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ESSENTIAL NORM OF THE COMPOSITION OPERATORS

BETWEEN BERGMAN SPACES OF

LOGARITHMIC WEIGHTS

Ern Gun Kwon and Jinkee Lee

Abstract. We obtain some necessary and sufficient conditions for the
boundedness of the composition operators between weighted Bergman
spaces of logarithmic weights. In terms of the conditions for the bound-
edness, we compute the essential norm of the composition operators.

1. Introduction

1.1. Logarithmic weights and modified counting functions

For −1 < γ < ∞, δ ≤ 0 and 0 < p < ∞, we define the weighted Bergman
space Ap

ωγ,δ
as consisting of holomorphic functions f on the unit disc D = {z :

|z| < 1} of the complex plane C for which
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A
p
ωγ,δ

:=

∫

D

|f(z)|pωγ,δ(z) dA(z) < ∞,

where the weight is defined by

ωγ,δ(z) =
(

log
1

|z|

)γ[

log
(

1−
1

log |z|

)]δ

and dA is the Lebesgue measure on D normalized to be A(D) = 1. It is same
as the space of holomorphic functions f satisfying

∫

D

|f(z)|p(1− |z|)γ
(

log
1

1− |z|

)δ

dA(z) < ∞.

When γ = 0, δ = 0 the space becomes the Bergman space Ap, and when δ = 0
it is the weighted Bergman space Ap

γ .
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For holomorphic self-maps ϕ of D, 0 ≤ r < 1, 0 ≤ γ < ∞, δ ≤ 0 and
a ∈ D \ {ϕ(0)}, we define Nϕ,γ,δ as

Nϕ,γ,δ(r, a) :=
∑

zj(a)∈ϕ−1(a)

(

log
r

|zj(a)|

)γ[

log
(

1 +
1

log r
|zj(a)|

)]δ

with |zj(a)| < r, counting multiplicities, and

Nϕ,γ,δ(a) = Nϕ,γ,δ(1, a) :=
∑

zj(a)∈ϕ−1(a)

ωγ,δ(zj(a)).

We considerNϕ,γ,δ(r, a) to be defined on the space D\{ϕ(0)} andNϕ,γ,δ(r, a) =
0 if a is not in ϕ(rD) where rD = {z ∈ D : |z| < r}.

When δ = 0, Nϕ,γ,δ coincides with the generalized Nevanlinna counting
function Nϕ,γ introduced by J. H. Shapiro ([5]) as, for a ∈ D\{ϕ(0)}, 0 ≤ r < 1
and γ ≥ 0,

Nϕ,γ(r, a) :=
∑

z∈ϕ−1(a), |z|<r

(

log
r

|z|

)γ

,

Nϕ,γ(a) = Nϕ,γ(1, a) =
∑

z∈ϕ−1(a)

(

log
1

|z|

)γ

.

1.2. Boundedeness and essential norm of composition operator

Any holomorphic self-map ϕ of D induces the composition operator Cϕ on
holomorphic function spaces as Cϕf(z) = f(ϕ(z)), z ∈ D. The linear operator
Cϕ is bounded on Ap by Littlewood’s Subordination Theorem (see [1]). Con-
cerning Cϕ between different Bergman spaces, W. Smith ([6]) characterized the
condition on ϕ that makes Cϕ between weighted Bergman spaces bounded:

Theorem 1.1 ([6], Theorem 3.1 and Theorem 4.3). Let 0 < p ≤ q, −1 <

α, β < ∞. Then Cϕ : Ap
α → A

q
β is bounded if and only if

Nϕ,β+2(a) = O
(

[

log
1

|a|

](α+2)q/p
)

(|a| → 1−).

Later, F. Pérez-González, J. Rättyä and D. Vukotić established more equiv-
alences.

Theorem 1.2 ([4], Theorem 1). For 0 < p ≤ q < ∞, −1 ≤ α < ∞ and

−1 < β < ∞. Then the following statements are equivalent: for 0 ≤ s < ∞

(1) Cϕ : Ap
α → A

q
β is bounded;

(2) Nϕ,β+2(z) = O
(

log
1

|z|

)

(α+2)q

p

(|z| → 1−);

(3) sup
a∈D

∫

D

|ϕ′
a(ϕ(z))|

q(2+α)

p
+s|ϕ′(z)|s(1− |z|2)s+βdA(z) < ∞;

(4) sup
a∈D

∫

D

|ϕ′
a(ϕ(z))|

q(2+α)

p
+s(1− |ϕ(z)|2)s(1 − |z|2)βdA(z) < ∞,
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where ϕa is the Möbius transformation: ϕa(z) =
a−z
1−āz

, z ∈ D.

We recall that the essential norm of an operator T is the distance from T to
the compact operators; that is,

||T ||e := inf{||T −K|| : K is compact},

where || · || denotes the usual operator norm. Shapiro ([5]) expressed the es-
sential norm of the composition operator on A2

α(D) in terms of the generalized
Nevanlinna counting function. Furthermore, F. Pérez-González, J. Rättyä and
D. Vukotić gave several quantities for the essential norm ||Cϕ||e.

Theorem 1.3 ([4], Theorem 5). Let 1 < p ≤ q < ∞, −1 ≤ α < ∞ and

−1 < β < ∞. If Cϕ : Ap
α → A

q
β is bounded, then the following quantities are

comparable: for 0 ≤ s < ∞

A = ||Cϕ||
q
e;

B = lim sup
|z|→1

Nϕ,β+2(z)
(

log 1
|z|

)q(α+2)/p
;

C = lim sup
|a|→1

∫

D

|ϕ′
a(ϕ(z))|

q(2+α)

p
+s|ϕ′(z)|s(1− |z|2)s+βdA(z);

D = lim sup
|a|→1

∫

D

|ϕ′
a(ϕ(z))|

q(2+α)

p
+s(1− |ϕ(z)|2)s(1 − |z|2)βdA(z).

1.3. Main results of this paper

Our purpose of this paper is to extend the results of Theorem 1.2 and Theo-
rem 1.3 up to Ap

ωγ,δ
. That is, we give equivalent characterizations that provide

the boundedness of composition operator Cϕ from one Ap
ωγ,δ

to another, and
obtain parallel equivalences for the essential norm of the composition operator.
The followings are our main results.

Theorem 1.4. Let 0 < p ≤ q < ∞, −1 < γ1, γ2 < ∞ and δ1, δ2 ≤ 0. Then

there exists s = s(ωγ1,δ1) > 1 with 2 + γ1 − δ1 < s < ∞ such that the following

conditions are equivalent:

(1) Cϕ maps Ap
ωγ1,δ1

boundedly into Aq
ωγ2,δ2

;

(2) Nϕ,γ2+2,δ2(a) = O
([(

log
1

|a|

)2

ωγ1,δ1(a)
]q/p)

(|a| → 1−);

(3) sup
a∈D

1
[(

log 1
|a|

)2

ωγ1,δ1(a)
]q/p

∫

D

(1 − |a|2)sq/p

|1− āz|sq/p+2
Nϕ,γ2+2,δ2(z)dA(z)<∞;

(4) sup
a∈D

∫

D

|ϕ′
a(z)|

(2+γ1)q

p
+2

[

log
(

1−
1

log |z|

)]−
δ1q

p

Nϕ,γ2+2,δ2(z)dA(z)<∞;

(5) sup
a∈D

∫

D

|ϕ′
a(ϕ(z))|

(2+γ1)q

p
+2|ϕ′(z)|2

[

log
(

1−
1

log |ϕ(z)|

)]−
δ1q

p

ωγ2+2,δ2(z)dA(z) < ∞.
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Theorem 1.5. For 1 < p ≤ q < ∞, −1 < γ1, γ2 < ∞ and δ1, δ2 ≤ 0,
if Cϕ : Ap

ωγ1,δ1
→ Aq

ωγ2,δ2
is bounded, then there exists s = s(ωγ1,δ1) > 1 with 2+

γ1 − δ1 < s < ∞ such that the following quantities are comparable:

A = ||Cϕ||
q
e;

B = lim sup
|z|→1

Nϕ,γ2+2,δ2(z)
[(

log 1
|z|

)2

ωγ1,δ1(z)
]q/p

;

C = lim sup
|a|→1

1
[(

log 1
|a|

)2

ωγ1,δ1(a)
]q/p

∫

D

(1− |a|2)sq/p

|1− āz|sq/p+2
Nϕ,γ2+2,δ2(z)dA(z);

D = lim sup
|a|→1

∫

D

|ϕ′
a(z)|

(2+γ1)q

p
+2

[

log
(

1−
1

log |z|

)]−
δ1q

p

Nϕ,γ2+2,δ2(z)dA(z);

E = lim sup
|a|→1

∫

D

|ϕ′
a(ϕ(z))|

(2+γ1)q

p
+2|ϕ′(z)|2

[

log
(

1−
1

log |ϕ(z)|

)]−
δ1q

p

ωγ2+2,δ2(z)dA(z).

We may compare the case of δ1 = 0, δ2 = 0 and γ1 = α, γ2 = β in Theorem
1.4 and Theorem 1.5 to Theorem 1.2 and Theorem 1.3, respectively. The
authors recently find a nice work of J. A. Peláez and J. Rättyä ([3]) wherein
parts of Theorem 1.4 and Theorem 1.5 are included under a wide scope and
different approach.

1.4. Contents of this paper

In Section 2, we introduce some properties for the modified Nevanlinna
counting function and the weighted Bergman space of logarithmic weight. In
Section 3, we prove some necessary and sufficient conditions for the bounded-
ness of the composition operator. In Section 4, we compute the essential norm.
All the functions f under consideration are assumed to be holomorphic on D.
Moreover, ϕ always denotes a holomorphic self map of D. Also throughout this
paper, the symbols “ . ” means that the left hand side is bounded above by
a constant multiple of the right hand side, where the constant is positive and
independent of f . “ & ” means analogously. The symbol “ ≈ ” means “ . ”
and “ & ” simultaneously. We are to abbreviate ωγ,δ as ω, ωγ1,δ1 as ω1, and
ωγ2,δ2 as ω2.

2. Background contents for Nϕ,γ,δ and A
p
ω

In this section we introduce some useful tools for our main theorems. See
[2], for proofs.



ESSENTIAL NORM OF THE COMPOSITION OPERATORS 191

2.1. Subharmonic mean value property

For the generalized counting function Nϕ,γ , the subharmonic mean value
property appeared in [5]. Similar result holds for Nϕ,γ,δ.

Lemma A ([2], Theorem 2.1). Let 1 ≤ γ < ∞ and δ ≤ 0. If ϕ is a holomorphic

self-map of D and △ is a disc in D not containing ϕ(0) with center a, then

Nϕ,γ,δ(a) ≤
1

| △ |

∫

△

Nϕ,γ,δ(u) dA(u),

where | △ | is the normalized area measure of △ : | △ | =
∫

χ△(z)dA(z).

2.2. Change of a variable formula

Lemma B ([2], Lemma 2.3). If g is a non-negative measurable function on D,

then
∫

D

(g ◦ ϕ)(z)|ϕ′(z)|2ω(z)dA(z) =

∫

D

g(u)Nϕ,γ,δ(u)dA(u).

Lemma C ([2], Lemma 2.4). For a holomorphic self-map ϕ of D and a ∈ D

we have

(Nϕ,γ,δ) ◦ ϕa = Nϕa◦ϕ,γ,δ.

2.3. Quantities compared to the norm

Lemma D ([2], Lemma 3.2). For a fixed r0 ∈ [0, 1),

||f ||p
A

p
ω
≈

∫

Drr0D

|f(z)|pω(z) dA(z).

Lemma E ([2], Lemma 3.3). Let 0 < p < ∞, −1 < γ < ∞ and δ ≤ 0. If

f ∈ Ap
ω, then

|f(z)| .
[(

log
1

|z|

)2

ω(z)
]− 1

p

||f ||Ap
ω

for z ∈ D with |z| ≥ 1
2 .

Lemma F ([2], Lemma 3.4). Let δ ≤ 0, −1 < γ < ∞, and β > γ − δ. Then

for a ∈ D with |a| ≥ 1
2 ,

∫

D

1

|1− āz|2+β
ω(z) dA(z) .

1

(1− |a|)β−γ

[

log
(

1−
1

log |a|

)]δ

.

Lemma G ([2], Theorem 3.6). Let 0 < p < ∞, −1 < γ < ∞ and δ ≤ 0. Then

for r0 ∈ [0, 1), f ∈ Ap
ω if and only if

∫

Drr0D

|f(z)|p−2|f ′(z)|2
(

log
1

|z|

)2

ω(z) dA(z) < ∞.

Lemma H. Let 0 < p < ∞, −1 < γ < ∞ and δ ≤ 0. Then

||f ||p
A

p
ω
≈ |f(0)|p +

∫

D

|f(z)|p−2|f ′(z)|2
(

log
1

|z|

)2

ω(z) dA(z).

Proof. See the proof of Lemma G in [2]. �
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3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. Let D(λ, δ) = {w : |ϕλ(w)| < δ} be
the pseudohyperbolic disk with center λ and radius δ.

Lemma 3.1.

log
(

1−
1

log x

)

≈ log
1

1− x
,
1

2
≤ x < 1.

Proof. From

1− x ≤ log
1

x
≤ (log 4)(1− x),

1

2
≤ x < 1,

by letting c = log 4, we have

c log
(

1−
1

log x

)

≥ log
c

log 1
x

≥ log
1

1− x
.

On the other hand,

log
(

1−
1

log x

)

≤ log
(

1 +
1

1− x

)

≤ log
1

1− x
+ log 2 ≤ 2 log

1

1− x
.

�

Lemma 3.2. Let |a| > 1
2 . Then

(1) log
(

1−
1

log |w|

)

≈ log
(

1−
1

log |a|

)

, w ∈ D(a, 1/2).

Proof. Let w ∈ D(a, 1
2 ) be w = a−z

1−āz
with |z| < 1

2 . Then

2|a| − 1

2− |a|
≤ |w| ≤

1 + 2|a|

2 + |a|
,

so that
1− |a|

2 + |a|
≤ 1− |w| ≤

3(1− |a|)

2− |a|
.

Thus 1−|w| ≈ 1−|a|, whence the equivalence (1) follows from Lemma 3.1. �

Lemma 3.3. Let 1 ≤ γ < ∞, α, δ ≤ 0 and 0 < m, t < ∞ with m − t > −α.

Then

(2) Nϕ,γ,δ(a) = O
(

ωt,α(a)
)

(|a| → 1−)

if and only if

(3) sup
a∈D

1

ωt,α(a)

∫

D

(1 − |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z) < ∞.

In particular,

lim sup
|a|→1

Nϕ,γ,δ(a)

ωt,α(a)
≈ lim sup

|a|→1

1

ωt,α(a)

∫

D

(1− |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z).(4)
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Proof. Suppose that (2) is satisfied. Then there exists r such that

Nϕ,γ,δ(a) . ωt,α(a) for r ≤ |a| < 1.

Thus, taking m− t > −α, by Lemma F
∫

DrrD

(1− |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z)(5)

.

∫

DrrD

(1− |a|2)m

|1− āz|m+2
ωt,α(z)dA(z)

. (1− |a|2)m
∫

D

1

|1− āz|m+2
ωt,α(a)dA(z)

. (1− |a|2)m
1

(1− |a|2)m−t

[

log
(

1−
1

log |a|

)]α

= ωt,α(a).

On the other hand

1

ωt,α(a)

∫

rD

(1− |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z)(6)

= (1− |a|2)m−t
[

log
(

1−
1

log |a|

)]−α
∫

rD

Nϕ,γ,δ(z)

|1− āz|m+2
dA(z) < ∞.

Therefore

sup
a∈D

1

ωt,α(a)

∫

D

(1 − |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z) < ∞.

Conversely, suppose that (3) is satisfied. Then by Lemmas A and C

Nϕ,γ,δ(a) = Nϕa◦ϕ,γ,δ(0) ≤ 4

∫

1

2
D

Nϕa◦ϕ,γ,δ(u)dA(u)(7)

= 4

∫

D(a,1/2)

Nϕa◦ϕ,γ,δ(ϕa(z))|ϕ
′
a(z)|

2dA(z)

= 4

∫

D(a,1/2)

Nϕ,γ,δ(z)|ϕ
′
a(z)|

2dA(z)

= 4

∫

D(a,1/2)

Nϕ,γ,δ(z)
(1− |a|2)2

|1− āz|4
dA(z),

so that by the fact 1−|a| ≈ |1−āz| for a in the pseudohyperbolic diskD(z, 1/2),
we have

Nϕ,γ,δ(a) .

∫

D(a,1/2)

Nϕ,γ,δ(z)
(1− |a|2)2+m−2

|1− āz|4+m−2
dA(z)(8)

.

∫

D

(1− |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z)

. ωt,α(a) as |a| → 1−.
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In particular, by (8), we have

lim sup
|a|→1

Nϕ,γ,δ(a)

ωt,α(a)
. lim sup

|a|→1

1

ωt,α(a)

∫

D

(1− |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z).

To prove the inverse inequality, putting

B = lim sup
|a|→1

Nϕ,γ,δ(a)

ωt,α(a)
,

then given ε > 0, there exists rε ∈ (0, 1) such that
Nϕ,γ,δ(z)
ωt,α(z) ≤ B + ε for all

|z| ≥ rε. Therefore, by (5)
∫

D

(1 − |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z)

=

∫

rεD

+

∫

DrrεD

(1− |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z)

.
(1− |a|2)m

(1 − rε)m+2

∫

rεD

Nϕ,γ,δ(z)dA(z)+(B + ε)

∫

DrrεD

(1 − |a|2)m

|1− āz|m+2
ωt,α(z)dA(z)

.
(1− |a|2)m

(1 − rε)m+2

∫

rεD

Nϕ,γ,δ(z)dA(z)+(B + ε)ωt,α(a),

and it follows that by (6)

lim sup
|a|→1

1

ωt,α(a)

∫

D

(1− |a|2)m

|1− āz|m+2
Nϕ,γ,δ(z)dA(z) . lim sup

|a|→1

Nϕ,γ,δ(a)

ωt,α(a)
.

The proof is complete. �

Lemma 3.4. Let 1 ≤ γ < ∞, α, δ ≤ 0 and −1 < t < ∞. Then (2) is equivalent
to

(9) sup
a∈D

∫

D

|ϕ′
a(z)|

2+t
[

log
(

1−
1

log |z|

)]−α

Nϕ,γ,δ(z)dA(z) < ∞.

Furthermore,

lim sup
|a|→1

Nϕ,γ,δ(a)

ωt,α(a)
(10)

≈ lim sup
|a|→1

∫

D

|ϕ′
a(z)|

2+t
[

log
(

1−
1

log |z|

)]−α

Nϕ,γ,δ(z)dA(z).

Proof. The proof uses arguments similar to those in Lemma 3.3. By (2), there
exists r such that

Nϕ,γ,δ(a) . ωt,α(a) for r ≤ |a| < 1.

Thus, we have
∫

DrrD

|ϕ′
a(z)|

2+t
[

log
(

1−
1

log |z|

)]−α

Nϕ,γ,δ(z)dA(z)
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.

∫

DrrD

|ϕ′
a(z)|

2+t
[

log
(

1−
1

log |z|

)]−α

ωt,α(z)dA(z)

=

∫

DrrD

(1− |a|2)2+t

|1− āz|4+2t

(

log
1

|z|

)t

dA(z)

.

∫

D

(1− |a|2)2+t

|1− āz|4+2t
(1− |z|)t dA(z) . 1,

and obviously
∫

rD

|ϕ′
a(z)|

2+t
[

log
(

1−
1

log |z|

)]−α

Nϕ,γ,δ(z)dA(z) < ∞,

so that (9) is satisfied.
Conversely, by (7)

Nϕ,γ,δ(a) . 4

∫

D(a,1/2)

Nϕ,γ,δ(z)|ϕ
′
a(z)|

2+t
( |1− āz|2

1− |a|2

)t

dA(z)

. (1− |a|2)t
∫

D(a,1/2)

Nϕ,γ,δ(z)|ϕ
′
a(z)|

2+tdA(z).

Hence, for |a| > 1
2 , (1) and the condition (9) yield

Nϕ,γ,δ(a)
[

log
(

1− 1
log |a|

)]α

. (1− |a|2)t
∫

D(a,1/2)

|ϕ′
a(z)|

2+t
[

log
(

1−
1

log |z|

)]−α

Nϕ,γ,δ(z)dA(z)

. (1− |a|2)t,

thus (2) is satisfied. The proof of (10) follows from a similar approach used in
Lemma 3.3. The proof is complete. �

Proof of Theorem 1.4. (1) ⇐⇒ (2) follows from Theorem 1.1 in [2]. When

γ = γ2+2, δ = δ2, t =
(2+γ1)q

p
, α = δ1q

p
andm = sq/p with 2+γ1−δ1 < s < ∞,

(2) ⇐⇒ (3) follows from Lemma 3.3. (2) ⇐⇒ (4) follows from Lemma 3.4.
(3) ⇐⇒ (4) follows from the change of variables formula, Lemma B. �

4. Proof of Theorem 1.5

For the same indices as Theorem 1.4, (4) and (10) ensure that B ≈ C and
B ≈ D, respectively. We are enough to prove A ≈ B. For a ∈ D with |a| > 1

2 ,
consider the test function

ka(z) =
(1− |a|)−

2δ1
p

(1− āz)
γ1+2−2δ1

p

[

log
(

1−
1

log |a|

)]−
δ1
p

, z ∈ D,

which is by Lemma F,

||ka||
p

A
p
ω1

. 1
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and ka → 0 uniformly in compact subsets of D as |a| → 1. If K : Ap
ω1

→ Aq
ω2

is compact, then by Lemma D

||Cϕ −K|| ≥ lim sup
|a|→1

||Cϕ(ka)−Kka||Aq
ω2

(11)

≥ lim sup
|a|→1

||Cϕ(ka)||Aq
ω2

− lim sup
|a|→1

||Kka||Aq
ω2

= lim sup
|a|→1

||Cϕ(ka)||Aq
ω2

.

By Lemmas H and B,

||Cϕ(ka)||Aq
ω2

&

∫

D

|(ka ◦ ϕ)(z)|
q−2|(ka ◦ ϕ)

′(z)|2
(

log
1

|z|

)2

ω2(z) dA(z)

=

∫

D

|ka(u)|
q−2|k′a(u)|

2Nϕ,γ2+2,δ2(u) dA(u).

Inserting the test function and its derivative, the last integral equals

(γ1 + 2− 2δ1
p

)2

|a|2(1− |a|2)−
2δ1q

p

[

log
(

1−
1

log |a|

)]−
δ1q

p

×

∫

D

1

|1− āu|
(γ1+2−2δ1)q

p
+2

Nϕ,γ2+2,δ2(u) dA(u).

The change of variables u = ϕa(z) gives
∫

D

1

|1− āu|
(γ1+2−2δ1)q

p
+2

Nϕ,γ2+2,δ2(u) dA(u)

=
1

(1− |a|2)2

∫

D

1

|1− āϕa(z)|
(γ1+2−2δ1)q

p
−2

Nϕ,γ2+2,δ2(ϕa(z)) dA(z).

Since |1− āϕa(z)| ≤ 2(1− |a|2) if |z| ≤ 1
2 , we have

1

(1 − |a|2)2

∫

D

1

|1− āϕa(z)|
(γ1+2−2δ1)q

p
−2

Nϕ,γ2+2,δ2(ϕa(z)) dA(z)

&
1

(1 − |a|2)(γ1+2−2δ1)q/p

∫

1

2
D

Nϕ,γ2+2,δ2(ϕa(z)) dA(z).

Collecting these up, it now follows that

||Cϕ(ka)||Aq
ω2

&
|a|2

(1− |a|2)(γ1+2)q/p

[

log
(

1−
1

log |a|

)]−δ1q/p

×

∫

1

2
D

Nϕ,γ2+2,δ2(ϕa(z)) dA(z).

Now applying Lemmas C and A, we obtain

||Cϕ(ka)||Aq
ω2

&
|a|2

(1− |a|2)(γ1+2)q/p

[

log
(

1−
1

log |a|

)]−δ1q/p
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×

∫

1

2
D

Nϕa◦ϕ,γ2+2,δ2(z) dA(z)

&
|a|2

(1− |a|2)(γ1+2)q/p

[

log
(

1−
1

log |a|

)]−δ1q/p

Nϕa◦ϕ,γ2+2,δ2(0)

=
|a|2

(1− |a|2)(γ1+2)q/p

[

log
(

1−
1

log |a|

)]−δ1q/p

Nϕ,γ2+2,δ2(a)

≈ |a|2
[(

log
1

|a|

)2

ωγ1,δ1(a)
]−q/p

Nϕ,γ2+2,δ2(a).

By (11), we get

||Cϕ||
q
e & lim sup

|a|→1

Nϕ,γ2+2,δ2(a)
[(

log 1
|a|

)2

ωγ1,δ1(a)
]q/p

,

and this means A & B.
To show A . B, let Cϕ : Ap

ω1
→ Aq

ω2
be bounded and suppose

lim sup
|z|→1

Nϕ,γ2+2,δ2(z)
[(

log 1
|z|

)2

ω1(z)
]q/p

= B > 0.

Then there exists r0 ∈ (0, 1) such that

Nϕ,γ2+2,δ2(z)
[(

log 1
|z|

)2

ω1(z)
]q/p

≤ 2B(12)

for |z| ≥ r0. For a holomorphic function f(z) =
∑∞

k=0 akz
k on D, let

Tnf(z) =

n
∑

k=0

akz
k, Rnf(z) =

∞
∑

k=n+1

akz
k.

Then Tn : Ap
ω1

→ Aq
ω2

is compact, and

||Cϕ||e = ||Cϕ(Tn +Rn)||e ≤ ||CϕTn||e + ||CϕRn||e = ||CϕRn||e ≤ ||CϕRn||.

Thus ||Cϕ||e ≤ lim infn→∞ ||CϕRn||. Since (Rnf ◦ϕ)(0) → 0 as n → ∞, hence,
by Lemmas H, B and (12),

||Cϕ||
q
e

≤ lim inf
n→∞

||CϕRn||
q = lim inf

n→∞
sup

||f ||
A

p
ω1

≤1

||CϕRnf ||
q

A
q
ω2

≈ lim inf
n→∞

sup
||f ||

A
p
ω1

≤1

∫

D

|(Rnf ◦ ϕ)(z)|q−2|(Rnf ◦ ϕ)′(z)|2
(

log
1

|z|

)2

ω2(z) dA(z)

= lim inf
n→∞

sup
||f ||

A
p
ω1

≤1

∫

D

|Rnf(w)|
q−2|Rnf

′(w)|2Nϕ,2+γ2,δ2(w) dA(w)
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. B lim inf
n→∞

sup
||f ||

A
p
ω1

≤1

∫

D

|Rnf(w)|
q−2|Rnf

′(w)|2
[(

log
1

|w|

)2

ω1(w)
]q/p

dA(w).

From Lemma E, we have

|Rnf(z)| .
[(

log
1

|z|

)2

ω1(z)
]− 1

p

||Rnf ||Ap
ω1

.

[(

log
1

|z|

)2

ω1(z)
]− 1

p

||f ||Ap
ω1

,

and by Lemma H, we obtain

||Cϕ||
q
e

. B lim inf
n→∞

sup
||f ||

A
p
ω1

≤1

||f ||q−p

A
p
ω1

∫

D

|Rnf(w)|
p−2|Rnf

′(w)|2
(

log
1

|w|

)2

ω1(w) dA(w)

≈ B lim inf
n→∞

sup
||f ||

A
p
ω1

≤1

||Rnf ||
q

A
p
ω1

. B sup
||f ||

A
p
ω1

≤1

||f ||q
A

p
ω1

= B.

The proof is complete.
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