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COMPLEX SYMMETRIC WEIGHTED

COMPOSITION-DIFFERENTIATION OPERATORS ON H2

Lian Hu, Songxiao Li, and Rong Yang

Abstract. In this paper, we study the complex symmetric weighted

composition-differentiation operator Dψ,ϕ with respect to the conjuga-

tion JWξ,τ on the Hardy space H2. As an application, we characterize

the necessary and sufficient conditions for such an operator to be nor-
mal under some mild conditions. Finally, the spectrum of Dψ,ϕ is also

investigated.

1. Introduction

Let D denote the open unit disc in the complex plane C. Let H(D) be
the space of analytic functions on D. The Hardy space H2 is the space of all
f ∈ H(D) with square summable power series coefficients; that is, f ∈ H(D)
for which

∥f∥2H2 =

∞∑
n=0

|an|2 <∞,

where {an} is the sequence of Maclaurin coefficients for f . The space H2(D) is
a reproducing kernel Hilbert space. In other words, for any w ∈ D, there exists
a unique function Kw ∈ H2 such that

f(w) = ⟨f,Kw⟩

for any f ∈ H2. It is well known that Kw(z) =
1

1−w̄z .

Let φ be an analytic self-map of D and ψ ∈ H(D). The operator Cϕ : H2 →
H2 given by Cϕf = f(ϕ) is called a composition operator. The weighted
composition operator Wψ,ϕ on H2 is defined as Wψ,ϕf = ψ · (f ◦ ϕ). For
f ∈ H(D), the composition-differentiation operator Dϕ (see [3]) is defined by

Dϕf(z) = f ′(ϕ(z)), z ∈ D,
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and the weighted composition-differentiation operator Dψ,ϕ (see [4]) is defined
by

Dψ,ϕf(z) = ψ(z)f ′(ϕ(z)), z ∈ D.

Let H and L(H) represent a separable complex Hilbert space and the class
of continuous linear operators on H, respectively. An operator C : H → H is
called a conjugation on H if it is

(i) conjugate-linear or anti-linear: C(αx + βy) = ᾱC(x) + β̄C(y) for any
x, y ∈ H and α, β ∈ C;

(ii) isometric: ∥Cx∥ = ∥x∥ for any x ∈ H;
(iii) involutive: C2 = I, where I is the identity operator.

It is easy to check that

(Jf)(z) = f(z̄)

is a conjugation on the space H2.
An operator T ∈ L(H) is called complex symmetric if there exists a conju-

gation C on H such that

T = CT ∗C.

In this situation, we say that T is complex symmetric with respect to C or
that T is C-symmetric. The class of complex symmetric operators includes all
normal operators, binormal operators, Hankel operators, compressed Toeplitz
operators and Volterra integration operator. Complex symmetric operators can
be regarded as a generalization of complex symmetric matrices. The general
study of complex symmetric operators was initiated by Garcia, Putinar and
Wogen in [6–9].

Recently, the study of complex symmetric composition operators, weighted
composition operator and weighted composition-differentiation operators on
some analytic function spaces has attracted the interest of many researchers.
Fatehi and Hammond in [4] studied some properties of weighted composition-
differentiation operators. Han and Wang studied complex symmetric weighted
composition-differentiation operators on the Hardy space and the Bergman
space in [11] and [12], respectively. Liu et al. studied complex symmetric
weighted composition-differentiation operators on the weighted Bergman space
A2
α and the derivative Hardy space in [16]. See [2–20] for more results and

applications pertaining to complex symmetric operators.
In this paper, we investigate complex symmetric weighted composition-

differentiation operators Dψ,ϕ on the Hardy space H2. The paper is organized
as follows. Section 2 provides conditions on ϕ and ψ relating to when the op-
erator Dψ,ϕ is complex symmetric with respect to the conjugation JWξ,τ . As
an application, we obtain necessary and sufficient conditions for the operator
Dψ,ϕ to be normal under some mild conditions. In Section 3, we characterize
the spectrum of the operator Dψ,ϕ.
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2. Main results

For any positive integer n, let

K(n)
w (z) =

n!zn

(1− w̄z)1+n
, z ∈ D.

From Lemma 2.16 in [1], we see that K
(n)
w acts as the reproducing kernel for

point evaluation of the n-th derivative:

f (n)(w) = ⟨f,K(n)
w ⟩

for each f ∈ H2. The following lemma can be found in [12].

Lemma 2.1. Let ϕ be an analytic self-map of D and ψ ∈ H(D). If Dψ,ϕ is
bounded on H2, then

D∗
ψ,ϕKw = ψ(w)K

(1)
ϕ(w)

and

D∗
ψ,ϕK

(1)
w = ψ′(w)K

(1)
ϕ(w) + ψ(w)ϕ′(w)K

(2)
ϕ(w)

for every w ∈ D.

Let

ξ(z) =

√
1− |a|2
1− āz

and τ(z) =
λ(a− z)

1− āz
,

where a ∈ D and |λ| = 1. From [13, Lemma 2], we see that JWξ,τ is a
conjugation on H2 if and only if λa = ā. Obviously, for any f ∈ H(D),

JWξ,τf(z) =

√
1− |a|2
1− az

f

(
λ(a− z)

1− az

)
, z ∈ D.

Proposition 2.2. Let ξ(z) =

√
1−|a|2
1−āz and τ(z) = λ(a−z)

1−āz , where a ∈ D and

|λ| = 1 such that λa = ā. Let ϕ be a nonconstant analytic self-map of D and
ψ ∈ H∞. If Dψ,ϕ is complex symmetric with respect to the conjugation JWξ,τ ,
then the following statements hold:

(a) Either ψ ≡ 0 or ψ has a single vanishing point ā.
(b) If ψ is not identically zero, then ϕ is univalent and

ψ =
JWξ,τψ(β)K

(1)
ϕ(β)

ξ(β̄)τ(β̄)K2
τ(β̄)

(ϕ)

for any β ∈ D\ā.

Proof. (a) Assume that ψ(β) = 0 for some β ∈ D. Lemma 2.1 gives that

D∗
ψ,ϕKβ = ψ(β)K

(1)
ϕ(β) = 0.

Since Dψ,ϕJWξ,τ = JWξ,τD
∗
ψ,ϕ and JWξ,τ is an isometry, it follows that

∥Dψ,ϕJWξ,τKβ∥ = ∥D∗
ψ,ϕKβ∥ = 0.



1144 L. HU, S. LI, AND R. YANG

Therefore,

Dψ,ϕJWξ,τKβ(z) = ψ(z) (JWξ,τKβ(z))
′ ◦ ϕ(z)

= ψ(z)

√
1− |a|2(a− βλ̄)

[1− βa− (a− βλ̄)ϕ(z)]2
= 0

for all z ∈ D. Thus ψ ≡ 0 or β = ā.
(b) Assume that ϕ is not univalent. Then there are two distinct points

w1, w2 ∈ D such that ϕ(w1) = ϕ(w2). Since ψ is not identically zero, it follows
from (a) that at least one of ψ(w1) and ψ(w2) is not 0. If neither ψ(w1) or
ψ(w2) is 0, let

f =
Kw1

ψ(w1)
− Kw2

ψ(w2)

and observe that f is a nonconstant function in H2. For any g ∈ H2, we have
that

⟨g,D∗
ψ,ϕf⟩ = ⟨Dψ,ϕg, f⟩

= ⟨Dψ,ϕg,
Kw1

ψ(w1)
− Kw2

ψ(w2)
⟩

=
1

ψ(w1)
⟨Dψ,ϕg,Kw1

⟩ − 1

ψ(w2)
⟨Dψ,ϕg,Kw2

⟩

= g′(ϕ(w1))− g′(ϕ(w2)) = 0.

Since Dψ,ϕ is complex symmetric with respect to the conjugation JWξ,τ , we
have

∥Dψ,ϕJWξ,τf∥ = ∥JWξ,τD
∗
ψ,ϕf∥ = ∥D∗

ψ,ϕf∥ = 0.

Therefore,

Dψ,ϕJWξ,τf(z) = ψ(z) (JWξ,τf(z))
′ ◦ ϕ(z) = 0

for any z ∈ D. Since ψ is not identically zero, we have (JWξ,τf(z))
′ ◦ ϕ(z) = 0

for any z ∈ D. Since ϕ is a nonconstant analytic self-map of D, we obtain that
JWξ,τf is a constant function; that is, f is a constant function, which is a
contradiction. Thus ϕ is univalent. If either ψ(w1) or ψ(w2) is 0, without loss
of generality, assume that ψ(w1) = 0; that is w1 = ā. Let

f = ψ(w2)Kw1
.

Then
D∗
ψ,ϕψ(w2)Kw1

= ψ(w2)ψ(w1)K
(1)
w1

= 0,

which means that f is a constant. Indeed, the kernel of Dψ,ϕ and D∗
ψ,ϕ consists

of the constant functions in H(D). Hence ψ(w2) = 0; that is w2 = ā, which is
a contradiction.

Let β ∈ D be given. Since Dψ,ϕ is complex symmetric with respect to the
conjugation JWξ,τ , using Lemma 2.1, we get that

JWξ,τψ(β)K
(1)
ϕ(β)(z) = JWξ,τD

∗
ψ,ϕKβ(z)
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= Dψ,ϕJWξ,τKβ(z)

= ψ(z) (JWξ,τKβ(z))
′ ◦ ϕ(z)

= ψ(z)

√
1− |a|2(a− βλ̄)

[1− aβ + (βλ̄− a)ϕ(z)]2

= ψ(z)ξ(β̄)τ(β̄)K2
τ(β̄)(ϕ(z))

for any z ∈ D. Since ξ(β̄)τ(β̄)K2
τ(β̄)

(ϕ(z)) does not vanish on D, it follows that

ψ(z) =
JWξ,τψ(β)K

(1)
ϕ(β)(z)

ξ(β̄)τ(β̄)K2
τ(β̄)

(ϕ(z))
.

The proof is complete. □

It is clear that Dψ,ϕ must be identically zero if ψ ≡ 0. This case is trivial.
From now on, we always assume that ψ is not identically zero. From Proposition
2.2, when we study the JWξ,τ -symmetric operator Dψ,ϕ on the Hardy space
H2, the only nontrivial case is that ψ has a single vanishing point ā. In the
following theorem, we give a detailed characterization for the operator Dψ,ϕ to
be JWξ,τ -symmetric on the Hardy space H2.

Theorem 2.3. Let ξ(z) =

√
1−|a|2
1−āz , τ(z) = λ(a−z)

1−āz , where a ∈ D and |λ| = 1

such that λa = ā. Let ϕ be an analytic self-map of D and ψ ∈ H(D) be
not identically zero such that Dψ,ϕ is bounded on H2. Then Dψ,ϕ is complex
symmetric with respect to the conjugation JWξ,τ if and only if

ψ(z) =
(1− |a|2)2ψ′(ā)(z − ā)

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2

and

ϕ(z) = ϕ(ā) +
(1− |a|2)ϕ′(ā)(z − ā)

1− aϕ(ā) + (λ̄ϕ(ā)− a)z
.

Proof. First, suppose that Dψ,ϕ is complex symmetric with respect to the con-
jugation JWξ,τ . Then

JWξ,τD
∗
ψ,ϕKw(z) = Dψ,ϕJWξ,τKw(z)(1)

for any z, w ∈ D. It follows from Lemma 2.1 that

JWξ,τD
∗
ψ,ϕKw(z) = JWξ,τψ(w)K

(1)
ϕ(w)(z)

= Jξ(z)ψ(w)K
(1)
ϕ(w)(τ(z))

= ξ(z̄)ψ(w)K
(1)
ϕ(w)(τ(z̄))

=

√
1− |a|2
1− az

· ψ(w)τ(z̄)

[1− ϕ(w)τ(z̄)]2
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=

√
1− |a|2ψ(w)λ̄(ā− z)

[1− az − λ̄(ā− z)ϕ(w)]2

and

Dψ,ϕJWξ,τKw(z) = Dψ,ϕJξ(z)Kw(τ(z))

= ψ(z)
(
ξ(z̄)Kw(τ(z̄))

)′
◦ ϕ(z)

= ψ(z)

( √
1− |a|2

1− wλa+ (wλ̄− a)z

)′

◦ ϕ(z)

=

(√
1− |a|2(a− wλ̄)ψ(z)

[1− wλa+ (wλ̄− a)z]2

)′

◦ ϕ(z)

=

√
1− |a|2(a− wλ̄)ψ(z)

[1− wλa+ (wλ̄− a)ϕ(z)]2
.

Therefore, we obtain that√
1− |a|2(a− wλ̄)ψ(z)

[1− wλa+ (wλ̄− a)ϕ(z)]2
=

√
1− |a|2ψ(w)λ̄(ā− z)

[1− az − λ̄(ā− z)ϕ(w)]2
(2)

for any z, w ∈ D. From Proposition 2.2, we see that ψ(ā) = 0. Set ψ(z) =
(z− ā)kg(z), where g is analytic on D with g(ā) ̸= 0 and k is a positive integer.
Then (2) becomes

(z − ā)k−1g(z)

[1− wλa+ (wλ̄− a)ϕ(z)]2
=

(w − ā)k−1g(w)

[1− az − λ̄(ā− z)ϕ(w)]2
(3)

for any z, w ∈ D. If k > 1, let w = ā in (3). We obtain that g ≡ 0. This
contradicts the assumption that g(ā) ̸= 0. Therefore, k = 1 and

g(z)

[1− wλa+ (wλ̄− a)ϕ(z)]2
=

g(w)

[1− az − λ̄(ā− z)ϕ(w)]2
(4)

for any z, w ∈ D. Let w = ā in (4). Noting that λa = ā, we get

g(z) =
(1− |a|2)2g(ā)

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2
.

Since ψ(z) = (z − ā)g(z), we obtain that

ψ(z) =
(1− |a|2)2ψ′(ā)(z − ā)

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2
,(5)

where ψ′(ā) = g(ā) ̸= 0. (2) and (5) give that

az − |a|2 − λ̄wz + aw

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2[1− aw − λ̄(ā− w)ϕ(z)]2

=
az − |a|2 − λ̄wz + aw

[1− aϕ(ā) + (λ̄ϕ(ā)− a)w]2[1− az − λ̄(ā− z)ϕ(w)]2
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for any z, w ∈ D, which means that

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2[1− aw − λ̄(ā− w)ϕ(z)]2

= [1− aϕ(ā) + (λ̄ϕ(ā)− a)w]2[1− az − λ̄(ā− z)ϕ(w)]2

for any z, w ∈ D. By taking the derivative with respect to z, we have that

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z](λ̄ϕ(ā)− a)[1− aw − λ̄(ā− w)ϕ(z)]2

− [1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2[1− aw − λ̄(ā− w)ϕ(z)]λ̄(ā− w)ϕ′(z)

= [1− aϕ(ā) + (λ̄ϕ(ā)− a)w]2[1− az − λ̄(ā− z)ϕ(w)](λ̄ϕ(w)− a).

Letting z = ā, we obtain that

(1− |a|2)(λ̄ϕ(ā)− a)[1− aw − aϕ(ā) + λ̄wϕ(ā)]2

− (1− |a|2)2[1− aw − aϕ(ā) + λ̄wϕ(ā)]λ̄(ā− w)ϕ′(ā)

= [1− aϕ(ā) + (λ̄ϕ(ā)− a)w]2(1− |a|2)(λ̄ϕ(w)− a).

Therefore,

ϕ(z) = ϕ(ā) +
(1− |a|2)ϕ′(ā)(z − ā)

1− aϕ(ā) + (λ̄ϕ(ā)− a)z
.

Conversely, assume that

ψ(z) =
(1− |a|2)2ψ′(ā)(z − ā)

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2

and

ϕ(z) = ϕ(ā) +
(1− |a|2)ϕ′(ā)(z − ā)

1− aϕ(ā) + (λ̄ϕ(ā)− a)z
.

By our hypothesis, Dψ,ϕ is bounded on H2. Hence, it is enough to verify that
(1) holds for any z, w ∈ D. Indeed, we have

JWξ,τD
∗
ψ,ϕKw(z)

=

√
1− |a|2ψ(w)λ̄(ā− z)

[1− az − λ̄(ā− z)ϕ(w)]2

=
(1− |a|2)5/2λ̄(ā− z)ψ′(ā)(w − ā)

{[1− az − λ̄(ā− z)ϕ(ā)][1− aϕ(ā) + (λ̄ϕ(ā)− a)w]− λ̄(ā− z)(1− |a|2)ϕ′(ā)(w − ā)}2

and

Dψ,ϕJWξ,τKw(z)

=

√
1− |a|2(a− wλ̄)ψ(z)

[1− wλa+ (wλ̄− a)ϕ(z)]2

=
(1− |a|2)5/2λ̄(ā− z)ψ′(ā)(w − ā)

{[1− aw − λ̄(ā− w)ϕ(ā)][1− aϕ(ā) + (λ̄ϕ(ā)− a)z]− λ̄(ā− w)(1− |a|2)ϕ′(ā)(z − ā)}2
.
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Since the numerators of JWξ,τD
∗
ψ,ϕKw(z) and Dψ,ϕJWξ,τKw(z) are the same,

it is enough to verify their denominators are also the same. Write

A=[1−az−λ̄(ā−z)ϕ(ā)][1−aϕ(ā)+(λ̄ϕ(ā)−a)w]−λ̄(ā−z)(1−|a|2)ϕ′(ā)(w−ā)

and

B=[1−aw−λ̄(ā−w)ϕ(ā)][1−aϕ(ā)+(λ̄ϕ(ā)−a)z]−λ̄(ā−w)(1−|a|2)ϕ′(ā)(z−ā).

By a simple calculation, we obtain that

A = [1− az − λ̄(ā− z)ϕ(ā)][1− aw − (a− λ̄w)ϕ(ā)]− (a− λ̄z)(1− |a|2)ϕ′(ā)(w − ā)

= (1− az)(1− aw)− (1− az)(a− λ̄w)ϕ(ā)− (1− aw)(a− λ̄z)ϕ(ā)

+(a− λ̄z)(a− λ̄w)ϕ(ā) + (1− |a|2)ϕ′(ā)λ̄(ā− w)(ā− z) = B.

The proof is complete. □

Next, we give a sufficient and necessary condition for JWξ,τ -symmetric
weighted composition-differentiation operator Dψ,ϕ to be normal under the
assumption that ϕ(ā) = ā.

Theorem 2.4. Let ξ(z) =

√
1−|a|2
1−āz , τ(z) = λ(a−z)

1−āz , where a ∈ D and |λ| = 1

such that λa = ā. Let ψ ∈ H(D) be not identically zero and ϕ be an analytic
self-map of D with ϕ(ā) = ā. If Dψ,ϕ is complex symmetric with respect to the
conjugation JWξ,τ on H2, then Dψ,ϕ is normal if and only if ϕ(z) = ϕ′(0)z
and ψ(z) = ϕ′(0)z.

Proof. Since Dψ,ϕ is complex symmetric with respect to the conjugation JWξ,τ

and ϕ(ā) = ā, Theorem 2.3 yields that

ϕ(z) = ā+ ϕ′(ā)(z − ā) and ψ(z) = ψ′(ā)(z − ā).(6)

For each z, w ∈ D, we obtain that

D∗
ψ,ϕDψ,ϕKw(z) = w̄D∗

ψ,ϕ

ψ(z)

(1− w̄ϕ(z))2

= w̄D∗
ψ,ϕ

ψ′(ā)(z − ā)

[1− w̄(ā+ ϕ′(ā)(z − ā))]2

= w̄ψ′(ā)D∗
ψ,ϕ

(z − ā)

[1− wa− w̄ϕ′(ā)(z − ā)]2

=
w̄ψ′(ā)

(1− wa)2
D∗
ψ,ϕK

(1)
σ(w)(z − ā),

where σ(w) = wϕ′(ā)
1−wa . Lemma 2.1 gives that

D∗
ψ,ϕDψ,ϕKw(z)

=
w̄ψ′(ā)

(1− wa)2

(
ψ′(σ(w))K

(1)
ϕ(σ(w))(z − ā) + ψ(σ(w))ϕ′(σ(w))K

(2)
ϕ(σ(w))(z − ā)

)
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=
w̄|ψ′(ā)|2

(1− wa)2
·

(
z − ā

[1− ϕ(σ(w))(z − ā)]2
+

2(σ(w)− ā)ϕ′(ā)(z − ā)2

[1− ϕ(σ(w))(z − ā)]3

)

=
w̄|ψ′(ā)|2

(1− wa)2
· [1− ϕ(σ(w))(z − ā)](z − ā) + 2(σ(w)− ā)ϕ′(ā)(z − ā)2

[1− ϕ(σ(w))(z − ā)]3

= w̄|ψ′(ā)|2 · (1− wa)(z − ā) + [w̄|ϕ′(ā)|2 + (|a|2w̄ − a)ϕ′(ā) + |a|2w̄ − a](z − ā)2

[1− wa− [(a− aϕ′(ā))(1− wa) + w̄|ϕ′(ā|2)](z − ā)]3
,

and

Dψ,ϕD
∗
ψ,ϕKw(z)

= Dψ,ϕψ(w)K
(1)
ϕ(w)(z)

= Dψ,ϕψ(w)
z

(1− ϕ(w)z)2

= ψ(z)ψ(w)

(
1

(1− ϕ(w)ϕ(z))2
+

2ϕ(w)ϕ(z)

(1− ϕ(w)ϕ(z))3

)

= ψ(z)ψ(w) · 1 + ϕ(w)ϕ(z)

(1− ϕ(w)ϕ(z))3

= |ψ′(ā)|2(z − ā)(w̄ − a)

× 1 + |a|2 + aϕ′(ā)(w̄ − a) + [aϕ′(ā) + |ϕ′(ā)|2(w̄ − a)](z − ā)

{1− |a|2 − aϕ′(ā)(w̄ − a)− [aϕ′(ā) + |ϕ′(ā)|2(w̄ − a)](z − ā)}3
.

Suppose that Dψ,ϕ is normal, then for any z, w ∈ D, we have that

D∗
ψ,ϕDψ,ϕKw(z) = Dψ,ϕD

∗
ψ,ϕKw(z),

which implies that

w̄ · 1− wa+ [w̄|ϕ′(ā)|2 + (|a|2w̄ − a)ϕ′(ā) + |a|2w̄ − a](z − ā)

[1− wa− ((a− aϕ′(ā))(1− wa) + w̄|ϕ′(ā|2))(z − ā)]3

= (w̄ − a)
1 + |a|2 + aϕ′(ā)(w̄ − a) + [aϕ′(ā) + |ϕ′(ā)|2(w̄ − a)](z − ā)

{1− |a|2 − aϕ′(ā)(w̄ − a)− [aϕ′(ā) + |ϕ′(ā)|2(w̄ − a)](z − ā)}3

for any z, w ∈ D. Thus the constant term must be 0; that is

w̄(1−wa)[1−|a|2−aϕ′(ā)(w̄−a)]3 = (1−wa)3(w̄−a)[1+ |a|2+aϕ′(ā)(w̄−a)]

for any w ∈ D. Let w = ā. We obtain that a(1 − |a|2)4 = 0. Hence, a = 0,
ϕ(z) = ϕ′(0)z and ψ(z) = ψ′(0)z.

Conversely, suppose that ϕ(z) = z and ψ(z) = ϕ′(0)z. We see that Dψ,ϕ is
normal from Proposition 2.7 in [11]. □

The next theorem gives a sufficient and necessary condition for JWξ,τ -
symmetric weighted composition-differentiation operator Dψ,ϕ to be normal
if ϕ′(ā) = 0.
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Theorem 2.5. Let ξ(z) =

√
1−|a|2
1−āz , τ(z) = λ(a−z)

1−āz , where a ∈ D and |λ| = 1

such that λa = ā. Let ψ ∈ H(D) be not identically zero and ϕ be an analytic
self-map of D with ϕ′(ā) = 0. If Dψ,ϕ is complex symmetric with respect to

the conjugation JWξ,τ , then Dψ,ϕ is normal if and only if a = 0 and −ϕ(0) =
λ̄ϕ(0).

Proof. Since Dψ,ϕ is complex symmetric with respect to the conjugation JWξ,τ

and ϕ′(ā) = 0, Theorem 2.3 yields that

ϕ(z) = ϕ(ā) and ψ(z) =
(1− |a|2)2ψ′(ā)(z − ā)

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2
.(7)

For each z, w ∈ D, we obtain that

D∗
ψ,ϕDψ,ϕKw(z) = w̄D∗

ψ,ϕ

ψ(z)

(1− w̄ϕ(z))2

=
w̄

(1− w̄ϕ(ā))2
D∗
ψ,ϕ

(1− |a|2)2ψ′(ā)(z − ā)

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2

=
w̄(1− |a|2)2ψ′(ā)

(1− w̄ϕ(ā))2
D∗
ψ,ϕ

z − ā

[1− |a|2 + (λ̄ϕ(ā)− a)(z − ā)]2

=
w̄ψ′(ā)

(1− w̄ϕ(ā))2
D∗
ψ,ϕK

(1)
ξ (z − ā)

=
w̄ψ′(ā)

(1− w̄ϕ(ā))2
· ψ′(ξ)K

(1)
ϕ(ā)(z − ā),

where

ξ =
ā− λϕ(ā)

1− |a|2
, K

(1)
ϕ(ā)(z − ā) =

z − ā

[1 + aϕ(ā)− ϕ(ā)z]2

and

ψ′(ξ) =
(1− |a|2)2ψ′(ā)[1 + aϕ(ā)− 2|a|2 − (λ̄ϕ(ā)− a)ξ]

[1− aϕ(ā) + (λ̄ϕ(ā)− a)ξ]3
.

Therefore,

D∗
ψ,ϕDψ,ϕKw(z)

=
(1− |a|2)4|ψ′(ā)|2w̄(z − ā)[1− 2|a|2 + 2|a|4 − |a|2aϕ(ā) + |ϕ(ā)|2 − aϕ(ā)]

(1− w̄ϕ(ā))2[1 + aϕ(ā)− ϕ(ā)z]2[1− 2|a|2 + aϕ(ā)− |ϕ(ā)|2 + a|a|2ϕ(ā)]3
.

For each z, w ∈ D, we have that

Dψ,ϕD
∗
ψ,ϕKw(z)

= Dψ,ϕψ(w)K
(1)
ϕ(ā)(z)

= Dψ,ϕψ(w)
z

(1− ϕ(ā)z)2

= ψ(z)ψ(w)

(
1

(1− ϕ(ā)ϕ(z))2
+

2ϕ(ā)ϕ(z)

(1− ϕ(ā)ϕ(z))3

)
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= ψ(z)ψ(w) · 1 + |ϕ(ā)|2

(1− |ϕ(ā)|2)3

=
(1− |a|2)4|ψ′(ā)|2(w̄ − a)(z − ā)(1 + |ϕ(ā)|2)

[1− aϕ(ā) + (λϕ(ā)− ā)w̄]2[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2(1− |ϕ(ā)|2)3
.

Suppose that Dψ,ϕ is normal. Then for any z, w ∈ D, we have that

D∗
ψ,ϕDψ,ϕKw(z) = Dψ,ϕD

∗
ψ,ϕKw(z),

which implies that

w̄(z − ā)[1− 2|a|2 + 2|a|4 − |a|2aϕ(ā) + |ϕ(ā)|2 − aϕ(ā)]

(1− w̄ϕ(ā))2[1 + aϕ(ā)− ϕ(ā)z]2[1− 2|a|2 + aϕ(ā)− |ϕ(ā)|2 + a|a|2ϕ(ā)]3
(8)

=
(w̄ − a)(z − ā)(1 + |ϕ(ā)|2)

[1− aϕ(ā) + (λϕ(ā)− ā)w̄]2[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2(1− |ϕ(ā)|2)3

for any z, w ∈ D. Letting w = 0, we obtain that a(z − ā)(1 + |ϕ(ā)|2) = 0 for
any z ∈ D. Thus, a = 0. Then by (8) we get

w̄z(1 + |ϕ(ā)|2)
(1− ϕ(0)w̄)2(1− ϕ(0)z)2(1− |ϕ(0)|2)3

=
w̄z(1 + |ϕ(ā)|2)

(1 + λϕ(0)w̄)2(1 + λ̄ϕ(0)z)2(1− |ϕ(0)|2)3

for any z, w ∈ D. This implies that

(1− ϕ(0)w̄)2(1− ϕ(0)z)2 = (1 + λϕ(0)w̄)2(1 + λ̄ϕ(0)z)2(9)

for any z, w ∈ D. Letting w = 0 in (9), we see that

(1− ϕ(0)z)2 = (1 + λ̄ϕ(0)z)2

for any z ∈ D. By taking the derivative with respect to z, we have

2(1− ϕ(0)z)(−ϕ(0)) = 2λ̄ϕ(0)(1 + λ̄ϕ(0)z)(10)

for any z ∈ D. Considering z = 0, we get that −ϕ(0) = λ̄ϕ(0).

Conversely, assume that a = 0 and −ϕ(0) = λ̄ϕ(0). The desired result
follows from a direct computation. □

3. Spectral properties

In this section, we completely characterize the spectral properties of the
compact JWξ,τ -symmetric weighted composition-differentiation operator Dψ,ϕ

satisfying the condition that ϕ(ā) = 0 in Theorem 2.4 and ϕ′(ā) = 0 in Theorem
2.5, respectively. We use σ(T ) to denote the spectrum of the operator T ∈
B(H).
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Theorem 3.1. Let ξ(z) =

√
1−|a|2
1−āz , τ(z) = λ(a−z)

1−āz , where a ∈ D and |λ| = 1

such that λa = ā. Let n ∈ N+, ψ ∈ H(D) be not identically zero and ϕ be a
nonconstant analytic self-map of D with ϕ(ā) = ā such that Dψ,ϕ is compact
on H2. If Dψ,ϕ is complex symmetric with respect to the conjugation JWξ,τ ,
then

σ(Dψ,ϕ) = {0} ∪ {nψ′(ā)ϕ
′(n−1)(ā), n ∈ N+}.

Moreover, f(z) = (z − ā)n is an eigenvector of Dψ,ϕ with respect to the eigen-

value nψ′(ā)ϕ
′(n−1)(ā) for each n ∈ N+.

Proof. Assume thatDψ,ϕ is complex symmetric with respect to the conjugation
JWξ,τ and ϕ(ā) = ā. Theorem 2.3 gives that

ϕ(z) = ā+ ϕ′(ā)(z − ā) and ψ(z) = ψ′(ā)(z − ā).(11)

For each nonzero γ ∈ σ(Dψ,ϕ), since Dψ,ϕ is compact on H2, there is a nonzero
element f ∈ H2 such that Dψ,ϕf = γf ; that is,

ψ(z)f ′(ϕ(z)) = γf(z), z ∈ D.
Write f(z) =

∑∞
n=0 an(z − ā)n. Then for any z ∈ D,

∞∑
n=0

ψ′(ā)nanϕ
′(n−1)(ā)(z − ā)n =

∞∑
n=0

γan(z − ā)n.

Therefore,

ψ′(ā)nanϕ
′(n−1)(ā) = γan.

Since f ̸≡ 0, there is n0 ∈ N+ such that an0 ̸=0. Hence, γ = n0ψ
′(ā)ϕ

′(n0−1)(ā).

If there is another n1 ∈ N+ such that n1 ̸= 0, then γ = n1ψ
′(ā)ϕ

′(n1−1)(ā).
Since ϕ is nonconstant, we obtain that ϕ′(ā) ̸= 0. Write ϕ′(ā) = reiθ, where
θ ∈ [0, 2π], r > 0. Then

ei(n0−n1)θ =
n1r

n1−n0

n0
,

which implies that n0 = n1. Thus, f(z) = an0
(z − ā)n0 .

Conversely, if there is n0 ∈ N+ such that γ = n0ψ
′(ā)ϕ

′(n0−1)(ā). Set f(z) =
(z − ā)n0 . By a simple calculation, we obtain that Dψ,ϕf = γf . □

Theorem 3.2. Let ξ(z) =

√
1−|a|2
1−āz , τ(z) = λ(a−z)

1−āz , where a ∈ D and |λ| = 1

such that λa = ā. Let n ∈ N+, ψ ∈ H(D) be not identically zero and ϕ be a
nonconstant analytic self-map of D with ϕ′(ā) = 0 such that Dψ,ϕ is compact
on H2. If Dψ,ϕ is complex symmetric with respect to the conjugation JWξ,τ ,
then

(12) σ(Dψ,ϕ) =

{
{0} ∪ {ψ′(ϕ(ā))}, when ψ′(ϕ(ā)) ̸= 0,

{0}, when ψ′(ϕ(ā)) = 0.

Moreover, if ψ′(ϕ(ā)) ̸= 0, then ψ is an eigenvector of Dψ,ϕ with respect to the
eigenvalue ψ′(ϕ(ā)).
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Proof. Assume thatDψ,ϕ is complex symmetric with respect to the conjugation
JWξ,τ and ϕ′(ā) = 0. Theorem 2.3 yields that

ϕ(z) = ϕ(ā) and ψ(z) =
(1− |a|2)2ψ′(ā)(z − ā)

[1− aϕ(ā) + (λ̄ϕ(ā)− a)z]2
.(13)

For each nonzero γ ∈ Dψ,ϕ, since Dψ,ϕ is compact on H2, there is a nonzero
element f ∈ H2 such that Dψ,ϕf = γf ; that is,

ψ(z)f ′(ϕ(z)) = γf(z), z ∈ D.

Since ϕ(z) = ϕ(ā), we have ψ(z)f ′(ϕ(ā)) = γf(z) for any z ∈ D. This means
that f ′(ϕ(ā)) ̸= 0 and ψ′(z)f ′(ϕ(ā)) = γf ′(z) for any z ∈ D. Considering
z = ϕ(ā), we have that γ = ψ′(ϕ(ā)). When ψ′(ϕ(ā)) = 0, this contradicts
γ ̸= 0. In this case, we obtain that σ(Dψ,ϕ) = {0}. When ψ′(ϕ(ā)) ̸= 0, it
follows that for any z ∈ D,

Dψ,ϕψ(z) = ψ(z)ψ′(ϕ(z)) = ψ(z)ψ′(ϕ(ā)).

In this case, σ(Dψ,ϕ) = {0} ∪ ψ′(ϕ(ā)). □
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