WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

Kei Ji Izuchi, Kou Hei Izuchi, and Yuko Izuchi

Abstract

Let $\left\{\varphi_{n}\right\}_{n \geq 1}$ be a sequence of analytic self-maps of \mathbb{D}. It is proved that if the union set of the ranges of the composition operators $C \varphi_{n}$ on the weighted Bergman spaces contains the disk algebra, then φ_{k} is an automorphism of \mathbb{D} for some $k \geq 1$.

1. introduction

Let \mathbb{D} be the open unit disk. We denote by $H(\mathbb{D})$ the space of all analytic functions on \mathbb{D}. We denote by \mathcal{S} the set of analytic self-maps of \mathbb{D}. For each $\varphi \in \mathcal{S}$ and $u \in H(\mathbb{D})$, we may defined the weighted composition operator $M_{u} C_{\varphi}$ on $H(\mathbb{D})$ by $\left(M_{u} C_{\varphi}\right) f=u(f \circ \varphi)$ for $f \in H(\mathbb{D})$. For a subset E of $H(\mathbb{D})$, write $\left(M_{u} C_{\varphi}\right)(E)=\left\{\left(M_{u} C_{\varphi}\right) f: f \in E\right\}$. There are a lot of studies of (weighted) composition operators on various space of analytic functions, see $[1,8]$.

We denote by $A(\overline{\mathbb{D}})$ the disk algebra, i.e., the space of functions in $H(\mathbb{D})$ which can be extended continuously on $\overline{\mathbb{D}}($ see $[4])$. Let Aut (\mathbb{D}) be the set of automorphisms of \mathbb{D}. For finitely many $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{\ell}$ in \mathcal{S} and $u_{1}, u_{2}, \ldots, u_{\ell}$ in $H(\mathbb{D})$, in the previous paper [5, Theorem 2.1] the authors proved that if $A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\ell}\left(M_{u_{n}} C_{\varphi_{n}}\right)(H(\mathbb{D}))$, then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ and $Z\left(u_{k}\right)=\emptyset$ for some $1 \leq k \leq \ell$, where $Z\left(u_{k}\right)$ denotes the zero set of u_{k} in \mathbb{D}. We have a conjecture that for sequences $\left\{\varphi_{n}\right\}_{n \geq 1}$ in \mathcal{S} and $\left\{u_{n}\right\}_{n \geq 1}$ in $H(\mathbb{D})$, if $A(\overline{\mathbb{D}}) \subset$ $\bigcup_{n=1}^{\infty}\left(M_{u_{n}} C_{\varphi_{n}}\right)(H(\mathbb{D}))$, then $\varphi_{k} \in$ Aut (\mathbb{D}) and $Z\left(u_{k}\right)=\emptyset$ for some $k \geq 1$. At this moment, we can not prove this. In this paper, we shall study the same type of problems.

For $0<p<\infty$, let A^{p}, the Bergman space, be the space of functions f in $H(\mathbb{D})$ satisfying that

$$
\int_{\mathbb{D}}|f(z)|^{p} d A(z)<\infty
$$

Received February 1, 2017; Revised May 14, 2017; Accepted June 8, 2017.
2010 Mathematics Subject Classification. Primary 47B33; Secondary 46J15, 30H50
Key words and phrases. composition operator, disk algebra, automorphism, weighted Bergman space, $Q A$ space.

The first author is partially supported by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science (No.15K04895).
where $d A$ is the normalized area measure on \mathbb{D}. It is well known that $C_{\varphi}\left(A^{p}\right)$ $\subset A^{p}$. In Section 2, applying the Baire category theorem we shall prove that if

$$
A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_{n}}\left(\bigcup_{0<p<\infty} A^{p}\right)
$$

then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.
Let H^{∞} be the space of bounded analytic functions on \mathbb{D}. We denote by $\partial \mathbb{D}$ the boundary of \mathbb{D}. For each $f \in H^{\infty}$, there exists $f^{*}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$ for almost all $e^{i \theta} \in \partial \mathbb{D}$. We identify f with f^{*}, so we may think of H^{∞} the closed subalgebra of $L^{\infty}(\partial \mathbb{D})$, the space of bounded measurable functions on $\partial \mathbb{D}$. It is well known that $H^{\infty}+C(\partial \mathbb{D})$ is a closed subalgebra of $L^{\infty}(\partial \mathbb{D})$, where $C(\partial \mathbb{D})$ is the space of continuous functions on $\partial \mathbb{D}([6])$. We write

$$
\overline{H^{\infty}+C(\partial \mathbb{D})}=\left\{\bar{f}: f \in H^{\infty}+C(\partial \mathbb{D})\right\} .
$$

Let

$$
Q A=H^{\infty} \cap \overline{H^{\infty}+C(\partial \mathbb{D})} .
$$

Then $Q A$ is the closed subalgebra of H^{∞} and $A(\overline{\mathbb{D}}) \subset Q A \subset H^{\infty}$. It is considered that $Q A$ is a fairly small and an interesting space in H^{∞} (see [2, 7, $9,10]$). In [5, Theorem 4.1], the authors pointed out that if

$$
H^{\infty} \subset \bigcup_{n=1}^{\infty}\left(M_{u_{n}} C_{\varphi_{n}}\right)(H(\mathbb{D}))
$$

then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ and $Z\left(u_{k}\right)=\emptyset$ for some $k \geq 1$. In Section 3, we shall show that the above result holds if we replace H^{∞} by $Q A$.

2. Weighted Bergman spaces

We study under more general setting. Let ω be a positive continuous function on \mathbb{D} satisfying that
(α)

$$
\omega(z) \rightarrow 0 \text { as }|z| \rightarrow 1
$$

For $f \in H(\mathbb{D})$, let denote

$$
\|f\|_{\omega}=\sup _{z \in \mathbb{\mathbb { D }}} \omega(z)|f(z)| .
$$

Write

$$
H(\omega)=\left\{f \in H(\mathbb{D}):\|f\|_{\omega}<\infty\right\} .
$$

Then $H(\omega)$ is a Banach space with the norm $\|\cdot\|_{\omega}$ and $A(\overline{\mathbb{D}}) \subset H(\omega)$. For each positive integer m, let

$$
H_{m}(\omega)=\left\{f \in H(\omega):\|f\|_{\omega} \leq m\right\}
$$

We have $H(\omega)=\bigcup_{m=1}^{\infty} H_{m}(\omega)$.
Lemma 2.1. $C_{\varphi}\left(H_{m}(\omega)\right) \cap A(\overline{\mathbb{D}})$ is closed in $A(\overline{\mathbb{D}})$.

Proof. Let $\left\{f_{j}\right\}_{j \geq 1}$ be a sequence in $C_{\varphi}\left(H_{m}(\omega)\right) \cap A(\overline{\mathbb{D}})$ such that $f_{j} \rightarrow f_{0}$ in $A(\overline{\mathbb{D}})$ as $j \rightarrow \infty$. For each $j \geq 1$, there is $g_{j} \in H_{m}(\omega)$ such that $f_{j}=g_{j} \circ \varphi$. Since $\omega(z)\left|g_{j}(z)\right| \leq m$ on \mathbb{D} for every $j \geq 1$, by the normal family argument we may assume that $g_{j} \rightarrow g_{0} \in H(\mathbb{D})$ uniformly on any compact subset of \mathbb{D} as $j \rightarrow \infty$. Then we have $g_{0} \in H_{m}(\omega)$ and $f_{0}=g_{0} \circ \varphi$, so $f_{0} \in C_{\varphi}\left(H_{m}(\omega)\right) \cap A(\overline{\mathbb{D}})$. Thus we get the assertion.

Since $C_{\varphi}(H(\omega)) \cap A(\overline{\mathbb{D}})$ is a subspace of $A(\overline{\mathbb{D}})$ and $H(\omega)=\bigcup_{m \geq 1}^{\infty} H_{m}(\omega)$, we have the following.

Lemma 2.2. If $C_{\varphi}\left(H_{m}(\omega)\right) \cap A(\overline{\mathbb{D}})$ contains a non-void open subset of $A(\overline{\mathbb{D}})$, then $A(\overline{\mathbb{D}}) \subset C_{\varphi}(H(\omega))$.

Proof. Take a non-void open subset U of $A(\overline{\mathbb{D}})$ satisfying

$$
U \subset C_{\varphi}\left(H_{m}(\omega)\right) \cap A(\overline{\mathbb{D}})
$$

Fix $f_{0} \in U$. There is $g_{0} \in H_{m}(\omega)$ such that $f_{0}=g_{0} \circ \varphi$. Take $f \in A(\overline{\mathbb{D}})$ arbitrary. We have

$$
f_{0}+\varepsilon f \in U \subset C_{\varphi}\left(H_{m}(\omega)\right) \cap A(\overline{\mathbb{D}})
$$

for some $\varepsilon>0$. Then there is $h \in H_{m}(\omega)$ such that $f_{0}+\varepsilon f=h \circ \varphi$. Since $\left(h-g_{0}\right) / \varepsilon \in H(\omega)$, we have

$$
f=\frac{\left(h-g_{0}\right) \circ \varphi}{\varepsilon} \in C_{\varphi}(H(\omega)) .
$$

Thus we get the assertion.
By [5, Theorem 1.1], we have the following.
Lemma 2.3. If $A(\overline{\mathbb{D}}) \subset C_{\varphi}(H(\omega))$, then $\varphi \in \operatorname{Aut}(\mathbb{D})$.
Theorem 2.4. Let $\left\{\varphi_{n}\right\}_{n \geq 1}$ be a sequence in \mathcal{S} and $\left\{\omega_{\ell}\right\}_{\ell \geq 1}$ be a sequence of positive continuous functions on \mathbb{D} satisfying condition (α). If

$$
A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_{n}}\left(\bigcup_{\ell=1}^{\infty} H\left(\omega_{\ell}\right)\right)
$$

then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.
Proof. We may assume that φ_{n} is non-constant for every $n \geq 1$. We have

$$
\bigcup_{\ell=1}^{\infty} H\left(\omega_{\ell}\right)=\bigcup_{\ell, m=1}^{\infty} H_{m}\left(\omega_{\ell}\right)
$$

By the assumption,

$$
A(\overline{\mathbb{D}})=\bigcup_{n, \ell, m=1}^{\infty} C_{\varphi_{n}}\left(H_{m}\left(\omega_{\ell}\right)\right) \cap A(\overline{\mathbb{D}}) .
$$

By Lemma 2.1, $C_{\varphi_{n}}\left(H_{m}\left(\omega_{\ell}\right)\right) \cap A(\overline{\mathbb{D}})$ is closed in $A(\overline{\mathbb{D}})$ for every $n, \ell, m \geq 1$. By the Baire category theorem, $C_{\varphi_{n}}\left(H_{m}\left(\omega_{\ell}\right)\right) \cap A(\overline{\mathbb{D}})$ contains a non-void open subset of $A(\overline{\mathbb{D}})$ for some n, ℓ and m. By Lemma $2.2, A(\overline{\mathbb{D}}) \subset C_{\varphi_{n}}\left(H\left(\omega_{\ell}\right)\right)$. By Lemma 2.3, we have $\varphi_{n} \in \operatorname{Aut}(\mathbb{D})$.

For $0<p<\infty$ and $-1<\alpha<\infty$, the weighted Bergman space A_{α}^{p} is the space of $f \in H(\mathbb{D})$ satisfying that

$$
\|f\|_{p, \alpha}:=\left(\int_{\mathbb{D}}|f(z)|^{p} d A_{\alpha}(z)\right)^{1 / p}
$$

where

$$
d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)
$$

(see [3, p. 2]). We have $A_{0}^{p}=A^{p}$,

$$
A_{\alpha_{1}}^{p} \subset A_{\alpha_{2}}^{p} \quad \text { if }-1<\alpha_{1}<\alpha_{2}<\infty
$$

and

$$
A_{\alpha}^{p_{1}} \supset A_{\alpha}^{p_{2}} \quad \text { if } 0<p_{1}<p_{2}<\infty
$$

Then

$$
\bigcup_{0<p<\infty} A_{\alpha}^{p}=\bigcup_{\ell=1}^{\infty} A_{\alpha}^{1 / \ell} \quad \text { and } \quad \bigcup_{-1<\alpha<\infty} A_{\alpha}^{p}=\bigcup_{k=1}^{\infty} A_{k}^{p} .
$$

Hence

$$
\bigcup_{0<p<\infty,-1<\alpha<\infty} A_{\alpha}^{p}=\bigcup_{\ell, k=1}^{\infty} A_{k}^{1 / \ell}
$$

For $f \in A_{\alpha}^{p}$, we have

$$
\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\frac{2+\alpha}{p}}|f(z)| \leq\|f\|_{p, \alpha}<\infty
$$

(see [3, p. 53]). Set $\omega_{p, \alpha}(z)=\left(1-|z|^{2}\right)^{(2+\alpha) / p}$. Then $A_{\alpha}^{p} \subset H\left(\omega_{p, \alpha}\right)$ and

$$
\bigcup_{0<p<\infty,-1<\alpha<\infty} A_{\alpha}^{p} \subset \bigcup_{\ell, k=1}^{\infty} H\left(\omega_{1 / \ell, k}\right)
$$

So by Theorem 2.4, we have the following.
Corollary 2.5. Let $\left\{\varphi_{n}\right\}_{n \geq 1}$ be a sequence in \mathcal{S}. If

$$
A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_{n}}\left(\bigcup_{0<p<\infty,-1<\alpha<\infty} A_{\alpha}^{p}\right)
$$

then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.
For $0<p<\infty$, let H^{p} be the space of functions f in $H(\mathbb{D})$ satisfying that

$$
\sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}<\infty
$$

The space H^{p} is call the Hardy space. Since $H^{p} \subset A^{p}$, we have the following.

Corollary 2.6. Let $\left\{\varphi_{n}\right\}_{n \geq 1}$ be a sequence in \mathcal{S}. If

$$
A(\overline{\mathbb{D}}) \subset \bigcup_{n=1}^{\infty} C_{\varphi_{n}}\left(\bigcup_{0<p<\infty} H^{p}\right)
$$

then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ for some $k \geq 1$.

3. The $Q A$ space

In this section, we shall prove the following.
Theorem 3.1. Let $\left\{\varphi_{n}\right\}_{n \geq 1}$ be a sequence in \mathcal{S} and let $\left\{u_{n}\right\}_{n \geq 1}$ be a sequence in $H(\mathbb{D})$. If

$$
Q A \subset \bigcup_{n=1}^{\infty}\left(M_{u_{n}} C_{\varphi_{n}}\right)(H(\mathbb{D}))
$$

then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ and $Z\left(u_{k}\right)=\emptyset$ for some $k \geq 1$.
Proof. The proof is a modification of the one of [5, Theorem 1.1]. We may assume that $u_{n} \neq 0$ for every $n \geq 1$. To prove the assertion, suppose that either $\varphi_{k} \notin \operatorname{Aut}(\mathbb{D})$ or $Z\left(u_{k}\right) \neq \emptyset$ for every $k \geq 1$. We shall show the existence of $F \in Q A$ such that

$$
F \notin \bigcup_{n=1}^{\infty}\left(M_{u_{n}} C_{\varphi_{n}}\right)(H(\mathbb{D}))
$$

Let \mathbb{N} be the set of positive integers,

$$
\begin{aligned}
& \Sigma_{1}=\left\{n \in \mathbb{N}: Z\left(u_{n}\right) \neq \emptyset\right\} \\
& \Sigma_{2}=\left\{n \in \mathbb{N}: n \notin \Sigma_{1}, \varphi_{n} \text { is constant }\right\} \\
& \Sigma_{3}=\left\{n \in \mathbb{N}: n \notin \Sigma_{1} \cup \Sigma_{2}, \varphi_{n} \text { is not a finite Blaschke product }\right\}
\end{aligned}
$$

and

$$
\Sigma_{4}=\left\{n \in \mathbb{N}: n \notin \Sigma_{1}, \varphi_{n} \text { is a finite Blaschke product }\right\} .
$$

Since $\varphi_{n} \notin \operatorname{Aut}(\mathbb{D})$ for every $n \geq 1$ with $n \notin \Sigma_{1}, \varphi_{j} \notin \operatorname{Aut}(\mathbb{D})$ for every $j \in \Sigma_{2} \cup \Sigma_{3} \cup \Sigma_{4}$. We note also that $\mathbb{N}=\bigcup_{i=1}^{4} \Sigma_{i}$ and $\Sigma_{i} \cap \Sigma_{\ell}=\emptyset$ for $i \neq \ell$. For each $k \in \Sigma_{1}$, take $\zeta_{k} \in \mathbb{D}$ satisfying $u_{k}\left(\zeta_{k}\right)=0$.

Associated with the set Σ_{3}, we shall define a function in $Q A$ satisfying some additional conditions. First, suppose that $\Sigma_{3} \neq \emptyset$. Let $j \in \Sigma_{3}$. Then there is a sequence $\left\{z_{j, n}\right\}_{n \geq 1}$ in \mathbb{D} such that $\left\{z_{j, n}\right\}_{n \geq 1} \cap\left\{\zeta_{k}\right\}_{k \in \Sigma_{1}}=\emptyset,\left|z_{j, n}\right| \rightarrow 1$ as $n \rightarrow \infty$ and $\varphi_{j}\left(z_{j, n}\right) \rightarrow \alpha_{j}$ as $n \rightarrow \infty$ for some $\alpha_{j} \in \mathbb{D}$. Since φ_{j} is non-constant, we may take $\left\{z_{j, n}\right\}_{n \geq 1}$ as $\varphi_{j}\left(z_{j, n}\right) \neq \varphi_{j}\left(z_{j, m}\right)$ for every $n \neq m$. Considering a subsequence of $\left\{z_{j, n}\right\}_{n \geq 1}$, further we may assume that

$$
\sum_{j \in \Sigma_{3}} \sum_{n=1}^{\infty}\left(1-\left|z_{j, n}\right|\right)<\infty
$$

Let $b_{\Sigma_{3}}$ be the Blaschke product with zeros $\left\{z_{j, n}: j \in \Sigma_{3}, n \geq 1\right\}$, that is,

$$
b_{\Sigma_{3}}(z)=\prod_{j \in \Sigma_{3}, 1 \leq n<\infty} \frac{-\bar{z}_{j, n}}{\left|z_{j, n}\right|} \frac{z-z_{j, n}}{1-\bar{z}_{j, n} z}, \quad z \in \mathbb{D} .
$$

Then $b_{\Sigma_{3}}\left(\zeta_{k}\right) \neq 0$ for every $k \in \Sigma_{1}$. By the Wolff theorem [10], there is a function $q_{\Sigma_{3}}$ in $Q A$ such that $b_{\Sigma_{3}} q_{\Sigma_{3}} \in Q A$ and $\left|q_{\Sigma_{3}}\right|>0$ on \mathbb{D}. When $\Sigma_{3}=\emptyset$, we set $b_{\Sigma_{3}}=q_{\Sigma_{3}}=1$.

Associated with the set Σ_{4}, we shall define a function in $Q A$ satisfying some additional conditions. First, suppose that $\Sigma_{4} \neq \emptyset$. Let $j \in \Sigma_{4}$. Note that $\varphi_{j} \notin \operatorname{Aut}(\mathbb{D})$. Since φ_{j} is a finite Blaschke product, there are $\gamma_{j}, \xi_{j} \in \mathbb{D}$ such that $\gamma_{j} \neq \xi_{j}$ and $\varphi_{j}\left(\gamma_{j}\right)=\varphi_{j}\left(\xi_{j}\right)$. Moreover, we may assume that $b_{\Sigma_{3}}\left(\xi_{j}\right) \neq 0$ and $\left\{\gamma_{j}, \xi_{j}: j \in \Sigma_{4}\right\}$ is a set of distinct points. Further, we may assume that $\left\{\gamma_{j}\right\}_{j \in \Sigma_{4}} \cap\left\{\zeta_{k}\right\}_{k \in \Sigma_{1}}=\emptyset$ and $\sum_{j \in \Sigma_{4}}\left(1-\left|\gamma_{j}\right|\right)<\infty$. Let $b_{\Sigma_{4}}$ be the Blaschke product with zeros $\left\{\gamma_{j}\right\}_{j \in \Sigma_{4}}$. Then $b_{\Sigma_{4}}\left(\xi_{j}\right) \neq 0$ for every $j \in \Sigma_{4}$ and $b_{\Sigma_{4}}\left(\zeta_{k}\right) \neq 0$ for every $k \in \Sigma_{1}$. By the Wolff theorem [10] again, there is a function $q_{\Sigma_{4}}$ in $Q A$ such that $b_{\Sigma_{4}} q_{\Sigma_{4}} \in Q A$ and $\left|q_{\Sigma_{4}}\right|>0$ on \mathbb{D}. When $\Sigma_{4}=\emptyset$, we set $b_{\Sigma_{4}}=q_{\Sigma_{4}}=1$.

We have

$$
F:=b_{\Sigma_{3}} q_{\Sigma_{3}} b_{\Sigma_{4}} q_{\Sigma_{4}} \in Q A
$$

Note that $F \neq 0$,

$$
Z(F)=Z\left(b_{\Sigma_{3}}\right) \cup Z\left(b_{\Sigma_{4}}\right)=\left\{z_{j, n}: j \in \Sigma_{3}, n \geq 1\right\} \cup\left\{\gamma_{j}\right\}_{j \in \Sigma_{4}}
$$

and

$$
Z(F) \cap\left(\left\{\zeta_{k}\right\}_{k \in \Sigma_{1}} \cup\left\{\xi_{j}\right\}_{j \in \Sigma_{4}}\right)=\emptyset
$$

To show that $F \notin \bigcup_{n=1}^{\infty}\left(M_{u_{n}} C_{\varphi_{n}}\right)(H(\mathbb{D}))$, suppose that there is a non-zero function G in $H(\mathbb{D})$ such that

$$
F=b_{\Sigma_{3}} q_{\Sigma_{3}} b_{\Sigma_{4}} q_{\Sigma_{4}}=u_{j}\left(G \circ \varphi_{j}\right)
$$

for some $j \geq 1$. To lead a contradiction, we divide the proof into four cases.
Case 1. Suppose that $j \in \Sigma_{1}$. Since $u_{j}\left(\zeta_{j}\right)=0$, we have

$$
F\left(\zeta_{j}\right)=u_{j}\left(\zeta_{j}\right)\left(G \circ \varphi_{j}\right)\left(\zeta_{j}\right)=0
$$

This contradicts $Z(F) \cap\left\{\zeta_{k}\right\}_{k \in \Sigma_{1}}=\emptyset$.
Case 2. Suppose that $j \in \Sigma_{2}$. Then $\varphi_{j}(z) \equiv a$ for some $a \in \mathbb{D}$. We have $F(z)=u_{j}(z) G(a)$. If $G(a)=0$, then $F=0$. This is a contradiction. Suppose that $G(a) \neq 0$. Since $Z\left(u_{j}\right)=\emptyset, Z(F)=\emptyset$. This is also a contradiction.

Case 3. Suppose that $j \in \Sigma_{3}$. Since $F\left(z_{j, n}\right)=0$, we have

$$
u_{j}\left(z_{j, n}\right) G\left(\varphi_{j}\left(z_{j, n}\right)\right)=0
$$

for every $n \geq 1$. Since $Z\left(u_{j}\right)=\emptyset, G\left(\varphi_{j}\left(z_{j, n}\right)\right)=0$ for $n \geq 1$. We have $z_{j, n} \rightarrow \alpha_{j} \in \mathbb{D}$ as $n \rightarrow \infty$ and $\varphi_{j}\left(z_{j, n}\right) \neq \varphi_{j}\left(z_{j, m}\right)$ for every $n \neq m$. By the uniqueness theorem, we have $G=0$. This is a contradiction.

Case 4. Suppose that $j \in \Sigma_{4}$. Since $F\left(\gamma_{j}\right)=0$, we have

$$
u_{j}\left(\gamma_{j}\right) G\left(\varphi_{j}\left(\gamma_{j}\right)\right)=0
$$

Since $Z\left(u_{j}\right)=\emptyset, G\left(\varphi_{j}\left(\gamma_{j}\right)\right)=0$. Since $\varphi_{j}\left(\gamma_{j}\right)=\varphi_{j}\left(\xi_{j}\right)$, we have $G\left(\varphi_{j}\left(\xi_{j}\right)\right)=$ 0 . This shows that $F\left(\xi_{j}\right)=0$. But this contradicts $Z(F) \cap\left\{\xi_{j}\right\}_{j \in \Sigma_{4}}=\emptyset$. Therefore we get the assertion.

Remark 3.2. Let $\left\{\varphi_{n}\right\}_{n \geq 1}$ be a sequence in \mathcal{S} and let $\left\{u_{n}\right\}_{n \geq 1}$ be in H^{∞}. It is known that $\left(M_{u_{n}} C_{\varphi_{n}}\right)\left(H^{2}\right) \subset H^{2}$ for every $n \geq 1$. If

$$
H^{2} \subset \bigcup_{n=1}^{\infty}\left(M_{u_{n}} C_{\varphi_{n}}\right)\left(H^{2}\right)
$$

then $\varphi_{k} \in \operatorname{Aut}(\mathbb{D})$ and $Z\left(u_{k}\right)=\emptyset$ for some $k \geq 1$. For, we have

$$
Q A \subset H^{2} \subset \bigcup_{n=1}^{\infty}\left(M_{u_{n}} C_{\varphi_{n}}\right)(H(\mathbb{D}))
$$

so applying Theorem 3.1 we have the assertion.

References

[1] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[2] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[3] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.
[4] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, New Jersey, 1962.
[5] K. J. Izuchi, K. H. Izuchi, and Y. Izuchi, Weighted composition operators whose ranges contain the disk algebra, Complex Var. Elliptic Equ. 60 (2015), no. 7, 938-944.
[6] D. Sarason, Algebras of functions on the unit circle, Bull. Amer. Math. Soc. 79 (1973), 286-299.
[7] , Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405.
[8] J. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
[9] C. Sundberg and T. Wolff, Interpolating sequences for $Q A_{B}$, Trans. Amer. Math. Soc. 276 (1983), no. 2, 551-581.
[10] T. Wolff, Two algebras of bounded functions, Duke Math. J. 49 (1982), no. 2, 321-328.
Kei Ji Izuchi
Department of Mathematics
Niigata University
Nilgata 950-2181, Japan
Email address: izuchi@math.sc.niigata-u.ac.jp
Kou Hei Izuchi
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753-8511, Japan
Email address: izuchi@yamaguchi-u.ac.jp

Yuko Izuchi
Asahidori 2-2-23, Yamaguchi 753-0051, Japan
Email address: yfd10198@nifty.com

