set of primes P, the natural map $\operatorname{Aut}_{\Omega}(X) \to \operatorname{Aut}_{\Omega}(X_P)$ is the P-localization.

In order to state our results in this section, the following notations and notions are needed. In this section, all the spaces are pointed connected CW-complexes. Let i_X and i_Y denote the inclusions of X and Y in $X \times Y$, and

let p_X and p_Y be the projections of $X \times Y$ on X and Y. Given a self-map $f: X \times Y \to X \times Y$ and $I, J \in \{X, Y\}$, write $f_I: X \times Y \to I$ for the composition $f_I = p_I f$ (so that f is represented component-wise as $f = (f_X, f_Y)$ by the universal property of product spaces), and write $f_{IJ}: J \to I$ for the composition $f_{IJ} = p_I f_{IJ}$. A self-homotopy equivalence f of $X \times Y$ is said to be reducible if f_{XX} and f_{YY} are self-homotopy equivalences of X and Y respectively.

Let $\operatorname{Aut}_X(X \times Y) = \{f \in \operatorname{Aut}(X \times Y) | p_X f = p_X\}$ and $\operatorname{Aut}_Y(X \times Y) = \{g \in \operatorname{Aut}(X \times Y) | p_Y g = p_Y\}$. In [12], Pavešić proved that $\operatorname{Aut}_X(X \times Y)$ and $\operatorname{Aut}_Y(X \times Y)$ are subgroups of $\operatorname{Aut}(X \times Y)$, and that if all the self-equivalences of $X \times Y$ are reducible, then $\operatorname{Aut}(X \times Y)$ is the product of $\operatorname{Aut}_X(X \times Y)$ and $\operatorname{Aut}_Y(X \times Y)$, i.e.,

$$\operatorname{Aut}(X \times Y) = \operatorname{Aut}_X(X \times Y) \operatorname{Aut}_Y(X \times Y).$$

However, when considered the group $\operatorname{Aut}_{\sharp N}(X \times Y)$ in [10], Pavešić found that all the self-equivalences in $\operatorname{Aut}_{\sharp N}(X \times Y)$ are always reducible without any restriction on X and Y, hence there is a corresponding decomposition of $\operatorname{Aut}_{\sharp N}(X \times Y)$, i.e.,

$$\operatorname{Aut}_{\sharp N}(X \times Y) = \operatorname{Aut}_{X\sharp N}(X \times Y) \operatorname{Aut}_{Y\sharp N}(X \times Y),$$

where $\operatorname{Aut}_{X\sharp N}(X\times Y)=\operatorname{Aut}_X(X\times Y)\cap\operatorname{Aut}_{\sharp N}(X\times Y)$ and $\operatorname{Aut}_{Y\sharp N}(X\times Y)=\operatorname{Aut}_Y(X\times Y)\cap\operatorname{Aut}_{\sharp N}(X\times Y)$. This paves the way for a generation of our approach to factorization of self-equivalences of products of more than two CW-complexes, i.e.,

$$\operatorname{Aut}_{\sharp N}(X_1 \times \cdots \times X_n) = \prod_{i=1}^n \operatorname{Aut}_{\prod_i \sharp N}(X_1 \times \cdots \times X_n),$$

where \prod_i denotes the subproduct of $X_1 \times \cdots \times X_n$ obtained by omitting X_i , i.e., $\prod_i = X_1 \times \cdots \times \hat{X}_i \times \cdots \times X_n$ (refer to [10]).

For the group $\operatorname{Aut}_{\Omega}(X \times Y)$, we will also prove that all its self-equivalences are always reducible, that is,

Lemma 2.1. For any $f \in \operatorname{Aut}_{\Omega}(X \times Y)$, we have $f_{XX} \in \operatorname{Aut}_{\Omega}(X)$ and $f_{YY} \in \operatorname{Aut}_{\Omega}(Y)$.

Proof. Since $\operatorname{Aut}_{\Omega}(X \times Y) \subseteq \operatorname{Aut}_{\sharp N}(X \times Y)$ and all the self-equivalences in $\operatorname{Aut}_{\sharp N}(X \times Y)$ are reducible by Lemma 2.1 of [10], we have $f_{XX} \in \operatorname{Aut}_{\sharp N}(X)$ and $f_{YY} \in \operatorname{Aut}_{\sharp N}(Y)$. Since

$$\Omega f_{XX} = \Omega(p_X f i_X) = (\Omega p_X)(\Omega f)(\Omega i_X) = \Omega(p_X i_X) = id,$$

we can get $f_{XX} \in \operatorname{Aut}_{\Omega}(X)$ and similarly $f_{YY} \in \operatorname{Aut}_{\Omega}(Y)$. This shows the result.

Now we can derive the following factorization from Theorem 2.5 of [12].

Theorem 2.2.

$$\operatorname{Aut}_{\Omega}(X \times Y) = \operatorname{Aut}_{X\Omega}(X \times Y) \operatorname{Aut}_{Y\Omega}(X \times Y),$$

where $\operatorname{Aut}_{X\Omega}(X \times Y) = \operatorname{Aut}_X(X \times Y) \cap \operatorname{Aut}_{\Omega}(X \times Y)$ and $\operatorname{Aut}_{Y\Omega}(X \times Y) = \operatorname{Aut}_Y(X \times Y) \cap \operatorname{Aut}_{\Omega}(X \times Y)$ are the subgroups of $\operatorname{Aut}_{\Omega}(X \times Y)$.

Proof. Given any $h \in \operatorname{Aut}_{\Omega}(X \times Y) \subseteq \operatorname{Aut}(X \times Y)$, since h is reducible, then by Theorem 2.5 of [12], h can be decomposed as

$$h = (p_X, f)(g, p_Y) = (g, f(g, p_Y)),$$

where $(p_X, f) \in \operatorname{Aut}_X(X \times Y)$ and $(g, p_Y) \in \operatorname{Aut}_Y(X \times Y)$. And since

$$\Omega(g, p_Y) = \Omega(h_X, p_Y) = (\Omega(p_X h), \Omega p_Y)
= ((\Omega p_X)(\Omega h), \Omega p_Y) = \Omega(p_X, p_Y) = id$$

by $\Omega h = id$, this implies that $\Omega(g, p_Y) \in \operatorname{Aut}_{Y\Omega}(X \times Y)$ and then follows $(p_X, f) \in \operatorname{Aut}_{\Omega X}(X \times Y)$. As $\operatorname{Aut}_{X\Omega}(X \times Y)$ and $\operatorname{Aut}_{Y\Omega}(X \times Y)$ have trivial intersection, the above factorization is unique and then follows the desired theorem.

By applying Theorem 2.2 and a completely same proof as that of Theorem 2.4 in [10], we can get the generalization of Theorem 2.2 as follows.

Theorem 2.3.
$$\operatorname{Aut}_{\Omega}(X_1 \times \cdots \times X_n) = \prod_{i=1}^n \operatorname{Aut}_{\prod_i \Omega}(X_1 \times \cdots \times X_n)$$
.

Also we can decompose $\operatorname{Aut}_{\Omega}(X_1 \times \cdots \times X_n)$ as the product of its only two subgroups as follows.

Theorem 2.4.

$$\operatorname{Aut}_{\Omega}(X_1 \times \cdots \times X_n) = L(X_1 \times \cdots \times X_n)U(X_1 \times \cdots \times X_n),$$

where $L(X_1 \times \cdots \times X_n) = \{ f \in \operatorname{Aut}_{\Omega}(X_1 \times \cdots \times X_n) | f_{X_k} = f_{X_k} l_k, k = 1, \dots, n \}, U(X_1 \times \cdots \times X_n) = \{ f \in \operatorname{Aut}_{\Omega}(X_1 \times \cdots \times X_n) | f_{X_k} = f_{X_k} u_k, f_{X_k X_k} = id, k = 1, \dots, n \}; l_k \text{ and } u_k \text{ are self-maps of } X_1 \times \cdots \times X_n \text{ defined by } l_k(x_1, \dots, x_n) = (x_1, \dots, x_k, *, \dots, *) \text{ and } u_k(x_1, \dots, x_n) = (*, \dots, *, x_k, \dots, x_n) \text{ respectively.}$

The above factorization is called LU factorization as in Theorem 3.2 of [10] and their proofs are similar.

3.
$$\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$$

In this section, we will prove that for any pointed simply-connected CW-complexes X_1, \ldots, X_n , $\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$ has two factorizations dual to those of $\operatorname{Aut}_{\sharp N}(X_1 \times \cdots \times X_n)$ as in [10].

Before stating our main results, we first fix some notions and notations. In this section, all the spaces are pointed simply-connected CW-complexes. For two spaces X and Y, let $i_X: X \to X \lor Y$ and $i_Y: Y \to X \lor Y$ be inclusions; $p_X: X \lor Y \to X$ and $p_Y: X \lor Y \to Y$ be projections. Given a self-map $f: X \lor Y \to X \lor Y$ and $I, J \in \{X,Y\}$, we denote fi_I by f_I (so that we have

 $f = (f_X, f_Y)$ by the universal property of wedge spaces) and $p_J f i_I$ by f_{IJ} . We say $f \in \operatorname{Aut}(X \vee Y)$ is reducible if $f_{XX} \in \operatorname{Aut}(X)$ and $f_{YY} \in \operatorname{Aut}(Y)$.

We must mention that the above notations have the same forms as those defined in Section 2, but they have different senses in this section.

Let $\operatorname{Aut}^X(X\vee Y)=\{f\in\operatorname{Aut}(X\vee Y)|fi_X=i_X\}$ and $\operatorname{Aut}^Y(X\vee Y)=\{g\in\operatorname{Aut}(X\vee Y)|gi_Y=i_Y\}$. In [14], H. B. Yu and W. H. Shen proved the following theorem:

Theorem 3.1 ([14]). $\operatorname{Aut}^X(X \vee Y)$ and $\operatorname{Aut}^Y(X \vee Y)$ are subgroups of $\operatorname{Aut}(X \vee Y)$, and that if all the self-equivalences in $\operatorname{Aut}(X \vee Y)$ are reducible, then $\operatorname{Aut}(X \vee Y) = \operatorname{Aut}^X(X \vee Y) \operatorname{Aut}^Y(X \vee Y)$.

In the follows, we will prove that all the self-equivalences in $\operatorname{Aut}_*(X \vee Y)$ are always reducible, and then we use this result to derive factorizations of $\operatorname{Aut}_*(X \vee Y)$ and their generalizations to $\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$.

Lemma 3.2. For any $f \in \operatorname{Aut}_*(X \vee Y)$, we have $f_{XX} \in \operatorname{Aut}_*(X)$ and $f_{YY} \in \operatorname{Aut}_*(Y)$, which implies that all the self-equivalences in $\operatorname{Aut}_*(X \vee Y)$ are reducible.

Proof. Given any $f \in \operatorname{Aut}_*(X \vee Y)$, its induced endomorphism on $H_i(X) \oplus H_i(Y)$ is $H_i(f) : H_i(X) \oplus H_i(Y) \to H_i(X) \oplus H_i(Y)$ which can be represented by the following 2×2 -matrix according to [14]:

$$H_i(f) = \begin{pmatrix} H_i(f_{XX}) & H_i(f_{XY}) \\ H_i(f_{YX}) & H_i(f_{YY}) \end{pmatrix}.$$

Since f is in $\operatorname{Aut}_*(X \vee Y)$, then we have $H_i(f) = 1_{H_i(X) \oplus H_i(Y)}$. It follows that $H_i(f_{XX}) = 1_{H_i(X)}$ and $H_i(f_{YY}) = 1_{H_i(Y)}$. By Whitehead theorem, we know that $f_{XX} \in \operatorname{Aut}_*(X)$ and $f_{YY} \in \operatorname{Aut}_*(Y)$.

Let $\operatorname{Aut}_*^X(X\vee Y)=\operatorname{Aut}_*(X\vee Y)\cap\operatorname{Aut}^X(X\vee Y)$. Then we have

Lemma 3.3. For any $f \in \operatorname{Aut}_*(X \vee Y)$, we have $(i_X, f_Y) \in \operatorname{Aut}_*^X(X \vee Y)$.

Proof. The endomorphism on $H_i(X) \oplus H_i(Y)$ induced by (i_X, f_Y) is $H_i(i_X, f_Y)$: $H_i(X) \oplus H_i(Y) \to H_i(X) \oplus H_i(Y)$ which can be represented by the following 2×2 -matrix according to [14]:

$$H_i(i_X, f_Y) = \begin{pmatrix} 1_{H_i(X)} & H_i(f_{XY}) \\ 0 & H_i(f_{YY}) \end{pmatrix}.$$

Since $f \in \operatorname{Aut}_*(X \vee Y)$ is reducible by Lemma 3.2, we have $H_i(f_{YX}) = 0$ and $H_i(f_{YY}) = 1_{H_i(Y)}$ which means that $H_i(i_X, f_Y) = 1_{H_i(X) \oplus H_i(Y)}$. By Whitehead theorem, we know that $(i_X, f_Y) \in \operatorname{Aut}^X_*(X \vee Y)$.

Similarly we let $\operatorname{Aut}_*^Y(X \vee Y) = \operatorname{Aut}_*(X \vee Y) \cap \operatorname{Aut}^Y(X \vee Y)$, then we can derive a factorization of $\operatorname{Aut}_*(X \vee Y)$ dual to that of $\operatorname{Aut}_{\sharp N}(X \vee Y)$.

Theorem 3.4. $\operatorname{Aut}_*(X \vee Y) = \operatorname{Aut}_*^X(X \vee Y) \operatorname{Aut}_*^Y(X \vee Y)$.

Proof. For any $h \in \operatorname{Aut}_*(X \vee Y)$, h is reducible according to Lemma 3.2. By the Theorem 3.1, h has a unique factorization $h = (i_X, f)(g, i_Y) = ((i_X, f)g, f)$, where $(i_X, f) \in \operatorname{Aut}^X(X \vee Y)$ and $(g, i_Y) \in \operatorname{Aut}^Y(X \vee Y)$. Then by Lemma 3.3, we have $(i_X, h_Y) = (i_X, f) \in \operatorname{Aut}_*^X(X \vee Y)$. Since h and (i_X, f) are both in $\operatorname{Aut}_*(X \vee Y)$, we have $(g, i_Y) \in \operatorname{Aut}_*^X(X \vee Y)$, i.e., $(g, i_Y) \in \operatorname{Aut}_*^Y(X \vee Y)$. This shows the result.

Actually, the above $\operatorname{Aut}_*^X(X\vee Y)$ and $\operatorname{Aut}_*^Y(X\vee Y)$ can be further decomposed. If we let $\operatorname{Aut}_{Y_*}^X(X\vee Y)=\{f\in\operatorname{Aut}_*^X(X\vee Y)|p_Yf=p_Y\}$ and $\operatorname{Aut}_{X_*}^Y(X\vee Y)=\{f\in\operatorname{Aut}_*^Y(X\vee Y)|p_Xf=p_X\}$, then we have the following result:

Proposition 3.5. $\operatorname{Aut}_*^X(X \vee Y)$ is the semi-direct product of $\operatorname{Aut}_*(Y)$ and $\operatorname{Aut}_{Y_*}^X(X \vee Y)$.

Proof. Define a map $\phi_Y : \operatorname{Aut}_*^X(X \vee Y) \to \operatorname{Aut}(Y)$ by $\phi_Y(i_X, f_Y) = p_Y f_Y = f_{YY}$, it is easy to verify that $\operatorname{Ker} \phi_Y = \operatorname{Aut}_{Y*}^X(X \vee Y)$. We begin to prove that ϕ_Y is a homomorphism.

Since

$$p_Y f_Y p_Y = (p_Y f_Y p_Y i_X, p_Y f_Y p_Y i_Y)$$

= $(p_Y i_X, p_Y f_Y) = p_Y (i_X, f_Y),$

then for any $(i_X, f_Y), (i_X, g_Y) \in \operatorname{Aut}_*^X(X \vee Y)$, we have

$$\begin{split} \phi_Y((i_X, f_Y)(i_X, g_Y)) &= p_Y(i_X, f_Y)(i_X, g_Y)i_Y \\ &= p_Y f_Y p_Y g_Y \\ &= \phi_Y(i_X, f_Y) \phi_Y(i_X, g_Y). \end{split}$$

It is follows that ϕ_Y is a homomorphism which has a right inverse

$$\psi_Y: \operatorname{Aut}(Y) \to \operatorname{Aut}_*^X(X \vee Y)$$

given by $\psi_Y(f) = (i_X, i_Y f)$, where $f \in \operatorname{Aut}(Y)$. Then we have the following split short exact sequence:

$$0 \longrightarrow \operatorname{Aut}_{Y_*}^X(X \vee Y) \xrightarrow{\phi_Y} \operatorname{Aut}_*^X(X \vee Y) \longrightarrow \operatorname{Aut}_*(Y) \longrightarrow 0.$$

It means that $\operatorname{Aut}_*^X(X\vee Y)$ is the semi-direct product of $\operatorname{Aut}_*(Y)$ and $\operatorname{Aut}_{Y*}^X(X\vee Y)$.

Similarly, we can prove that $\operatorname{Aut}_*^Y(X\vee Y)$ is also the semi-direct product of $\operatorname{Aut}_*(X)$ and $\operatorname{Aut}_{X*}^Y(X\vee Y)$.

We can now apply inductively Theorem 3.4 to obtain a factorization of $\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$. First, we need the following lemma:

Lemma 3.6.
$$\operatorname{Aut}_*^X(X \vee Y \vee Z) = \operatorname{Aut}_*^{X \vee Y}(X \vee Y \vee Z) \operatorname{Aut}_*^{X \vee Z}(X \vee Y \vee Z).$$

Proof. Since $\operatorname{Aut}_*^{X\vee Y}(X\vee Y\vee Z)\cap \operatorname{Aut}_*^{X\vee Z}(X\vee Y\vee Z)=id$, it is sufficient to prove that for any $f\in \operatorname{Aut}_*^X(X\vee Y\vee Z)$, we have f=gh, where $g\in \operatorname{Aut}_*^{X\vee Y}(X\vee Y\vee Z)$ and $h\in \operatorname{Aut}_*^{X\vee Z}(X\vee Y\vee Z)$.

Since $f \in \operatorname{Aut}_*(X \vee Y \vee Z)$ can be represented by (i_X, f_Y, f_Z) , by Lemma 3.3 we have (i_X, i_Y, f_Z) , $(i_X, f_Y, i_Z) \in \operatorname{Aut}_*(X \vee Y \vee Z)$, i.e., $(i_X, i_Y, f_Z) \in \operatorname{Aut}_*^{X \vee Y}(X \vee Y \vee Z)$ and $(i_X, f_Y, i_Z) \in \operatorname{Aut}_*^{X \vee Z}(X \vee Y \vee Z)$. It follows that

$$(i_X, f_Y, f_Z) = (i_X, i_Y, f_Z)(i_X, (i_X, i_Y, f_Z)^{-1}f_Y, i_Z).$$

Since $(i_X, i_Y, f_Z)^{-1}$ $(i_X, f_Y, i_Z) = (i_X, (i_X, i_Y, f_Z)^{-1} f_Y, (i_X, i_Y, f_Z)^{-1} i_Z)$ is also in $\text{Aut}_*(X \vee Y \vee Z)$, also by Lemma 3.3 we get that $(i_X, (i_X, i_Y, f_Z)^{-1} f_Y, i_Z) \in \text{Aut}_*(X \vee Y \vee Z)$, i.e.,

$$(i_X, (i_X, i_Y, f_Z)^{-1} f_Y, i_Z) \in \operatorname{Aut}_{\star}^{X \vee Z} (X \vee Y \vee Z).$$

This shows the result.

For pointed simply-connected CW complexes X_1, \ldots, X_n , let \vee_i denote $X_1 \vee \cdots \vee \hat{X}_i \vee \cdots \vee X_n$, where \hat{X}_i means that X_i is omitted. Then we have the generalization of Theorem 3.4 as follows.

Theorem 3.7.
$$\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n) = \prod_{i=1}^n \operatorname{Aut}_*^{\vee_i}(X_1 \vee \cdots \vee X_n)$$
.

Proof. By Lemma 3.6, for k = 2, 3, ..., n, we have

$$\operatorname{Aut}_{*}^{X_{1}\vee\cdots\vee X_{k-1}}(X_{1}\vee\cdots\vee X_{n}) = \operatorname{Aut}_{*}^{X_{1}\vee\cdots\vee X_{k}}(X_{1}\vee\cdots\vee X_{n}) \operatorname{Aut}_{*}^{\vee_{k}}(X_{1}\vee\cdots\vee X_{n}).$$

Then by Theorem 3.4, we get

$$\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$$

$$= \operatorname{Aut}_{*}^{X_{1}}(X_{1} \vee \cdots \vee X_{n}) \operatorname{Aut}_{*}^{\vee_{1}}(X_{1} \vee \cdots \vee X_{n})$$

$$= \operatorname{Aut}_{*}^{X_1 \vee X_2}(X_1 \vee \cdots \vee X_n) \operatorname{Aut}_{*}^{\vee_2}(X_2 \vee \cdots \vee X_n) \operatorname{Aut}_{*}^{\vee_1}(X_1 \vee \cdots \vee X_n)$$

= ...

$$= \operatorname{Aut}_{*}^{\vee_n}(X_1 \vee \cdots \vee X_n) \cdots \operatorname{Aut}_{*}^{\vee_1}(X_1 \vee \cdots \vee X_n)$$

$$= \prod_{i=1}^n \operatorname{Aut}_*^{\vee_i}(X_1 \vee \cdots \vee X_n).$$

This shows our result.

Similar to Proposition 3.5, every $\operatorname{Aut}_*^{\vee_i}(X_1 \vee \cdots \vee X_n)$ can also be further decomposed as follows.

Proposition 3.8. Aut* $(X_1 \vee \cdots \vee X_n)$ is the semi-direct product of Aut* (X_i) and Aut* (X_i) $(X_1 \vee \cdots \vee X_n)$.

We now turn to give another factorization of $\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$ which is dual to that of $\operatorname{Aut}_{\sharp N}(X_1 \times \cdots \times X_n)$ named as LU factorization.

We first fix some notations. For a self-map $f: X_1 \vee \cdots \vee X_n \to X_1 \vee \cdots \vee X_n$, let $f_k = fi_{X_k}$ and $f_{kl} = p_{X_l}fi_{X_k}$. Moreover, let ϕ_k and ψ_k be two self-maps of $X_1 \vee \cdots \vee X_n$ defined by

$$\phi_k(*,\ldots,*,x_i,*,\ldots,*) = \begin{cases} (*,\ldots,*,x_i,*,\ldots,*), & i \leq k \\ *, & i > k \end{cases}$$

and

$$\psi_k(*,...,*,x_i,*,...,*) = \begin{cases} (*,...,*,x_i,*,...,*), & i \ge k \\ *, & i < k \end{cases}$$

respectively, where $x_i \in X_i$. It is easy to verify that $\phi_k \phi_j = \phi_j \phi_k = \phi_{\min\{k,j\}}$ and $\psi_k \psi_j = \psi_j \psi_k = \psi_{\max\{k,j\}}$.

We now define the factors of our new factorization. For any X_1, \ldots, X_n , let

$$\Phi(X_1,\ldots,X_n) = \{ f \in \operatorname{Aut}_*(X_1 \vee \cdots \vee X_n) \mid f_k = \phi_k f_k, k = 1,\ldots,n \}$$

and

$$\Psi(X_1,\ldots,X_n)=\{f\in \operatorname{Aut}_*(X_1\vee\cdots\vee X_n)\mid f_k=\psi_kf_k, f_{kk}=id, k=1,\ldots,n\}.$$

Defining relations for $\Phi(X_1,\ldots,X_n)$ and $\Psi(X_1,\ldots,X_n)$ are non-additive analogues of relations that define upper-triangular matrices and lower-triangular matrices respectively. Indeed, if we identify formally an element $f \in \operatorname{Aut}_*(X_1 \vee \cdots \vee X_n)$ with a $n \times n$ -matrix (f_{jk}) with entries f_{jk} , then the elements of $\Phi(X_1,\ldots,X_n)$ yield upper-triangular matrices and those of $\Psi(X_1,\ldots,X_n)$ yield lower-triangular matrices with identities on the diagonal entries.

Proposition 3.9. $\Phi(X_1,\ldots,X_n)\subseteq\Phi(X_1\vee X_2,\ldots,X_n)\subseteq\cdots\subseteq\Phi(X_1\vee\cdots\vee X_n)=\operatorname{Aut}_*(X_1\vee\cdots\vee X_n)$ and $\Psi(X_1,\ldots,X_n)\supseteq\Psi(X_1\vee X_2,\ldots,X_n)\supseteq\cdots\supseteq\Psi(X_1\vee\cdots\vee X_n)=\{id\}.$

Proof. For any $f \in \Phi(X_1 \vee \cdots \vee X_{k-1}, X_k, \ldots, X_n)$, $k = 2, \ldots, n$, in order to prove that $f \in \Phi(X_1 \vee \cdots \vee X_k, X_{k+1}, \ldots, X_n)$, it is obviously sufficient to prove that $\phi_{X_1 \vee \cdots \vee X_k} f_{i_{X_1 \vee \cdots \vee X_k}} = f_{i_{X_1 \vee \cdots \vee X_k}}$, i.e., $\phi_{X_1 \vee \cdots \vee X_k} (f_1, \ldots, f_k) = (f_1, \ldots, f_k)$, where $f_j = f_{i_{X_j}}$.

For j < k, we have

$$\phi_{X_1 \vee \dots \vee X_k}(f_1, \dots, f_k) i_{X_j}$$

$$= \phi_{X_1 \vee \dots \vee X_k} f_j = \phi_{X_1 \vee \dots \vee X_k} \phi_{X_1 \vee \dots \vee X_{k-1}}(f_1, \dots, f_{k-1}) i_{X_j}$$

$$= \phi_{X_1 \vee \dots \vee X_{k-1}}(f_1, \dots, f_{k-1}) i_{X_j}$$

$$= (f_1, \dots, f_{k-1}) i_{X_j} = (f_1, \dots, f_k) i_{X_j}$$

and for j=k, we have $\phi_{X_1\vee\cdots\vee X_k}(f_1,\ldots,f_k)i_{X_k}=(f_1,\ldots,f_k)i_{X_k}$ for $f\in\Phi(X_1\vee\cdots\vee X_{k-1},X_k,\ldots,X_n)$. By the universal property of wedge spaces, we see that $\phi_{X_1\vee\cdots\vee X_k}(f_1,\ldots,f_k)=(f_1,\ldots,f_k)$. This finishes the proof of the first inclusions. The second inclusions can be proved similarly.

Proposition 3.10. $\Phi(X_1,\ldots,X_n)$ and $\Psi(X_1,\ldots,X_n)$ are both subgroups of $\operatorname{Aut}_*(X_1\vee\cdots\vee X_n)$.

Proof. Let $f, g \in \Phi(X_1, ..., X_n)$, then $fi_j = f_j = \phi_j f_j$, where $i_j = i_{X_j}$. Therefore for $j \leq k$, we have

$$fi_j = \phi_j f_j = \phi_k \phi_j f_j = \phi_k fi_j.$$

Since $\phi_k i_j = i_j$, we have $f\phi_k i_j = \phi_k f\phi_k i_j$ according to the above result. Then by the universal property of wedge spaces, we have $f\phi_k = \phi_k f\phi_k$ and then

$$fgi_k = f\phi_k gi_k = \phi_k f\phi_k gi_k = \phi_k fgi_k.$$

It follows that $fg \in \Phi(X_1, \ldots, X_n)$, hence $\Phi(X_1, \ldots, X_n)$ is closed under multiplication.

In the follows, we prove inductively that for any $f \in \Phi(X_1, \ldots, X_n)$, we have $f^{-1} \in \Phi(X_1, \ldots, X_n)$.

When $n=2, f \in \Phi(X_1, X_2)$ can be decomposed as

$$f = [f(i_1 f_{11}, i_2)^{-1}](i_1 f_{11}, i_2) = [f(i_1 f_{11}^{-1}, i_2)](i_1 f_{11}, i_2).$$

Since

$$f(i_1f_{11}^{-1}, i_2)i_1 = fi_1f_{11}^{-1} = \phi_1f_1f_{11}^{-1} = i_1p_1f_1f_{11}^{-1} = i_1f_{11}f_{11}^{-1} = i_1,$$

we have $f(i_1f_{11}^{-1}, i_2) \in \operatorname{Aut}_*^{X_1}(X_1 \vee X_2) \subseteq \Phi(X_1, X_2)$. Since $\operatorname{Aut}_*^{X_1}(X_1 \vee X_2)$ is a group, we have

$$[f(i_1f_{11}^{-1}, i_2)]^{-1} = (i_1f_{11}, i_2)f^{-1} \in \operatorname{Aut}_*^{X_1}(X_1 \vee X_2) \subseteq \Phi(X_1, X_2).$$

It is easy to verify that $(i_1f_{11}^{-1}, i_2) \in \Phi(X_1, X_2)$, so we have

$$f^{-1} = (i_1 f_{11}^{-1}, i_2)(i_1 f_{11}, i_2) f^{-1} \in \Phi(X_1, X_2).$$

This means that $\Phi(X_1, X_2)$ is closed under formation of inverses.

Suppose that $\Phi(X_1',\ldots,X_{n-1}')$ is closed under formation of inverses for any simply connected CW-complexes X_1',\ldots,X_{n-1}' with n>2. Then given any $f\in\Phi(X_1,\ldots,X_n)\subseteq\Phi(X_1\vee X_2,X_3,\ldots,X_n)$ (by Proposition 3.9), we get $f^{-1}\in\Phi(X_1\vee X_2,X_3,\ldots,X_n)$ according to the inductive step. It remains to prove that $f^{-1}i_1=\phi_1f^{-1}i_1$, or equivalently that $p_{X_1\vee X_2}f^{-1}i_{X_1\vee X_2}\in\Phi(X_1,X_2)$. Since $p_{X_1\vee X_2}fi_{X_1\vee X_2}\in\Phi(X_1,X_2)$ which is a group, it follows that

$$p_{X_1 \vee X_2} f^{-1} i_{X_1 \vee X_2} = (p_{X_1 \vee X_2} f i_{X_1 \vee X_2})^{-1} \in \Phi(X_1, X_2).$$

According to the above results, we see that $\Phi(X_1, \ldots, X_n)$ is a group. Similarly, we can prove that $\Psi(X_1, \ldots, X_n)$ is also a group.

Now we can prove our main result as follows.

Theorem 3.11.
$$\operatorname{Aut}_*(X_1 \vee \cdots \vee X_n) = \Psi(X_1, \dots, X_n) \Phi(X_1, \dots, X_n)$$
.

Proof. Since $\Psi(X_1,\ldots,X_n)\cap\Phi(X_1,\ldots,X_n)=id$, it is sufficient to prove inductively the existence of the factorization of the self-equivalence in $\operatorname{Aut}_*(X_1\vee\cdots\vee X_n)$.

When n=2, any $f\in {\rm Aut}_*(X_1\vee X_2)$ can be decomposed as

$$f = [(f_1, i_2)(i_1 f_{11}^{-1}, i_2)][(i_1 f_{11}, i_2)(f_1, i_2)^{-1}f].$$

For $(f_1, i_2)(i_1 f_{11}^{-1}, i_2) \in \operatorname{Aut}_{\star}^{X_2}(X_1 \vee X_2)$, since

$$p_1(f_1, i_2)(i_1 f_{11}^{-1}, i_2)i_1 = p_1(f_1, i_2)i_1 f_{11}^{-1} = f_{11} f_{11}^{-1} = i d_{X_1},$$

then $(f_1, i_2)(i_1 f_{11}^{-1}, i_2) \in \Psi(X_1, X_2)$.

From $(f_1, i_2)^{-1}(f_1, i_2) = ((f_1, i_2)^{-1}f_1, i_2) = id_{X_1 \vee X_2} = (i_1, i_2)$, we get $(f_1, i_2)^{-1}f_1 = i_1$. It follows that

$$(f_1, i_2)^{-1} f = (f_1, i_2)^{-1} (f_1, f_2) = ((f_1, i_2)^{-1} f_1, (f_1, i_2)^{-1} f_2) = (i_1, (f_1, i_2)^{-1} f_2).$$

Then we have $(f_1, i_2)^{-1} f \in \operatorname{Aut}_*^{X_1}(X_1 \vee X_2) \subseteq \Phi(X_1, X_2)$. Since obviously $(i_1 f_{11}, i_2) \in \Phi(X_1, X_2)$, we have $(i_1 f_{11}, i_2)(f_1, i_2)^{-1} f \in \Phi(X_1, X_2)$.

For any $f \in \operatorname{Aut}_*(X_1 \vee \cdots \vee X_n) = \operatorname{Aut}_*((X_1 \vee X_2) \vee X_3 \vee \cdots \vee X_n)$, we can assume inductively that f = f'f'', where $f' \in \Psi(X_1 \vee X_2, X_3, \ldots, X_n)$ and $f'' \in \Phi(X_1 \vee X_2, X_3, \ldots, X_n)$.

Let $p_{12} = p_{X_1 \vee X_2}$, $i_{12} = i_{X_1 \vee X_2}$ and define $\bar{f} := p_{12}f^{''}i_{12}$. Since $f^{''}$ is reducible, we have $\bar{f} \in \operatorname{Aut}_{\sharp}(X_1 \vee X_2)$ and then $\bar{f} = \psi \phi$, where $\psi \in \Psi(X_1, X_2)$ and $\phi \in \Phi(X_1, X_2)$. Define $\bar{\psi} := (i_{12}\psi, i_3, \dots, i_n)$, then $\bar{\psi} \in \Psi(X_1, \dots, X_n) \cap \Phi(X_1 \vee X_2, X_3, \dots, X_n)$. Since $f^{''} \in \Phi(X_1 \vee X_2, X_3, \dots, X_n)$, we have $f^{''}i_{12} = \phi_{X_1 \vee X_2}f^{''}i_{12} = i_{12}p_{12}f^{''}i_{12}$. Then for $\bar{\psi}^{-1}f^{''} \in \Phi(X_1 \vee X_2, X_3, \dots, X_n)$, we have

$$p_{12}\bar{\psi}^{-1}f''i_{12} = (p_{12}\bar{\psi}^{-1}i_{12})(p_{12}f''i_{12}) = \psi^{-1}\bar{f} = \phi \in \Phi(X_1, X_2).$$

This implies that $\bar{\psi}^{-1}f^{''} \in \Phi(X_1, \ldots, X_n)$. It follows that $f = (f'\bar{\psi})(\bar{\psi}^{-1}f^{''})$, where $f'\bar{\psi} \in \Psi(X_1, \ldots, X_n)$ and $\bar{\psi}^{-1}f^{''} \in \Phi(X_1, \ldots, X_n)$. This finishes the proof of the theorem.

4. $\operatorname{Aut}_{\Sigma}(X)$

As a subgroup of $\operatorname{Aut}_*(X)$, $\operatorname{Aut}_\Sigma(X)$ is dual to $\operatorname{Aut}_\Omega(X)$. However, we can not find $\operatorname{Aut}_\Sigma(X)$ appears in any other reference. So in the follows, we will simply describe the general property of $\operatorname{Aut}_\Sigma(X)$ and also list some problems related to it.

First we give a characterization of $\operatorname{Aut}_{\Sigma}(X)$ as follows.

Proposition 4.1. For any pointed space X, $f \in \operatorname{Aut}_{\Sigma}(X)$ if and only if $f \in \operatorname{Aut}(X)$ and $f^* = id : [X, \Omega Y] \to [X, \Omega Y]$ for every pointed space Y.

Proof. (\Longrightarrow) Suppose that $f \in \operatorname{Aut}_{\Sigma}(X)$, then for any pointed space Y and $g \in [X, \Omega Y]$, we have $\hat{g}(\Sigma f) = \hat{g}$ for $\Sigma f = id$, where $\hat{g}: \Sigma X \to Y$ is the adjoint of g. Take the adjoint of the equation, we have gf = g, i.e., $f^*(g) = g$. This implies that $f^* = id$.

(\Leftarrow) Given any $f \in \operatorname{Aut}(X)$ such that $f^* = id : [X, \Omega Y] \to [X, \Omega Y]$ for every pointed space, we take $Y = \Sigma X$ and $\alpha : X \to \Omega \Sigma X$ be the adjoint of $id : \Sigma X \to \Sigma X$, then we have $f^*(\alpha) = \alpha f = \alpha$. By taking adjoint, we get $\Sigma f = id$ which implies that $f \in \operatorname{Aut}_{\Sigma}(X)$.

In [5], Pavešić proved that if X is a Co-H-space, then the group $\operatorname{Aut}_{\Omega}(X)$ is trivial. Dually, we have the following result:

Corollary 4.2. If X is a H-space, then $\operatorname{Aut}_{\Sigma}(X)$ is trivial.

Proof. Since X is a H-space, X is a retract of ΩY for some space Y (see p.201 of [7]). Then there exist maps $r:\Omega Y\to X$ and $i:X\to\Omega Y$ such that ri=id. Given any $f\in \operatorname{Aut}_{\Sigma}(X)$, we have $f^*(i)=if=i$ by Proposition 4.1. By applying r to both sides, we get f=id which shows that $\operatorname{Aut}_{\Sigma}(X)$ is trivial.

In [11], Pavešić asked that if there is a finite CW-complex X such that $\operatorname{Aut}_{\Omega}(X) \neq \operatorname{Aut}_{\sharp \infty}(X)$. Since $\operatorname{Aut}_{\Omega}(X)$ is trivial when X is a Co-H-space, we may find a finite Co-H-space X such that $\operatorname{Aut}_{\sharp \infty}(X) \neq \{id\}$. Dually for $\operatorname{Aut}_{\Sigma}(X)$, we have a conjecture as follows.

Conjecture 4.3. There is a finite CW complex X such that $\operatorname{Aut}_{\Sigma}(X) \neq \operatorname{Aut}_{*}(X)$.

By Corollary 4.2, a possible approach to Conjecture 4.3 is to find a finite H-space X such that $\mathrm{Aut}_*(X) \neq \{id\}$.

In [6], Felix and Murillo showed that for pointed CW-complex X, $\operatorname{Aut}_{\Omega}(X)$ is a nilpotent group and its order of nilpotency is bounded by the Ljusternik-Schnirelman category of X. Naturally we have the following conjecture:

Conjecture 4.4. For any pointed CW-complex X, $\operatorname{Aut}_{\Sigma}(X)$ is a nilpotent group, and its order of nilpotency is bounded by the Ljusternik-Schnirelman cocategory of X.

According to the theorem of Maruyama [9], if the above conjecture is correct, then we will ask whether the natural map $\operatorname{Aut}_{\Sigma}(X) \to \operatorname{Aut}_{\Sigma}(X_P)$ is a P-localization for any set of primes P.

Now we turn to the factorization of $\operatorname{Aut}_{\Sigma}(X_1 \vee \cdots \vee X_n)$ for any pointed simply-connected CW-complexes X_1, \ldots, X_n . Since we have already proved that, for pointed simply-connected CW-complexes X and Y, all the self-equivalences in $\operatorname{Aut}_*(X \vee Y)$ are always reducible (see Lemma 3.2), so by a similar proof to that of Lemma 2.1, we have

Proposition 4.5. For pointed simply-connected CW-complexes X and Y, given any $f \in \operatorname{Aut}_{\Sigma}(X \vee Y)$, we have $f_{XX} \in \operatorname{Aut}_{\Sigma}(X)$ and $f_{YY} \in \operatorname{Aut}_{\Sigma}(Y)$.

This enables us to get the following theorem by a proof similar to that of Theorem 3.7.

Theorem 4.6.
$$\operatorname{Aut}_{\Sigma}(X_1 \vee \cdots \vee X_n) = \prod_{i=1}^n \operatorname{Aut}_{\Sigma}^{\vee_i}(X_1 \vee \cdots \vee X_n)$$
.

Also we can decompose $\operatorname{Aut}_{\Sigma}(X_1 \vee \cdots \vee X_n)$ as the product of its only two subgroups similarly to Theorem 3.11.

Theorem 4.7. Aut_{Σ} $(X_1 \vee \cdots \vee X_n) = \Psi'(X_1, \ldots, X_n) \Phi'(X_1, \ldots, X_n)$, where $\Psi'(X_1, \ldots, X_n)$ and $\Phi'(X_1, \ldots, X_n)$ are defined similarly to $\Psi(X_1, \ldots, X_n)$ and $\Phi(X_1, \ldots, X_n)$ in Section 3 respectively.

Acknowledgement. The authors will thank the referee for his many important comments and helpful suggestions.

References

- [1] M. Arkowitz, The group of self-homotopy equivalences-a survey, Groups of selfequivalences and related topics (Montreal, PQ, 1988), 170-203, Lecture Notes in Math., 1425, Springer, Berlin, 1990.
- [2] M. Arkowitz and G. Lupton, On finiteness of subgroups of self-homotopy equivalences, The Čech centennial (Boston, MA, 1993), 1-25, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.
- [3] _____, On the nilpotency of subgroups of self-homotopy equivalences, Algebraic topology: new trends in localization and periodicity (Sant Feliu de Guixols, 1994), 1-22, Progr. Math., 136, Birkhauser, Basel, 1996.
- [4] M. Arkowitz and K. Maruyama, Self-homotopy equivalences which induce the identity on homology, cohomology or homotopy groups, Topology Appl. 87 (1998), no. 2, 133-154.
- [5] E. D. Farjoun and A. Zabrodsky, Unipotency and nilpotency in homotopy equivalences, Topology **18** (1979), no. 3, 187–197.
- [6] Y. Felix and A. Murillo, A bound for the nilpotency of a group of self homotopy equivalences, Proc. Amer. Math. Soc. 126 (1998), no. 2, 625-627.
- [7] P. J. Hilton, Homotopy Theory and Duality, Gordon and Breach Science Publishers, New York-London-Paris 1965.
- [8] K. Maruyama, Localization of a certain subgroup of self-homotopy equivalences, Pacific J. Math. 136 (1989), no. 2, 293-301.
- _____, Localization of self-homotopy equivalences inducing the identity on homology, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 2, 291–297.
- [10] P. Pavešić, On the group $\operatorname{Aut}_{\#}(X_1 \times \cdots \times X_n)$, Topology Appl. 153 (2005), no. 2-3, 485 - 492.
- [11] ______, On the group $\operatorname{Aut}_{\Omega}(X)$, Proc. Edinb. Math. Soc. (2) **45** (2002), no. 3, 673–680. [12] ______, Self-homotopy equivalences of product spaces, Proc. Roy. Soc. Edinburgh Sect. A **129** (1999), no. 1, 181–197.
- [13] J. Rutter, Spaces of Homotopy Self-Equivalences, A survey. Lecture Notes in Mathematics, 1662. Springer-Verlag, Berlin, 1997.
- [14] H. B. Yu and W. H. Shen, The self-homotopy equivalence group of wedge spaces, Acta Math. Sinica (Chin. Ser.) 48 (2005), no. 5, 895–900.

YI-YUN SHI SCHOOL OF MATHEMATICAL SCIENCES SOUTH CHINA NORMAL UNIVERSITY Guangzhou 510631, P. R. China E-mail address: shiyiyun126@126.com

Нао Zнао SCHOOL OF MATHEMATICAL SCIENCES NANKAI UNIVERSITY TIANJIN 300071, P. R. CHINA E-mail address: zhaohao120@tom.com