WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

KEI JI IZUCHI, KOU HEI IZUCHI, AND YUKO IZUCHI

ABSTRACT. Let $\{\varphi_n\}_{n\geq 1}$ be a sequence of analytic self-maps of \mathbb{D} . It is proved that if the union set of the ranges of the composition operators C_{φ_n} on the weighted Bergman spaces contains the disk algebra, then φ_k is an automorphism of \mathbb{D} for some $k \geq 1$.

1. introduction

Let \mathbb{D} be the open unit disk. We denote by $H(\mathbb{D})$ the space of all analytic functions on \mathbb{D} . We denote by S the set of analytic self-maps of \mathbb{D} . For each $\varphi \in S$ and $u \in H(\mathbb{D})$, we may defined the weighted composition operator $M_u C_{\varphi}$ on $H(\mathbb{D})$ by $(M_u C_{\varphi})f = u(f \circ \varphi)$ for $f \in H(\mathbb{D})$. For a subset E of $H(\mathbb{D})$, write $(M_u C_{\varphi})(E) = \{(M_u C_{\varphi})f : f \in E\}$. There are a lot of studies of (weighted) composition operators on various space of analytic functions, see [1,8].

We denote by $A(\overline{\mathbb{D}})$ the disk algebra, i.e., the space of functions in $H(\mathbb{D})$ which can be extended continuously on $\overline{\mathbb{D}}$ (see [4]). Let Aut (\mathbb{D}) be the set of automorphisms of \mathbb{D} . For finitely many $\varphi_1, \varphi_2, \ldots, \varphi_\ell$ in S and u_1, u_2, \ldots, u_ℓ in $H(\mathbb{D})$, in the previous paper [5, Theorem 2.1] the authors proved that if $A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\ell} (M_{u_n} C_{\varphi_n})(H(\mathbb{D}))$, then $\varphi_k \in \text{Aut}(\mathbb{D})$ and $Z(u_k) = \emptyset$ for some $1 \leq k \leq \ell$, where $Z(u_k)$ denotes the zero set of u_k in \mathbb{D} . We have a conjecture that for sequences $\{\varphi_n\}_{n\geq 1}$ in S and $\{u_n\}_{n\geq 1}$ in $H(\mathbb{D})$, if $A(\overline{\mathbb{D}}) \subset$ $\bigcup_{n=1}^{\infty} (M_{u_n} C_{\varphi_n})(H(\mathbb{D}))$, then $\varphi_k \in \text{Aut}(\mathbb{D})$ and $Z(u_k) = \emptyset$ for some $k \geq 1$. At this moment, we can not prove this. In this paper, we shall study the same type of problems.

For $0 , let <math>A^p$, the Bergman space, be the space of functions f in $H(\mathbb{D})$ satisfying that

$$\int_{\mathbb{D}} |f(z)|^p \, dA(z) < \infty,$$

2010 Mathematics Subject Classification. Primary 47B33; Secondary 46J15, 30H50.

 $\odot 2018$ Korean Mathematical Society

507

Received February 1, 2017; Revised May 14, 2017; Accepted June 8, 2017.

 $Key\ words\ and\ phrases.$ composition operator, disk algebra, automorphism, weighted Bergman space, QA space.

The first author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No.15K04895).

where dA is the normalized area measure on \mathbb{D} . It is well known that $C_{\varphi}(A^p) \subset A^p$. In Section 2, applying the Baire category theorem we shall prove that if

$$A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_n} \Big(\bigcup_{0$$

then $\varphi_k \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.

Let H^{∞} be the space of bounded analytic functions on \mathbb{D} . We denote by $\partial \mathbb{D}$ the boundary of \mathbb{D} . For each $f \in H^{\infty}$, there exists $f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$ for almost all $e^{i\theta} \in \partial \mathbb{D}$. We identify f with f^* , so we may think of H^{∞} the closed subalgebra of $L^{\infty}(\partial \mathbb{D})$, the space of bounded measurable functions on $\partial \mathbb{D}$. It is well known that $H^{\infty} + C(\partial \mathbb{D})$ is a closed subalgebra of $L^{\infty}(\partial \mathbb{D})$, where $C(\partial \mathbb{D})$ is the space of continuous functions on $\partial \mathbb{D}$ ([6]). We write

$$\overline{H^{\infty} + C(\partial \mathbb{D})} = \{\overline{f} : f \in H^{\infty} + C(\partial \mathbb{D})\}.$$

Let

$$QA = H^{\infty} \cap \overline{H^{\infty} + C(\partial \mathbb{D})}.$$

Then QA is the closed subalgebra of H^{∞} and $A(\overline{\mathbb{D}}) \subset QA \subset H^{\infty}$. It is considered that QA is a fairly small and an interesting space in H^{∞} (see [2,7, 9,10]). In [5, Theorem 4.1], the authors pointed out that if

$$H^{\infty} \subset \bigcup_{n=1}^{\infty} (M_{u_n} C_{\varphi_n})(H(\mathbb{D})),$$

then $\varphi_k \in \text{Aut}(\mathbb{D})$ and $Z(u_k) = \emptyset$ for some $k \ge 1$. In Section 3, we shall show that the above result holds if we replace H^{∞} by QA.

2. Weighted Bergman spaces

We study under more general setting. Let ω be a positive continuous function on $\mathbb D$ satisfying that

(α) $\omega(z) \to 0 \text{ as } |z| \to 1.$

For $f \in H(\mathbb{D})$, let denote

$$||f||_{\omega} = \sup_{z \in \mathbb{D}} \omega(z) |f(z)|.$$

Write

$$H(\omega) = \{ f \in H(\mathbb{D}) : \|f\|_{\omega} < \infty \}.$$

Then $H(\omega)$ is a Banach space with the norm $\|\cdot\|_{\omega}$ and $A(\overline{\mathbb{D}}) \subset H(\omega)$. For each positive integer m, let

$$H_m(\omega) = \{ f \in H(\omega) : ||f||_{\omega} \le m \}.$$

We have $H(\omega) = \bigcup_{m=1}^{\infty} H_m(\omega)$.

Lemma 2.1. $C_{\varphi}(H_m(\omega)) \cap A(\overline{\mathbb{D}})$ is closed in $A(\overline{\mathbb{D}})$.

Proof. Let $\{f_j\}_{j\geq 1}$ be a sequence in $C_{\varphi}(H_m(\omega)) \cap A(\mathbb{D})$ such that $f_j \to f_0$ in $A(\overline{\mathbb{D}})$ as $j \to \infty$. For each $j \geq 1$, there is $g_j \in H_m(\omega)$ such that $f_j = g_j \circ \varphi$. Since $\omega(z)|g_j(z)| \leq m$ on \mathbb{D} for every $j \geq 1$, by the normal family argument we may assume that $g_j \to g_0 \in H(\mathbb{D})$ uniformly on any compact subset of \mathbb{D} as $j \to \infty$. Then we have $g_0 \in H_m(\omega)$ and $f_0 = g_0 \circ \varphi$, so $f_0 \in C_{\varphi}(H_m(\omega)) \cap A(\overline{\mathbb{D}})$. Thus we get the assertion.

Since $C_{\varphi}(H(\omega)) \cap A(\overline{\mathbb{D}})$ is a subspace of $A(\overline{\mathbb{D}})$ and $H(\omega) = \bigcup_{m\geq 1}^{\infty} H_m(\omega)$, we have the following.

Lemma 2.2. If $C_{\varphi}(H_m(\omega)) \cap A(\overline{\mathbb{D}})$ contains a non-void open subset of $A(\overline{\mathbb{D}})$, then $A(\overline{\mathbb{D}}) \subset C_{\varphi}(H(\omega))$.

Proof. Take a non-void open subset U of $A(\overline{\mathbb{D}})$ satisfying

$$U \subset C_{\varphi}(H_m(\omega)) \cap A(\overline{\mathbb{D}}).$$

Fix $f_0 \in U$. There is $g_0 \in H_m(\omega)$ such that $f_0 = g_0 \circ \varphi$. Take $f \in A(\overline{\mathbb{D}})$ arbitrary. We have

$$f_0 + \varepsilon f \in U \subset C_{\varphi}(H_m(\omega)) \cap A(\overline{\mathbb{D}})$$

for some $\varepsilon > 0$. Then there is $h \in H_m(\omega)$ such that $f_0 + \varepsilon f = h \circ \varphi$. Since $(h - g_0)/\varepsilon \in H(\omega)$, we have

$$f = \frac{(h - g_0) \circ \varphi}{\varepsilon} \in C_{\varphi}(H(\omega)).$$

Thus we get the assertion.

By [5, Theorem 1.1], we have the following.

Lemma 2.3. If $A(\overline{\mathbb{D}}) \subset C_{\varphi}(H(\omega))$, then $\varphi \in \operatorname{Aut}(\mathbb{D})$.

Theorem 2.4. Let $\{\varphi_n\}_{n\geq 1}$ be a sequence in S and $\{\omega_\ell\}_{\ell\geq 1}$ be a sequence of positive continuous functions on \mathbb{D} satisfying condition (α) . If

$$A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_n} \Big(\bigcup_{\ell=1}^{\infty} H(\omega_{\ell}) \Big),$$

then $\varphi_k \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.

Proof. We may assume that φ_n is non-constant for every $n \ge 1$. We have

$$\bigcup_{\ell=1}^{\infty} H(\omega_{\ell}) = \bigcup_{\ell,m=1}^{\infty} H_m(\omega_{\ell}).$$

By the assumption,

$$A(\overline{\mathbb{D}}) = \bigcup_{n,\ell,m=1}^{\infty} C_{\varphi_n}(H_m(\omega_\ell)) \cap A(\overline{\mathbb{D}}).$$

By Lemma 2.1, $C_{\varphi_n}(H_m(\omega_\ell)) \cap A(\overline{\mathbb{D}})$ is closed in $A(\overline{\mathbb{D}})$ for every $n, \ell, m \geq 1$. By the Baire category theorem, $C_{\varphi_n}(H_m(\omega_\ell)) \cap A(\overline{\mathbb{D}})$ contains a non-void open subset of $A(\overline{\mathbb{D}})$ for some n, ℓ and m. By Lemma 2.2, $A(\overline{\mathbb{D}}) \subset C_{\varphi_n}(H(\omega_\ell))$. By Lemma 2.3, we have $\varphi_n \in \text{Aut}(\mathbb{D})$.

For $0 and <math>-1 < \alpha < \infty$, the weighted Bergman space A^p_{α} is the space of $f \in H(\mathbb{D})$ satisfying that

$$||f||_{p,\alpha} := \left(\int_{\mathbb{D}} |f(z)|^p \, dA_\alpha(z)\right)^{1/p},$$

where

$$dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$$

(see [3, p. 2]). We have $A_0^p = A^p$,

$$A^p_{\alpha_1} \subset A^p_{\alpha_2}$$
 if $-1 < \alpha_1 < \alpha_2 < \infty$

and

$$A_{\alpha}^{p_1} \supset A_{\alpha}^{p_2} \quad \text{if } 0 < p_1 < p_2 < \infty.$$

Then

$$\bigcup_{0$$

Hence

$$\bigcup_{0$$

For $f \in A^p_{\alpha}$, we have

$$\sup_{z \in \mathbb{D}} (1 - |z|^2)^{\frac{2+\alpha}{p}} |f(z)| \le ||f||_{p,\alpha} < \infty$$

(see [3, p. 53]). Set $\omega_{p,\alpha}(z) = (1 - |z|^2)^{(2+\alpha)/p}$. Then $A^p_{\alpha} \subset H(\omega_{p,\alpha})$ and

$$\bigcup_{0$$

So by Theorem 2.4, we have the following.

Corollary 2.5. Let $\{\varphi_n\}_{n\geq 1}$ be a sequence in S. If

$$A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_n} \Big(\bigcup_{0$$

then $\varphi_k \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.

For $0 , let <math>H^p$ be the space of functions f in $H(\mathbb{D})$ satisfying that

$$\sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi} < \infty$$

The space H^p is call the Hardy space. Since $H^p \subset A^p$, we have the following.

Corollary 2.6. Let $\{\varphi_n\}_{n\geq 1}$ be a sequence in S. If

$$A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_n} \Big(\bigcup_{0$$

then $\varphi_k \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.

3. The QA space

In this section, we shall prove the following.

Theorem 3.1. Let $\{\varphi_n\}_{n\geq 1}$ be a sequence in S and let $\{u_n\}_{n\geq 1}$ be a sequence in $H(\mathbb{D})$. If

$$QA \subset \bigcup_{n=1}^{\infty} (M_{u_n} C_{\varphi_n})(H(\mathbb{D})),$$

then $\varphi_k \in \operatorname{Aut}(\mathbb{D})$ and $Z(u_k) = \emptyset$ for some $k \ge 1$.

Proof. The proof is a modification of the one of [5, Theorem 1.1]. We may assume that $u_n \neq 0$ for every $n \geq 1$. To prove the assertion, suppose that either $\varphi_k \notin \operatorname{Aut}(\mathbb{D})$ or $Z(u_k) \neq \emptyset$ for every $k \geq 1$. We shall show the existence of $F \in QA$ such that

$$F \notin \bigcup_{n=1}^{\infty} (M_{u_n} C_{\varphi_n})(H(\mathbb{D})).$$

Let \mathbb{N} be the set of positive integers,

$$\begin{split} \Sigma_1 &= \left\{ n \in \mathbb{N} : Z(u_n) \neq \emptyset \right\}, \\ \Sigma_2 &= \left\{ n \in \mathbb{N} : n \notin \Sigma_1, \varphi_n \text{ is constant} \right\}, \\ \Sigma_3 &= \left\{ n \in \mathbb{N} : n \notin \Sigma_1 \cup \Sigma_2, \varphi_n \text{ is not a finite Blaschke product} \right\}, \\ \text{and} \end{split}$$

 $\Sigma_4 = \{ n \in \mathbb{N} : n \notin \Sigma_1, \varphi_n \text{ is a finite Blaschke product} \}.$

Since $\varphi_n \notin \operatorname{Aut}(\mathbb{D})$ for every $n \geq 1$ with $n \notin \Sigma_1, \varphi_j \notin \operatorname{Aut}(\mathbb{D})$ for every $j \in \Sigma_2 \cup \Sigma_3 \cup \Sigma_4$. We note also that $\mathbb{N} = \bigcup_{i=1}^4 \Sigma_i$ and $\Sigma_i \cap \Sigma_\ell = \emptyset$ for $i \neq \ell$. For each $k \in \Sigma_1$, take $\zeta_k \in \mathbb{D}$ satisfying $u_k(\zeta_k) = 0$.

Associated with the set Σ_3 , we shall define a function in QA satisfying some additional conditions. First, suppose that $\Sigma_3 \neq \emptyset$. Let $j \in \Sigma_3$. Then there is a sequence $\{z_{j,n}\}_{n\geq 1}$ in \mathbb{D} such that $\{z_{j,n}\}_{n\geq 1} \cap \{\zeta_k\}_{k\in\Sigma_1} = \emptyset$, $|z_{j,n}| \to 1$ as $n \to \infty$ and $\varphi_j(z_{j,n}) \to \alpha_j$ as $n \to \infty$ for some $\alpha_j \in \mathbb{D}$. Since φ_j is non-constant, we may take $\{z_{j,n}\}_{n\geq 1}$ as $\varphi_j(z_{j,n}) \neq \varphi_j(z_{j,m})$ for every $n \neq m$. Considering a subsequence of $\{z_{j,n}\}_{n\geq 1}$, further we may assume that

$$\sum_{j\in\Sigma_3}\sum_{n=1}^{\infty}(1-|z_{j,n}|)<\infty.$$

Let b_{Σ_3} be the Blaschke product with zeros $\{z_{j,n} : j \in \Sigma_3, n \ge 1\}$, that is,

$$b_{\Sigma_3}(z) = \prod_{j \in \Sigma_3, 1 \le n < \infty} \frac{-\overline{z}_{j,n}}{|z_{j,n}|} \frac{z - z_{j,n}}{1 - \overline{z}_{j,n} z}, \quad z \in \mathbb{D}.$$

Then $b_{\Sigma_3}(\zeta_k) \neq 0$ for every $k \in \Sigma_1$. By the Wolff theorem [10], there is a function q_{Σ_3} in QA such that $b_{\Sigma_3}q_{\Sigma_3} \in QA$ and $|q_{\Sigma_3}| > 0$ on \mathbb{D} . When $\Sigma_3 = \emptyset$, we set $b_{\Sigma_3} = q_{\Sigma_3} = 1$.

Associated with the set Σ_4 , we shall define a function in QA satisfying some additional conditions. First, suppose that $\Sigma_4 \neq \emptyset$. Let $j \in \Sigma_4$. Note that $\varphi_j \notin \operatorname{Aut}(\mathbb{D})$. Since φ_j is a finite Blaschke product, there are $\gamma_j, \xi_j \in \mathbb{D}$ such that $\gamma_j \neq \xi_j$ and $\varphi_j(\gamma_j) = \varphi_j(\xi_j)$. Moreover, we may assume that $b_{\Sigma_3}(\xi_j) \neq 0$ and $\{\gamma_j, \xi_j : j \in \Sigma_4\}$ is a set of distinct points. Further, we may assume that $\{\gamma_j\}_{j\in\Sigma_4} \cap \{\zeta_k\}_{k\in\Sigma_1} = \emptyset$ and $\sum_{j\in\Sigma_4}(1-|\gamma_j|) < \infty$. Let b_{Σ_4} be the Blaschke product with zeros $\{\gamma_j\}_{j\in\Sigma_4}$. Then $b_{\Sigma_4}(\xi_j) \neq 0$ for every $j \in \Sigma_4$ and $b_{\Sigma_4}(\zeta_k) \neq 0$ for every $k \in \Sigma_1$. By the Wolff theorem [10] again, there is a function q_{Σ_4} in QA such that $b_{\Sigma_4}q_{\Sigma_4} \in QA$ and $|q_{\Sigma_4}| > 0$ on \mathbb{D} . When $\Sigma_4 = \emptyset$, we set $b_{\Sigma_4} = q_{\Sigma_4} = 1$.

We have

$$F := b_{\Sigma_3} q_{\Sigma_3} b_{\Sigma_4} q_{\Sigma_4} \in QA.$$

Note that $F \neq 0$,

$$Z(F) = Z(b_{\Sigma_3}) \cup Z(b_{\Sigma_4}) = \{z_{j,n} : j \in \Sigma_3, n \ge 1\} \cup \{\gamma_j\}_{j \in \Sigma_4}$$

and

$$Z(F) \cap \left(\{\zeta_k\}_{k \in \Sigma_1} \cup \{\xi_j\}_{j \in \Sigma_4}\right) = \emptyset.$$

To show that $F \notin \bigcup_{n=1}^{\infty} (M_{u_n} C_{\varphi_n})(H(\mathbb{D}))$, suppose that there is a non-zero function G in $H(\mathbb{D})$ such that

$$F = b_{\Sigma_3} q_{\Sigma_3} b_{\Sigma_4} q_{\Sigma_4} = u_j (G \circ \varphi_j)$$

for some $j \ge 1$. To lead a contradiction, we divide the proof into four cases.

Case 1. Suppose that $j \in \Sigma_1$. Since $u_j(\zeta_j) = 0$, we have

$$F(\zeta_j) = u_j(\zeta_j)(G \circ \varphi_j)(\zeta_j) = 0.$$

This contradicts $Z(F) \cap {\zeta_k}_{k \in \Sigma_1} = \emptyset$.

Case 2. Suppose that $j \in \Sigma_2$. Then $\varphi_j(z) \equiv a$ for some $a \in \mathbb{D}$. We have $F(z) = u_j(z)G(a)$. If G(a) = 0, then F = 0. This is a contradiction. Suppose that $G(a) \neq 0$. Since $Z(u_j) = \emptyset$, $Z(F) = \emptyset$. This is also a contradiction.

Case 3. Suppose that $j \in \Sigma_3$. Since $F(z_{j,n}) = 0$, we have

$$u_j(z_{j,n})G(\varphi_j(z_{j,n})) = 0$$

for every $n \geq 1$. Since $Z(u_j) = \emptyset$, $G(\varphi_j(z_{j,n})) = 0$ for $n \geq 1$. We have $z_{j,n} \to \alpha_j \in \mathbb{D}$ as $n \to \infty$ and $\varphi_j(z_{j,n}) \neq \varphi_j(z_{j,m})$ for every $n \neq m$. By the uniqueness theorem, we have G = 0. This is a contradiction.

Case 4. Suppose that $j \in \Sigma_4$. Since $F(\gamma_j) = 0$, we have

$$u_i(\gamma_i)G(\varphi_i(\gamma_i)) = 0.$$

Since $Z(u_j) = \emptyset$, $G(\varphi_j(\gamma_j)) = 0$. Since $\varphi_j(\gamma_j) = \varphi_j(\xi_j)$, we have $G(\varphi_j(\xi_j)) = 0$. This shows that $F(\xi_j) = 0$. But this contradicts $Z(F) \cap \{\xi_j\}_{j \in \Sigma_4} = \emptyset$. Therefore we get the assertion.

Remark 3.2. Let $\{\varphi_n\}_{n\geq 1}$ be a sequence in S and let $\{u_n\}_{n\geq 1}$ be in H^{∞} . It is known that $(M_{u_n}C_{\varphi_n})(H^2) \subset H^2$ for every $n\geq 1$. If

$$H^2 \subset \bigcup_{n=1}^{\infty} (M_{u_n} C_{\varphi_n})(H^2),$$

then $\varphi_k \in \operatorname{Aut}(\mathbb{D})$ and $Z(u_k) = \emptyset$ for some $k \ge 1$. For, we have

$$QA \subset H^2 \subset \bigcup_{n=1}^{\infty} (M_{u_n} C_{\varphi_n})(H(\mathbb{D})),$$

so applying Theorem 3.1 we have the assertion.

References

- C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- [2] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [3] H. Hedenmalm, B. Korenblum, and K. Zhu, *Theory of Bergman Spaces*, Springer, New York, 2000.
- [4] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, New Jersey, 1962.
- [5] K. J. Izuchi, K. H. Izuchi, and Y. Izuchi, Weighted composition operators whose ranges contain the disk algebra, Complex Var. Elliptic Equ. 60 (2015), no. 7, 938–944.
- [6] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286–299.
- [7] _____, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405.
- [8] J. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
- [9] C. Sundberg and T. Wolff, Interpolating sequences for QA_B, Trans. Amer. Math. Soc. 276 (1983), no. 2, 551–581.
- [10] T. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), no. 2, 321-328.

KEI JI IZUCHI DEPARTMENT OF MATHEMATICS NIIGATA UNIVERSITY NIIGATA 950-2181, JAPAN Email address: izuchi@math.sc.niigata-u.ac.jp

Kou Hei Izuchi Department of Mathematics Faculty of Education Yamaguchi University Yamaguchi 753-8511, Japan Email address: izuchi@yamaguchi-u.ac.jp Yuko Izuchi Asahidori 2-2-23, Yamaguchi 753-0051, Japan *Email address*: yfd10198@nifty.com

514