• Title/Summary/Keyword: Weighted Composition

Search Result 131, Processing Time 0.021 seconds

A NOTE OF WEIGHTED COMPOSITION OPERATORS ON BLOCH-TYPE SPACES

  • LI, SONGXIAO;ZHOU, JIZHEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1711-1719
    • /
    • 2015
  • We obtain a new criterion for the boundedness and compactness of the weighted composition operators ${\psi}C_{\varphi}$ from ${\ss}^{{\alpha}}$(0 < ${\alpha}$ < 1) to ${\ss}^{{\beta}}$ in terms of the sequence $\{{\psi}{\varphi}^n\}$. An estimate for the essential norm of ${\psi}C_{\varphi}$ is also given.

GENERALIZED COMPOSITION OPERATORS FROM GENERALIZED WEIGHTED BERGMAN SPACES TO BLOCH TYPE SPACES

  • Zhu, Xiangling
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1219-1232
    • /
    • 2009
  • Let H(B) denote the space of all holomorphic functions on the unit ball B of $\mathbb{C}^n$. Let $\varphi$ = (${\varphi}_1,{\ldots}{\varphi}_n$) be a holomorphic self-map of B and $g{\in}2$(B) with g(0) = 0. In this paper we study the boundedness and compactness of the generalized composition operator $C_{\varphi}^gf(z)=\int_{0}^{1}{\mathfrak{R}}f(\varphi(tz))g(tz){\frac{dt}{t}}$ from generalized weighted Bergman spaces into Bloch type spaces.

WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.507-514
    • /
    • 2018
  • Let $\{{\varphi}_n\}_{n{\geq}1}$ be a sequence of analytic self-maps of ${\mathbb{D}}$. It is proved that if the union set of the ranges of the composition operators $C_{{\varphi}_n}$ on the weighted Bergman spaces contains the disk algebra, then ${\varphi}_k$ is an automorphism of ${\mathbb{D}}$ for some $k{\geq}1$.

COMPLEX SYMMETRIC WEIGHTED COMPOSITION-DIFFERENTIATION OPERATORS ON H2

  • Lian Hu;Songxiao Li;Rong Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1141-1154
    • /
    • 2023
  • In this paper, we study the complex symmetric weighted composition-differentiation operator D𝜓,𝜙 with respect to the conjugation JW𝜉,𝜏 on the Hardy space H2. As an application, we characterize the necessary and sufficient conditions for such an operator to be normal under some mild conditions. Finally, the spectrum of D𝜓,𝜙 is also investigated.

A NOTE ON WEIGHTED COMPOSITION OPERATORS ON MEASURABLE FUNCTION SPACES

  • Jbbarzadeh, M.R.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.95-105
    • /
    • 2004
  • In this paper we will consider the weighted composition operators W = $uC_{\tau}$ between $L^{p}$$(X,\sum,\mu$) spaces and Orlicz spaces $L^{\phi}$$(X,\sum,\mu$) generated by measurable and non-singular transformations $\tau$ from X into itself and measurable functions u on X. We characterize the functions u and transformations $\tau$ that induce weighted composition operators between $L^{p}$ -spaces by using some properties of conditional expectation operator, pair (u,${\gamma}$) and the measure space $(X,\sum,\mu$). Also, some other properties of these types of operators will be investigated.

WEIGHTED COMPOSITION OPERATORS ON NACHBIN SPACES WITH OPERATOR-VALUED WEIGHTS

  • Klilou, Mohammed;Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1125-1140
    • /
    • 2018
  • Let A be a normed space, ${\mathcal{B}}(A)$ the algebra of all bounded operators on A, and V a family of strongly upper semicontinuous functions from a Hausdorff completely regular space X into ${\mathcal{B}}(A)$. In this paper, we investigate some properties of the weighted spaces CV (X, A) of all A-valued continuous functions f on X such that the mapping $x{\mapsto}v(x)(f(x))$ is bounded on X, for every $v{\in}V$, endowed with the topology generated by the seminorms ${\parallel}f{\parallel}v={\sup}\{{\parallel}v(x)(f(x)){\parallel},\;x{\in}X\}$. Our main purpose is to characterize continuous, bounded, and locally equicontinuous weighted composition operators between such spaces.

ESSENTIAL NORM OF THE COMPOSITION OPERATORS BETWEEN BERGMAN SPACES OF LOGARITHMIC WEIGHTS

  • Kwon, Ern Gun;Lee, Jinkee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.187-198
    • /
    • 2017
  • We obtain some necessary and sufficient conditions for the boundedness of the composition operators between weighted Bergman spaces of logarithmic weights. In terms of the conditions for the boundedness, we compute the essential norm of the composition operators.

WEIGHTED COMPOSITION OPERATORS ON BERS-TYPE SPACES OF LOO-KENG HUA DOMAINS

  • Jiang, Zhi-jie;Li, Zuo-an
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.583-595
    • /
    • 2020
  • Let HEI, HEII, HEIII and HEIV be the first, second, third and fourth type Loo-Keng Hua domain respectively, 𝜑 a holomorphic self-map of HEI, HEII, HEIII, or HEIV and u ∈ H(𝓜) the space of all holomorphic functions on 𝓜 ∈ {HEI, HEII, HEIII, HEIV}. In this paper, motivated by the well known Hua's matrix inequality, first some inequalities for the points in the Bers-type spaces of the Loo-Keng Hua domains are obtained, and then the boundedness and compactness of the weighted composition operators W𝜑,u : f ↦ u · f ◦ 𝜑 on Bers-type spaces of these domains are characterized.