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WEIGHTED COMPOSITION OPERATORS ON NACHBIN

SPACES WITH OPERATOR-VALUED WEIGHTS

Mohammed Klilou and Lahbib Oubbi

Abstract. Let A be a normed space, B(A) the algebra of all bounded
operators on A, and V a family of strongly upper semicontinuous func-

tions from a Hausdorff completely regular space X into B(A). In this

paper, we investigate some properties of the weighted spaces CV (X,A)
of all A-valued continuous functions f on X such that the mapping

x 7→ v(x)(f(x)) is bounded on X, for every v ∈ V , endowed with the

topology generated by the seminorms ‖f‖v = sup{‖v(x)(f(x))‖, x ∈ X}.
Our main purpose is to characterize continuous, bounded, and locally

equicontinuous weighted composition operators between such spaces.

1. Introduction

The study of the weighted spaces CV (X) of scalar-valued continuous func-
tions on X was initiated by L. Nachbin [20] in 1965. Since then a vari-
ety of problems related to different aspects of the general theory of Banach
spaces, Banach algebras, locally convex spaces, and locally convex algebras
have been investigated in CV (X) by several researchers, see [3–5, 7, 10, 13, 21–
23, 28–31]. Some authors have also investigated different questions in some
subspaces of the weighted space CV (X), such as CV0(X) := {f ∈ CV (X) :
vf vanishes at infinity for every v ∈ V } and, whenever X is an open subset
of CN for some positive integer N , the spaces hV (X) := {f ∈ CV (X) :
f is harmonic on X}, HV (X) := {f ∈ CV (X) : f is holomorphic on X}, and
their corresponding subspaces hV0(X) := hV (X) ∩ CV0(X) and HV0(X) :=
HV (X) ∩ CV0(X), see [3, 5, 7–9,16,17,21,22,29].

The weighted spaces of vector-valued continuous functions and those of
vector-valued holomorphic functions have also been the subject matter of a
huge literature, see for instance [1,2,6,7,10,23–26,28] and the references therein.
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Several issues were considered in such spaces such as those related to approx-
imation [19, 20, 25, 30, 31], tensor products [1, 2], inductive limits and their
projective descriptions [3–7] and so on.

Different types of operators between weighted spaces, especially the multipli-
cation and the composition operators, have been investigated by many authors,
see [8, 11, 12, 23, 29] and the references therein. For weighted spaces CV (X,A)
with A non-locally convex, the weighted composition operators were studied
mainly in [13,15,18,23,28].

For all the aforementioned authors, the Nachbin family V consists of non-
negative upper semicontinuous real-valued functions. Recently, C. Shekhar
and B. S. Komal introduced in [27] systems of weights with values in the set
of positive operators on a Hilbert space H and investigated the generalized
weighted spaces CV (X,H), consisting of all H-valued continuous functions f
defined on X, such that the mapping x 7→ v(x)(f(x)) is bounded on X for
every v ∈ V . Such spaces constitute a nice generalization of the classical
weighted spaces of Nachbin. The present authors gave in [14] necessary and
sufficient conditions for a multiplication operators on such weighted spaces to
be continuous, bounded below, invertible or to have a dense range.

In this note, we consider Nachbin families on X, consisting of weights with
values in the algebra B(A) of all continuous linear operators on an arbitrary
normed vector space (A, ‖ ‖). This yields an interesting general framework for
the study of the weighted spaces. We specially give conditions under which such
spaces are complete. However, our main purpose in this note is to investigate
the weighted composition operators between a subspace E of a weighted space
CV (X,A) into a weighted space CU(Y,A) or CU0(Y,A), where Y is a Hausdorff
completely regular space and V and U are (generalized) Nachbin families on
X and Y respectively. Such operators, denoted by ψCϕ, are associated with
a mapping ϕ : Y → X and another one ψ : Y → B(A) in the following way:
ψCϕ(f) : y 7→ ψy(f(ϕ(y))), y ∈ Y and f ∈ E. Note that the vast majority
of the authors assume that CV0(X,A) is essential in the sense of [24]. This
means that, for every x ∈ X, there is some f ∈ CV0(X,A) such that f(x) 6= 0.
Here, the subspaces E of CV (X,A) we are considering are not assumed to be
essential. Therefore our results apply to a wide class of subspaces of CV (X,A).

After the foregoing section, Section 2 presents basic definitions and notations
to be used throughout the paper. Section 3 is devoted to the completeness of
the spaces CV (X,A) and CV0(X,A). Section 4 deals with the continuity of
the weighted composition operators defined on a subspace E of CV (X,A) with
values in CU(Y,A) or CU0(Y,A). The last section focuses on the conditions
under which ψCϕ is bounded or locally equicontinuous.

2. Preliminaries

Throughout this paper we shall assume, unless stated otherwise, that X and
Y are Hausdorff completely regular spaces and that (A, ‖ ‖) is a normed vector
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space over the field K (= R or C). The algebra of all bounded operators from
A into itself will be denoted by B(A). An operator T ∈ B(A) is called bounded
below if there exists M > 0 such that, for all a ∈ A, ‖a‖ ≤M‖T (a)‖. We will
denote by Bb(A) the set of all bounded below operators T ∈ B(A), while Bs(A)
(resp. Bu(A)) will stand for the topological linear space obtained by equipping
B(A) with the strong (resp. the uniform) operator topology denoted by β (resp.
σ).

For every a ∈ A, δa will denote the normed evaluation at a. This is δa(T ) :=
‖T (a)‖ for every T ∈ B(A). A B(A)-valued mapping v on X is said to be
strongly upper semicontinuous if, for every a ∈ A, the real-valued map δa ◦ v is
upper semicontinuous (u.s.c. in short) on X, i.e., the set {x ∈ X : ‖v(x)a‖ < α}
is open for every α ∈ R.

A mapping ν : X → A is said to vanish at infinity on X if, for every ε > 0,
there exists a compact subset Kε of X such that ‖ν(x)‖ < ε for all x /∈ Kε. If
the mapping x 7→ ‖ν(x)‖ is upper semicontinuous, then ν vanishes at infinity
if and only if {x ∈ X : ‖ν(x)‖ ≥ ε} is compact for every ε > 0.

We will let C(X,A) (resp. Cb(X,A), C0(X,A), K(X,A)) denote the linear
space of all continuous (resp. continuous and bounded, continuous and van-
ishing at infinity, continuous with compact support) A-valued functions on X,
while F(X,A) will be that of all A-valued functions on X. Whenever A = K,
we will write C(X) (resp. Cb(X), C0(X), K(X), F(X)) instead of C(X,A)
(resp. Cb(X,A), C0(X,A), K(X,A), F(X,A)).

In [27] and subsequently in [14], it is introduced the notion of generalized
Nachbin families in the framework of Hilbert spaces. Such families consist
of positive operator-valued functions with some additional conditions. Here,
we extend the definition of generalized Nachbin families to the framework of
arbitrary normed vector spaces as follows:

Definition 1. An A-generalized Nachbin family on X is a collection V of
B(A)-valued functions on X such that:

i) Every v ∈ V is strongly upper semicontinuous,
ii) ∀x ∈ X,

⋂
{ker v(x), v ∈ V } = {0},

iii) V is directed upward in the following sense: for all v1, v2 ∈ V and all
λ > 0, there exists v ∈ V such that λ‖vi(x)a‖ ≤ ‖v(x)a‖ for all x ∈ X,
all a ∈ A, and i = 1, 2.

Without loss of generality, we may assume that for every v ∈ V and λ > 0,
we also have λv ∈ V . For every v ∈ V and f ∈ C(X,A), we will write
vf to designate the mapping x 7→ v(x)(f(x)). Therefore v(x)f(x) will mean
v(x)(f(x)). With an A-generalized Nachbin family V on X is associated the
so-called generalized weighted spaces:

CV (X,A) := {f ∈ C(X,A) : (vf)(X) is bounded in A, ∀v ∈ V }
and

CV0(X,A) := {f ∈ CV (X,A) : vf vanishes at infinity on X, ∀v ∈ V }.
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Unlike the scalar-valued weights case, it is not clear that the mappings x 7→
‖v(x)f(x)‖ are bounded on compact subsets of X so that CV0(X,A) is au-
tomatically a subspace of CV (X,A). Here, we include this condition in the
definition of CV0(X,A). The two definitions coincide whenever, for example,
the mapping x 7→ ‖v(x)g(x)‖ happens to be u.s.c. on X for every v ∈ V and
every g ∈ C(X,A); in particular, whenever each v ∈ V is σ-continuous on X.

Both spaces CV (X,A) and CV0(X,A), as well as all their subspaces, will
be endowed with the locally convex topology τV defined by the seminorms:

‖f‖v = sup{‖v(x)f(x)‖, x ∈ X}, v ∈ V.

This topology is Hausdorff by Definition 1(ii).
In all the following, we will drop the letter A from A-generalized Nachbin

family.
Now, we provide some examples of generalized Nachbin families.

Example 2.1. Let U be a usual Nachbin family (i.e., consisting of real-valued
u.s.c. non-negative functions) on X. Then, identifying v(x) with the operator
a 7→ v(x)a, U is a generalized Nachbin family and the space CU(X,A) and
CU0(X,A) are exactly the classical weighted spaces.

Example 2.2. Let U be a usual Nachbin family, T ∈ B(A) a non-zero con-
tinuous operator on A, and V := {uT : u ∈ U}, with uT (x) := u(x)T .
If T is injective, then V is a generalized Nachbin family on X. Moreover,
CU(X,A) ⊂ CV (X,A) and CU0(X,A) ⊂ CV0(X,A) hold with continuous
inclusions. In particular, if T = I, we are in the situation of Example 2.1.

Example 2.3. Let U be a usual Nachbin family on X and let R : X → B(A) be
a continuous map, B(A) being endowed with the topology β. If R(x) is injective
for every x ∈ X, then V := {u(·)R(·) : u ∈ U} is a generalized Nachbin family
on X. Furthermore, setting Nu := {x ∈ X : u(x) > 0}, if R(Nu) is a σ-bounded
subset of B(A) for every u ∈ U , then CU(X,A) and CU0(X,A) are subsets of
CV (X,A) and CV0(X,A) respectively and the inclusions are continuous.

Example 2.4. To every compact subset K of X, assign a non-zero opera-
tor TK ∈ B(A) so that, whenever K1 and K2 are two compact subsets of
X satisfying K1 ⊂ K2, then ‖TK1(a)‖ ≤ ‖TK2(a)‖ for all a ∈ A. Now, for
every such a compact K, set vK := 1KTK , where 1K denotes the charac-
teristic functional of K. Since K is compact, the mapping vK is strongly
upper semicontinuous. If, in addition, we assume that for every x ∈ X, the
set

⋂
{kerTK ,K ⊂ X compact and x ∈ K} is reduced to {0}, then K :=

{λvK ;K ⊂ X compact and λ > 0} is a generalized Nachbin family on X
such that CK(X,A) = CK0(X,A) = C(X,A) algebraically. Furthermore,
whenever C(X,A) is endowed with the compact open topology, the inclusion
C(X,A) ⊂ CK(X,A) is continuous. The equality is a topological one whenever
TK is bounded below for every compact K ⊂ X.
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Example 2.5. Let T ⊂ B(A) be a separating family such that

∀T1, T2 ∈ T , ∃T ∈ T : ‖Ti(a)‖ ≤ ‖T (a)‖, ∀a ∈ A, i = 1, 2.

If vT is the constant mapping defined on X by vT (x) = T , then Z := {λvT : T ∈
T , λ > 0} is a generalized Nachbin family onX such that Cb(X,A) ⊂ CZ(X,A)
and C0(X,A) ⊂ CZ0(X,A) with a continuous injection when Cb(X,A) and
C0(X,A) are equipped with the uniform norm topology.

Henceforth, U will stand for a generalized Nachbin family on Y , while Vz
will designate the filter of neighborhoods of an element z of a topological space
Z.

With an arbitrary map ϕ : Y → X (resp. ψ : X → B(A)) is associated the
composition (resp. the multiplication) operator Cϕ : f 7→ f ◦ϕ (resp. Mψ : f 7→
ψf) defined from CV (X,A) into F(Y,A) (resp. into F(X,A)) by Cϕ(f)(y) =
f(ϕ(y)), y ∈ Y , and Mψ(f)(x) := ψ(x)(f(x)), x ∈ X.

In this note, we are interested in the linear mapping ψCϕ defined from
CV (X,A) into F(Y,A) by ψCϕ(f)(y) = ψy(f(ϕ(y))). This mapping is called
the weighted composition operator associated with ψ and ϕ. Notice that,
whenever ψ is constant with value the identity of A, ψCϕ is nothing but the
composition operator Cϕ, and, whenever X = Y and ϕ is the identity of X,
ψCϕ is just the multiplication operator Mψ : f 7→ ψf .

In all the sequel, E will be a linear subspace of CV (X,A) and coz(E) its
cozero set. This is:

coz(E) := {x ∈ X : f(x) 6= 0 for some f ∈ E}.

We will also consider the sets:

YE,ϕ := {y ∈ Y : ϕ(y) ∈ coz(E)} = coz(Cϕ(E)),

YE,ϕ,ψ := coz(ψCϕ(E)).

The set YE,ϕ (resp. YE,ϕ,ψ) is an open subset of Y , whenever Cϕ(E) ⊂ C(Y,A)
(resp. ψCϕ(E) ⊂ C(Y,A)) [23].

If f ∈ C(X) and a ∈ A are given, we will denote by f ⊗ a the function
defined on X by f ⊗ a(x) := f(x)a, x ∈ X.

In [23] the property “∀a ∈ A, ∀f ∈ E, ‖f‖ ⊗ a ∈ E”, called (M), came in
force in the results there. Here we will consider the following weaker properties
the space E may or may not satisfy:

(P) ∀a ∈ A, ∀x ∈ coz(E), ∃f ∈ E : f(x) = a,

(P’) ∀a ∈ A, ∀x ∈ coz(E), ∃g ∈ C(X) : g(x) 6= 0 and g ⊗ a ∈ E,

(S) ∀v ∈ V, ∀f ∈ E, the mapping x 7→ ‖v(x)f(x)‖ is upper semicontinuous.

It is easily seen that, (M) implies (P’) and that (P’) implies (P). Moreover,
if X is locally compact such that K(X) ⊗ A ⊂ E holds, then E satisfies (P’).
This is in particular the case if E = CV (X,A) or E = CV0(X,A) provided
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the latter satisfies (S). Notice at this point that, whenever V ⊂ C(X,Bσ(A)),
every subset E of CV (X,A) satisfies (S).

The condition (P’) is satisfied in many situations. This is the case for ex-
ample whenever E = CU(X,A) in Example 2.1 or in Example 2.2. This is also
the case if E = K(X,A) ∩ CU(X,A) in Example 2.3 and if E = C(X,A) in
Example 2.4. Anyway, whenever every x ∈ coz(CV (X,A)) possesses a neigh-
borhood Ωx such that v(Ωx) is β-bounded for every v ∈ V , then CV (X,A)
satisfies (P ′). In particular, this is true if v(X) is β-bounded for every v ∈ V .

Whenever E satisfies (P), the equality YE,ϕ,ψ = YE,ϕ ∩ coz(ψ) holds. More-
over, if E is a Cb(X)-module and satisfies (P’), then for all x ∈ coz(E) and all
a ∈ A, one can find f ∈ C(X) such that 0 ≤ f ≤ 1, f(x) = 1, and f ⊗ a ∈ E.

3. Completeness of CV (X,A) and CV0(X,A)

In this section we will investigate the completeness of CV (X,A) and
CV0(X,A) for every generalized Nachbin family V on X. To this purpose,
let us consider, for every v ∈ V and r > 0, the level set

N(v, r) := {x ∈ X : ‖v(x)a‖ ≥ r‖a‖, ∀a ∈ A}.

As in the scalar-valued weights case, CV0(X,A) is closed in CV (X,A) as
shows the following proposition. Before showing it, let us denote, for simplicity,
X0 := coz(CV0(X,A)) and X1 := coz(CV (X,A)).

Proposition 3.1. For every generalized Nachbin family V on X, CV0(X,A)
is a closed subspace of CV (X,A).

Proof. Let f ∈ CV (X,A) be in the closure CV0(X,A)
CV (X,A)

of CV0(X,A).
Then for all v ∈ V and ε > 0, there exists g ∈ CV0(X,A) such that ‖f−g‖v < ε

2 .
Since g belongs to CV0(X,A), there exists a compact subset K of X such that
‖v(x)g(x)‖ < ε

2 for all x /∈ K. Therefore, for such an x, we have:

‖v(x)f(x)‖ ≤ ‖v(x)(f(x)− g(x))‖+ ‖v(x)g(x)‖ < ε

2
+
ε

2
= ε.

This yields f ∈ CV0(X,A) since v is arbitrary. �

In the scalar-valued weights case, K. D. Bierstedt introduced in [1] the notion
of VR-spaces as being those completely regular Hausdorff spaces X such that
every real function on X whose restriction to each level set N(v, r) := {x ∈
X : v(x) ≥ r} is continuous, must be continuous on X, v running over V and
r > 0. In order to extend this definition to the operator-valued weights case,
we first give the following lemma which may be known. For the convenience of
the reader, we include a proof of it.

Lemma 3.2. Let Z be a Hausdorff completely regular space, B a non-trivial
Hausdorff topological vector space over the field K (= R or C), and F a collec-
tion of subsets of Z. Then the following statements are equivalents:
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i) For every Hausdorff completely regular space Y , a function f : Z → Y
is continuous provided its restriction f|F to every F ∈ F is.

ii) A function f : Z → R is continuous provided its restriction to every
F ∈ F is.

iii) A function f : Z → B is continuous provided its restriction to every
F ∈ F is.

Proof. The implication i)⇒ ii) is obvious because R is a Hausdorff completely
regular space. For ii)⇒ iii), let f : Z → B be such that f|F is continuous for
every F ∈ F . For a continuous function g : B → R, (g ◦ f)|F is continuous for
every F ∈ F . Therefore g ◦ f is continuous on X by ii). Since B is a Hausdorff
completely regular space, its topology is the initial one defined by C(B,R).
Therefore f is continuous on Z. Finally, for the implication iii)⇒ i), assume
that f : Z → Y is a mapping such that f|F is continuous for every F ∈ F . For
an arbitrary a ∈ B \ {0}, let ia be the homeomorphism from R into B defined
by ia(λ) = λa. For an arbitrary continuous function g : Y → R, the function
ia ◦ g ◦ f : Z → B is continuous on each F ∈ F . Then it is continuous on Z by
iii). As g is arbitrary in C(Y ) and ia(R) is homeomorphic to R, f is continuous
on Z. �

Definition 2. We will say that Z is an FR-space if it satisfies one of the
assertions of Lemma 3.2. In particular, X will be said to be a VR-space, if it is
an FR-space for

F := {N(v, r), v ∈ V, r > 0}.
Since N(v, r) = N( 1

rv, 1) and 1
rv ∈ V , X is a VR-space, if and only if, it is

an NR-space, where N := {N(v, 1), v ∈ V }.
In [14], the authors defined a VH -space X as a Hausdorff completely regular

space such that every H-valued function defined on X is continuous provided
its restriction to the level set N(v, r) is continuous, for every v ∈ V and r > 0.
According to Lemma 3.2, the VH -spaces of [14] are nothing but the VR-spaces.

Theorem 3.3. Let A be a Banach space and X be a VR-space. If, for every
x ∈ X1 (resp. x ∈ X0), there exists some v ∈ V such that v(x) is bounded
below, then CV (X,A) (resp. CV0(X,A)) is complete.

Proof. Let (fi)i∈I be a Cauchy net in CV (X,A) (resp. CV0(X,A)). By our
assumption, for every x ∈ X1 (resp. x ∈ X0), the evaluation map δx : f 7→ f(x)
is continuous from CV (X,A) (resp. CV0(X,A)) into A. Therefore (fi(x))i∈I is
a Cauchy net in A. Since A is complete, (fi(x))i∈I converges to some f(x) ∈ A.
Extend the so-defined function f over X by putting f = 0 identically on X \X1

(resp. X \X0). We claim that f belongs to CV (X,A) (resp. CV0(X,A)) and
that (fi)i∈I converges to f in CV (X,A) (resp. CV0(X,A)). Since X is a VR-
space, in order to show that f is continuous on X, it suffices to show that its
restriction to each N(v, 1) is. Let then v ∈ V and x ∈ N(v, 1) be arbitrary. We
have:

‖fi(t)− fj(t)‖ ≤ ‖v(t)(fi(t)− fj(t)‖, t ∈ N(v, 1).
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Whereby

‖fi(t)− fj(t)‖ ≤ ‖fi − fj‖v, t ∈ N(v, 1).

Since (fi)i∈I is Cauchy, for ε > 0, there exists i0 ∈ I such that ‖fi − fj‖v ≤ ε
3

whenever i0 ≤ i and i0 ≤ j. Hence ‖fi0(t)− fj(t)‖ ≤ ε
3 for all t ∈ N(v, 1) and

all j with i0 ≤ j. Passing to the limit on j, we get

‖fi0(t)− f(t)‖ ≤ ε

3
, ∀t ∈ N(v, 1).(1)

By the continuity of fi0 , there exists Ω ∈ Vx such that

(2) ‖fi0(t)− fi0(x)‖ ≤ ε

3
, ∀t ∈ Ω.

For t ∈ Ω ∩N(v, 1), by (1) and (2), we have

‖f(t)− f(x)‖ ≤ ‖f(t)− fi0(t)‖+ ‖fi0(t)− fi0(x)‖+ ‖fi0(x)− f(x)‖

≤ ε

3
+
ε

3
+
ε

3
= ε.

Then ‖f(t)− f(x)‖ ≤ ε for every t ∈ Ω ∩N(v, 1). It follows that f , restricted
to N(v, 1), is continuous. Since CV0(X,A) is closed in CV (X,A), it is enough
to show that (fi)i∈I converges in CV (X,A) to f .

Let then u ∈ V and ε > 0 be arbitrary. Since (fi)i∈I is Cauchy, there
exists i0 ∈ I such that ‖fi − fj‖u < ε whenever i0 ≤ i and i0 ≤ j, i.e.,
‖u(t)(fi(t)− fj(t))‖ < ε. Since u(t) is continuous, passing to the limit on j, we
get ‖u(t)(fi(t)− f(t))‖ ≤ ε, ∀t ∈ X and i0 ≤ i. Whereby

‖fi − f‖u ≤ ε, i0 ≤ i.

Now, since f = (f − fi) + fi, f belongs to CV (X,A). �

Throughout all the remainder, unless stated otherwise, we will assume that
E is a Cb(X)-module and satisfies the reasonable conditions (P) and (S). Our
purpose here is to study the relationship between the weights and some topo-
logical properties of the operator ψCϕ. We then assume that ψCϕ maps E into
C(X,A).

4. Continuous weighted composition operators

The following theorem characterizes the continuous operators ψCϕ from a
subspace E of CV (X,A), satisfying (P) and (S), into CU(Y,A).

Theorem 4.1. The operator ψCϕ maps continuously E into CU(Y,A) if, and
only if, the following condition holds:

(3) ∀ u ∈ U, ∃ v ∈ V : ‖u(y)ψy(a)‖ ≤ ‖v(ϕ(y))a‖, ∀a ∈ A, y ∈ YE,ϕ.

Proof. Necessity: Since ψCϕ : E → CU(Y,A) is continuous, for every u ∈ U ,
there exists v ∈ V such that:

‖ψCϕ(f)‖u ≤ ‖f‖v, ∀f ∈ E.
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Then for every y ∈ Y , one has:

‖u(y)ψy(f(ϕ(y))‖ ≤ sup{‖v(x)f(x)‖, x ∈ X}.(4)

Let y0 in YE,ϕ and a in A be given. Then x0 := ϕ(y0) belongs to coz(E).
Therefore, since E satisfies the property (P), for every a ∈ A, there is f ∈ E
such that f(x0) = a. For arbitrary integer n > 0, set

Un := {x ∈ X : ‖v(x)f(x)‖ < ‖v(x0)a‖+
1

n
}.

Due to (S), Un is an open neighborhood of x0. Consider gn ∈ Cb(X) whose
support is contained in Un such that gn(x0) = 1 and 0 ≤ gn ≤ 1. Then
hn := gnf belongs to E and by (4),

‖u(y0)ψy0(a)‖ ≤ sup{‖v(x)hn(x)‖, x ∈ X}

≤ ‖v(x0)a‖+
1

n
.

Letting n tend to infinity, we get ‖u(y0)ψy0(a)‖ ≤ ‖v(ϕ(y0))a‖ as desired.
Sufficiency: Let f ∈ E and u ∈ U be given. By (3) there exists v ∈ V such

that
‖u(y)ψy(f(ϕ(y)))‖ ≤ ‖v(ϕ(y)f(ϕ(y))‖, ∀ y ∈ Y.

Therefore,

‖ψCϕ(f)‖u = sup{‖u(y)ψy(f(ϕ(y)))‖ : y ∈ Y }
≤ sup{‖v(ϕ(y))f(ϕ(y))‖ : y ∈ Y }
≤ sup{‖v(x)f(x)‖ : x ∈ ϕ(Y )}
≤‖f‖v <∞.

This shows at once that ψCϕ(f) ∈ CU(Y,A) and that ψCϕ is continuous. �

In case of multiplication operators (i.e., X = Y and ϕ is the identity of X),
we get:

Corollary 4.2. Mψ maps continuously E into CU(X,A) if, and only if, the
following condition holds:

(5) ∀ u ∈ U,∃ v ∈ V : ‖u(x)ψx(a)‖ ≤ ‖v(x)a‖, ∀a ∈ A, x ∈ coz(E).

Similarly, in case of composition operators (i.e., ψ is the constant mapping
with value the identity of A), we get:

Corollary 4.3. Cϕ maps continuously E into CU(Y,A) if, and only if, the
following condition holds:

(6) ∀ u ∈ U,∃ v ∈ V : ‖u(y)a‖ ≤ ‖v(ϕ(y))a‖, ∀a ∈ A, y ∈ YE,ϕ.

Next, we will investigate the continuity of ψCϕ from E into CU0(Y,A). This
condition is of course much more constraining. To this aim, let us set as in [23]

Cst(E) := {K ⊂ X : ∀a ∈ A, ∃f ∈ E with f = a identically on K}.
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It is easily seen that every K ∈ Cst(E) is contained in coz(E) and that every
v ∈ V is β-bounded on every such a K. Therefore, if A happens to be barrelled,
a fortiori if it is Banach, then {v(x), x ∈ K} will be also σ-bounded.

Now, for v ∈ V and f ∈ E, put N(v, f) := {x ∈ X : ‖v(x)f(x)‖ ≥ 1} and
say that E satisfies the property (C) whenever N(v, f) belongs to Cst(E) for
every v ∈ V and every f ∈ E. The following lemma, extending Lemma 6 of
[23], gives examples where E satisfies (C).

Lemma 4.4. Assume that E satisfies (P’) (e.g. X is locally compact and
K(X) ⊗ A ⊂ E). If K ⊂ coz(E) is a compact set and C ⊂ X is a closed
set such that K ∩ C = ∅, then, for every a ∈ A, there exists f ∈ E such that
f = a on K and f = 0 on C.

Proof. For any f ∈ C(X), let us denote by Γ(f) the mapping assigning to
x ∈ X, |f(x)| if |f(x)| ≤ 1 and 1

|f(x)| otherwise. This is a continuous bounded

function on X. Now, for every a ∈ A and x ∈ K, due to (P’), there exists
g ∈ C(X) such that g(x) = 1 and g ⊗ a ∈ E. If γ := |g|2Γ(g2), then γ ⊗ a =
(gΓ(g2))g⊗a belongs to E. Choose then gx ∈ Cb(X) with gx(x) = 1, 0 ≤ gx ≤ 1
and gx = 0 identically on C, and set hx = gxγ. By a compactness argument,
there exist x1, x2, . . . , xm in X such that K ⊂ ∪mi=1{t ∈ X : hxi

(t) > 1
2}. It

follows that the function h :=
∑m
i=1 hxi satisfies h(t) > 1/2 for every t ∈ K.

Hence, the function k = (2Γ(2h))h ⊗ a belongs to E and enjoys the required
condition. �

Theorem 4.5. Assume that E satisfies (C). If ψCϕ maps continuously E
into CU0(Y,A), then (3) holds and ϕ−1(K) ∩ {y ∈ Y : ‖u(y)ψy(a)‖ ≥ 1} is
relatively compact, for all K ∈ Cst(E), u ∈ U , and a ∈ A. The converse holds
whenever, for all v ∈ V and f ∈ E, f(N(v, f)) is precompact and v(N(v, f))
is equicontinuous on A.

Proof. Assume that ψCϕ maps continuously E into CU0(Y,A). Then (3) fol-
lows from Theorem 4.1. Now, fix K ∈ Cst(E), u ∈ U , and a ∈ A, with
a 6= 0. Choose f ∈ E such that f = a identically on K. As ψCϕ(f) belongs to
CU0(Y,A), the set

S := {y ∈ Y : ‖u(y)ψy(f(ϕ(y)))‖ ≥ 1}

is relatively compact and contains ϕ−1(K)∩{y ∈ Y : ‖u(y)ψy(a)‖ ≥ 1}. Hence
the latter is relatively compact.

For the converse, by Theorem 4.1, the condition (3) implies that ψCϕ maps
continuously E into CU(Y,A). It remains to be shown the inclusion ψCϕ(E) ⊂
CU0(Y,A). For this, it is enough to show that, for all f ∈ E and all u ∈ U ,
the set S defined above is relatively compact. Let f ∈ E and u ∈ U be given.
By (3), there is some v ∈ V such that:

‖u(y)ψy(a)‖ ≤ ‖v(ϕ(y))a‖, ∀a ∈ A, y ∈ YE,ϕ.(7)
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This yields ϕ(S) ⊂ N(v, f), or S ⊂ ϕ−1(N(v, f)). Since K := N(v, f) belongs
to Cst(E), it suffices to show that S is contained in some union of finitely many
sets of the form Ci := {y ∈ Y : ‖2u(y)ψy(ai)‖ ≥ 1} for some ai ∈ A \ {0}. But,
since the set v(K) is equicontinuous, one has:

∃M > 0 : ‖v(x)a‖ ≤M‖a‖, a ∈ A, x ∈ K.(8)

Moreover, since f(K) is precompact, f(ϕ(S)) is also precompact in A. There-
fore there are y1, . . . , yn ∈ S such that:

f(ϕ(S)) ⊂
⋃
{f(ϕ(yi)) +

1

2M
BA, i = 1, . . . , n},

where BA denotes the unit ball of A. Thus, for y ∈ S, there is some i ∈
{1, . . . , n} such that ‖f(ϕ(y))− f(ϕ(yi))‖ < 1

2M . By (8), we get:

‖v(ϕ(y))(f(ϕ(y))− f(ϕ(yi)))‖ <
1

2
.

Using (7), we obtain ‖u(y)ψy(f(ϕ(y))− f(ϕ(yi)))‖ < 1
2 . Therefore

1 ≤ ‖u(y)ψy(f(ϕ(y)))‖
≤ ‖u(y)ψy(f(ϕ(y))− f(ϕ(yi)))‖+ ‖u(y)ψy(f(ϕ(yi)))‖

≤ 1

2
+ ‖u(y)ψy(f(ϕ(yi)))‖.

Then ‖2u(y)ψy(f(ϕ(yi)))‖ ≥ 1. Consequently

S ⊂
n⋃
i=1

{y ∈ Y : ‖2u(y)ψy(ai)‖ ≥ 1},

with ai = f(ϕ(yi)). Since ϕ−1(K) ∩ {y ∈ Y : ‖2u(y)ψy(ai)‖ ≥ 1} is relatively
compact for each i, so is S. �

In case of multiplication operators, we get:

Corollary 4.6. If E satisfies (C), f(N(v, f)) is precompact, and v(N(v, f)) is
equicontinuous on A, for all v ∈ V and all f ∈ E, then Mψ maps continuously
E into CU0(X,A) if, and only if (5) holds and K ∩{y ∈ Y : ‖u(y)ψy(a)‖ ≥ 1}
is relatively compact, for all K ∈ Cst(E), u ∈ U , and a ∈ A.

Similarly, in case of composition operators, we get:

Corollary 4.7. Under the same conditions as in Corollary 4.6, Cϕ maps con-
tinuously E into CU0(X,A) if, and only if (6) holds and ϕ−1(K) ∩ {x ∈ X :
‖u(x)a‖ ≥ 1} is relatively compact, for all K ∈ Cst(E), u ∈ U , and a ∈ A.

If E enjoys (P’) and the weights v ∈ V are all continuous, the converse
of Theorem 4.5 holds with compact subset K of coz(E) instead of all the
members of Cst(E). At this point, let us mention that, if E contains the
constant functions, then X itself is in Cst(E) but need not be compact.
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Theorem 4.8. Assume that V ⊂ C(X,Bσ(A)) and that E ⊂ CV0(X,A) sat-
isfies (P’). Then ψCϕ maps continuously E into CU0(Y,A) if, and only if, (3)
holds and ϕ−1(K)∩ {y ∈ Y : ‖u(y)ψy(a)‖ ≥ 1} is relatively compact, for every
compact K ⊂ coz(E), u ∈ U , and a ∈ A.

Notice that if E satisfies (C) and ifA happens to be barrelled, then v(N(v, f))
is automatically equicontinuous, for it is β-bounded. Furthermore, if E ⊂
CV0(X,A), then f(N(v, f)) is also automatically precompact, since N(v, f)
is compact, due to (S), and f is continuous. We thus get as a corollary, the
following result:

Theorem 4.9. Assume that A is barrelled and that E ⊂ CV0(X,A) satisfies
(C). Then ψCϕ maps continuously E into CU0(Y,A) if, and only if, (3) holds
and ϕ−1(K) ∩ {y ∈ Y : ‖u(y)ψy(a)‖ ≥ 1} is relatively compact, for all K ∈
Cst(E), u ∈ U , and a ∈ A.

5. Bounded weighted composition operators

Recall that a linear map θ is said to be bounded if it maps some 0-neighbor-
hood into a bounded set. Whenever θ has range in a space of continuous
functions on some topological space Z, it is said to be locally Z0-equicontinuous,
if θ maps every bounded set into a set which is equicontinuous on Z0 ⊂ Z.

We obtain the following characterization of bounded weighted composition
operators:

Theorem 5.1. The operator ψCϕ is bounded from E into CU(Y,A) if, and
only if, there exists some v ∈ V such that:

(9) ∀ u ∈ U, ∃ λ > 0 : ‖u(y)ψy(a)‖ ≤ λ‖v(ϕ(y))a‖, ∀ a ∈ A, y ∈ YE,ϕ.

Proof. Necessity: Since ψCϕ is bounded from E into CU(Y,A), there exists
v ∈ V such that, for every u ∈ U , there exists some λ > 0 so that

‖ψCϕ(f)‖u ≤ λ‖f‖v, f ∈ E.
Then for every y ∈ Y , one has

‖u(y)ψy(f(ϕ(y))‖ ≤ λ sup{‖v(x)f(x)‖, x ∈ X}.(10)

Let y0 ∈ YE,ϕ and a ∈ A be given, and put x0 := ϕ(y0). As in the proof of
Theorem 4.1, consider a function f ∈ E such that f(x0) = a. For any integer
n > 0, set

Un := {x ∈ X : ‖v(x)f(x)‖ < ‖v(x0)a‖+
1

n
}.

Due to (S), Un is an open neighborhood of x0. Choose gn ∈ Cb(X) vanishing
outside of Un such that gn(x0) = 1 and 0 ≤ gn ≤ 1. Then hn := gnf belongs
to E and by (10),

‖u(y0)ψy0(a)‖ ≤ λ sup{‖v(x)hn(x)‖, x ∈ X}

≤ λ(‖v(x0)a‖+
1

n
).
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Letting n tend to infinity, we get:

‖u(y0)ψy0(a)‖ ≤ λ‖v(ϕ(y0))a‖.
Sufficiency: Assume that, there exists v ∈ V so that (9) holds. Let u ∈ U be
given. Then, for f ∈ E and y ∈ Y , we have

‖u(y)ψy(f(ϕ(y)))‖ ≤ λ‖v(ϕ(y)f(ϕ(y))‖, y ∈ Y.
In particular, for f ∈ Bv, we get

‖u(y)ψy(f(ϕ(y)))‖ ≤ λ, y ∈ Y,
giving ‖ψCϕ(f)‖u ≤ λ, f ∈ Bv. �

In case of multiplication operators, we obtain:

Corollary 5.2. The multiplication operator Mψ is bounded from E into
CU(X,A) if, and only if, there exists v ∈ V such that:

∀ u ∈ U ; ∃ λ > 0 : ‖u(x)ψx(a)‖ ≤ λ‖v(x)a‖, ∀ a ∈ A, x ∈ coz(E).

Similarly, in case of composition operators, we obtain:

Corollary 5.3. The composition operator Cϕ is bounded from E into CU(Y,A)
if, and only if, there exists v ∈ V such that:

∀ u ∈ U ; ∃ λ > 0 : ‖u(y)a‖ ≤ λ‖v(ϕ(y))a‖, ∀ a ∈ A, y ∈ YE,ϕ.

Combining conveniently Theorem 4.8 and Theorem 5.1, we obtain the fol-
lowing result.

Theorem 5.4. Assume that V ⊂ C(X,Bσ(A)) and that E ⊂ CV0(X,A) sat-
isfies (P’). Then ψCϕ is bounded from E into CU0(Y,A) if, and only if, (9)
holds and ϕ−1(K)∩ {y ∈ Y : ‖u(y)ψy(a)‖ ≥ 1} is relatively compact, for every
compact K ⊂ coz(E), u ∈ U , and a ∈ A.

We now examine the local equicontinuity of ψCϕ. Notice that, in scalar-
valued weights case, every x ∈ X admits a neighborhood Ω such that every
v ∈ V is bounded on Ω. We will say that X is locally V -σ-bounding if:

∀ x ∈ X,∃ Ωx ∈ Vx : {v(t), t ∈ Ωx} is bounded in Lσ(A), ∀v ∈ V.

Theorem 5.5. Assume that X is locally V -σ-bounding and that, for all x ∈ X,
V (x) ∩ Bb(A) 6= ∅. Then ψCϕ is locally YE,ϕ,ψ-equicontinuous, if, and only if,
the following conditions hold:

1. ϕ is locally constant on YE,ϕ,ψ.
2. ψ is continuous from YE,ϕ,ψ into Lσ(A).

Proof. Necessity: Assume that ψCϕ is locally YE,ϕ,ψ-equicontinuous and sup-
pose that, for some y0 ∈ YE,ϕ,ψ, ϕ is constant on no neighborhood of y0. Choose
f0 ∈ E with ψy0(f0(ϕ(y0))) 6= 0. Then every Ω ∈ Vy0 contains some yΩ with
ϕ(y0) 6= ϕ(yΩ). Consider fΩ ∈ Cb(X) such that 0 ≤ fΩ ≤ 1, fΩ(ϕ(yΩ)) = 0,
and fΩ(ϕ(y0)) = 1, and put gΩ := fΩf0. Then the set C := {gΩ, Ω ∈ Vy0} is
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bounded in E and then ψCϕ(C) is equicontinuous at y0. Therefore, for every
ε > 0, there exists Ω0 ∈ Vy0 such that:

‖ψy(gΩ(ϕ(y)))− ψy0(gΩ(ϕ(y0)))‖ ≤ ε, y ∈ Ω0, Ω ∈ Vy0 .
Hence, for every Ω ⊂ Ω0 and y = yΩ, we get ‖ψy0(f0(ϕ(y0)))‖ ≤ ε. Since
ε > 0 is arbitrary, ψy0(f0(ϕ(y0))) = 0, which is a contradiction, whereby 1 is
satisfied.

2. Let y0 be arbitrary in YE,ϕ,ψ and ε > 0 be given. By 1, there exists a
neighborhood Ω0 of y0 on which ϕ is constant with some value x0. Since X is
locally V -σ-bounding, there exists Ωx0

∈ Vx0
such that, for every v ∈ V , there

exists some Mv > 0 with ‖v(t)‖ ≤ Mv, t ∈ Ωx0
. For arbitrary b ∈ A with

‖b‖ = 1, choose a function fb ∈ E such that fb(x0) = b. This is possible due
to (P). Then the set U := {x ∈ X : 1

2 < ‖fb(x)‖ < 3
2} is open and contains x0.

Choose gb ∈ Cb(X) such that gb(x0) = 1, 0 ≤ gb ≤ 1, and supp gb ⊂ U ∩ Ωx0 .
We claim that the set K := {gbfb, ‖b‖ = 1} is bounded in E. Indeed, for every
v ∈ V , we have:

‖gbfb‖v = sup{gb(x)‖v(x)fb(x)‖ : x ∈ X}
≤ sup{‖v(x)fb(x)‖ : x ∈ U ∩ Ωx0

}

≤ 3

2
Mv.

Therefore ψCϕ(K) is equicontinuous at y0. Hence there is some y0-neighbor-
hood Ω contained in Ω0 such that:

‖ψy (gb(ϕ(y))fb(ϕ(y)))− ψy0 (gb(ϕ(y0))fb(ϕ(y0))) ‖ ≤ ε, y ∈ Ω, ‖b‖ = 1.

Whence ‖ψy − ψy0‖ ≤ ε for all y ∈ Ω, showing that ψ is σ-continuous at y0.
Since y0 is arbitrary in YE,ϕ,ψ, ψ is σ-continuous on YE,ϕ,ψ.

Sufficiency: Given a bounded set B ⊂ E, y0 ∈ YE,ϕ,ψ, and ε > 0. By
assumption, there is some neighborhood Ω0 of y0 so that ϕ is constant on
Ω0 with some value x0. Choose v ∈ V with v(x0) bounded below. Then
there exists r > 0 such that r‖a‖ ≤ ‖v(x0)a)‖, a ∈ A. Therefore the set
B := {f(x0), f ∈ B} is bounded in A. Then ‖f(x0)‖ ≤M for every f ∈ B and
some M > 0. Since ψ is σ-continuous at y0, there is some other neighborhood
Ω of y0 such that Ω ⊂ Ω0 and ‖ψy − ψy0‖ < ε, y ∈ Ω. Hence

‖ψy(f(x0))− ψy0(f(x0))‖ ≤Mε, y ∈ Ω, f ∈ B.

Therefore

‖ψCϕ(f)(y)− ψCϕ(f)(y0)‖ ≤Mε, y ∈ Ω, f ∈ B,
whereby ψCϕ(B) is equicontinuous at y0 and then on YE,ϕ,ψ since y0 was arbi-
trary. �

A trivial consequence of Theorem 5.5 is the following:

Corollary 5.6. Assume that E satisfies the conditions of Theorem 5.5. If ϕ
is not constant on any open set (in particular, if X has no isolated point and ϕ
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is one to one), then ψCϕ is locally YE,ϕ,ψ-equicontinuous from E into C(Y,A)
if, and only if, it is identically zero.
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