• Title/Summary/Keyword: W-let

Search Result 169, Processing Time 0.026 seconds

*-NOETHERIAN DOMAINS AND THE RING D[X]N*, II

  • Chang, Gyu-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.49-61
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be a nonempty set of indeterminates over D, * be a star operation on D, $N_*$={f $\in$ D[X]|c(f)$^*$= D}, $*_w$ be the star operation on D defined by $I^{*_w}$ = ID[X]${_N}_*$ $\cap$ K, and [*] be the star operation on D[X] canonically associated to * as in Theorem 2.1. Let $A^g$ (resp., $A^{[*]g}$, $A^{[*]g}$) be the global (resp.,*-global, [*]-global) transform of a ring A. We show that D is a $*_w$-Noetherian domain if and only if D[X] is a [*]-Noetherian domain. We prove that $D^{*g}$[X]${_N}_*$ = (D[X]${_N}_*$)$^g$ = (D[X])$^{[*]g}$; hence if D is a $*_w$-Noetherian domain, then each ring between D[X]${_N}_*$ and $D^{*g}$[X]${_N}_*$ is a Noetherian domain. Let $\tilde{D}$ = $\cap${$D_P$|P $\in$ $*_w$-Max(D) and htP $\geq$2}. We show that $D\;\subseteq\;\tilde{D}\;\subseteq\;D^{*g}$ and study some properties of $\tilde{D}$ and $D^{*g}$.

THE DIMENSION OF THE SPACE OF STABLE MAPS TO THE RELATIVE LAGRANGIAN GRASSMANNIAN OVER A CURVE

  • Daewoong Cheong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Let C be a smooth projective curve and W a symplectic bundle over C of degree w. Let π : 𝕃𝔾(W) → C be the relative Lagrangian Grassmannian over C and Sd(W) be the space of Lagrangian subbundles of degree w -d. Then Kontsevich's space ${\bar{\mathcal{M}}}_g$(𝕃𝔾(W), βd) of stable maps to 𝕃𝔾(W) is a compactification of Sd(W). In this article, we give an upper bound on the dimension of ${\bar{\mathcal{M}}}_g$(𝕃𝔾(W), βd), which is an analogue of a result in [8] for the relative Lagrangian Grassmannian.

MORPHISMS OF VARIETIES OVER AMPLE FIELDS

  • Bary-Soroker, Lior;Geyer, Wulf-Dieter;Jarden, Moshe
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1023-1035
    • /
    • 2018
  • We strengthen a result of Michiel Kosters by proving the following theorems: (*) Let ${\phi}:W{\rightarrow}V$ be a finite surjective morphism of algebraic varieties over an ample field K. Suppose V has a simple K-rational point a such that $a{\not\in}{\phi}(W(K_{ins}))$. Then, card($V(K){\backslash}{\phi}(W(K))$ = card(K). (**) Let K be an infinite field of positive characteristic and let $f{\in}K[X]$ be a non-constant monic polynomial. Suppose all zeros of f in $\tilde{K}$ belong to $K_{ins}{\backslash}K$. Then, card(K \ f(K)) = card(K).

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

A NOTE ON THE MIXED VAN DER WAERDEN NUMBER

  • Sim, Kai An;Tan, Ta Sheng;Wong, Kok Bin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1341-1354
    • /
    • 2021
  • Let r ≥ 2, and let ki ≥ 2 for 1 ≤ i ≤ r. Mixed van der Waerden's theorem states that there exists a least positive integer w = w(k1, k2, k3, …, kr; r) such that for any n ≥ w, every r-colouring of [1, n] admits a ki-term arithmetic progression with colour i for some i ∈ [1, r]. For k ≥ 3 and r ≥ 2, the mixed van der Waerden number w(k, 2, 2, …, 2; r) is denoted by w2(k; r). B. Landman and A. Robertson [9] showed that for k < r < $\frac{3}{2}$(k - 1) and r ≥ 2k + 2, the inequality w2(k; r) ≤ r(k - 1) holds. In this note, we establish some results on w2(k; r) for 2 ≤ r ≤ k.

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.

Extreme Positive Operators from 2 × 2 to 3 × 3 Hermitian Matrices

  • Moon, Byung Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.11-38
    • /
    • 1991
  • Let $E_n$ be the real ordered space of all $n{\times}n$ Hermitian Matrices and let T be a positive linear operator from $E_2$ to $E_3$. We prove in this paper that T is extreme if and only if T is unitarily equivalent to a map of the form $S_z$ for some $z{\in}C^2$ where $S_z$ is defined by $S_z(xx^*)=ww^*$, $w_i=x_iz_i$ for i = 1, 2 and $w_3=0$.

  • PDF

ORBITAL SHADOWING PROPERTY

  • Honary, Bahman;Bahabadi, Alireza Zamani
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.645-650
    • /
    • 2008
  • Let M be a generalized homogeneous compact space, and let Z(M) denotes the space of homeomorphisms of M with the $C^0$ topology. In this paper, we show that if the interior of the set of weak stable homeomorphisms on M is not empty then for any open subset W of Z(M) containing only weak stable homeomorphisms the orbital shadowing property is generic in W.

SEMI-CUBICALLY HYPONORMAL WEIGHTED SHIFTS WITH STAMPFLI'S SUBNORMAL COMPLETION

  • Baek, Seunghwan;Lee, Mi Ryeong
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.477-486
    • /
    • 2019
  • Let ${\alpha}:1,(1,{\sqrt{x}},{\sqrt{y}})^{\wedge}$ be a weight sequence with Stampfli's subnormal completion and let $W_{\alpha}$ be its associated weighted shift. In this paper we discuss some properties of the region ${\mathcal{U}}:=\{(x,y):W_{\alpha}$ is semi-cubically hyponormal} and describe the shape of the boundary of ${\mathcal{U}}$. In particular, we improve the results of [19, Theorem 4.2].

On Semi-cubically Hyponormal Weighted Shifts with First Two Equal Weights

  • Baek, Seunghwan;Jung, Il Bong;Exner, George R.;Li, Chunji
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.899-910
    • /
    • 2016
  • It is known that a semi-cubically hyponormal weighted shift need not satisfy the flatness property, in which equality of two weights forces all or almost all weights to be equal. So it is a natural question to describe all semi-cubically hyponormal weighted shifts $W_{\alpha}$ with first two weights equal. Let ${\alpha}$ : 1, 1, ${\sqrt{x}}$(${\sqrt{u}}$, ${\sqrt{v}}$, ${\sqrt{w}}$)^ be a backward 3-step extension of a recursively generated weight sequence with 1 < x < u < v < w and let $W_{\alpha}$ be the associated weighted shift. In this paper we characterize completely the semi-cubical hyponormal $W_{\alpha}$ satisfying the additional assumption of the positive determinant coefficient property, which result is parallel to results for quadratic hyponormality.