Browse > Article
http://dx.doi.org/10.4134/BKMS.b200718

A NOTE ON THE MIXED VAN DER WAERDEN NUMBER  

Sim, Kai An (School of Mathematical Sciences Sunway University)
Tan, Ta Sheng (Institute of Mathematical Sciences Universiti Malaya)
Wong, Kok Bin (Institute of Mathematical Sciences Universiti Malaya)
Publication Information
Bulletin of the Korean Mathematical Society / v.58, no.6, 2021 , pp. 1341-1354 More about this Journal
Abstract
Let r ≥ 2, and let ki ≥ 2 for 1 ≤ i ≤ r. Mixed van der Waerden's theorem states that there exists a least positive integer w = w(k1, k2, k3, …, kr; r) such that for any n ≥ w, every r-colouring of [1, n] admits a ki-term arithmetic progression with colour i for some i ∈ [1, r]. For k ≥ 3 and r ≥ 2, the mixed van der Waerden number w(k, 2, 2, …, 2; r) is denoted by w2(k; r). B. Landman and A. Robertson [9] showed that for k < r < $\frac{3}{2}$(k - 1) and r ≥ 2k + 2, the inequality w2(k; r) ≤ r(k - 1) holds. In this note, we establish some results on w2(k; r) for 2 ≤ r ≤ k.
Keywords
Mixed van der Waerden number; Ramsey theory on the integers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. M. Landman and A. Robertson, Ramsey theory on the integers, second edition, Student Mathematical Library, 73, American Mathematical Society, Providence, RI, 2014. https://doi.org/10.1090/stml/073
2 A. Khodkar and B. Landman, Recent progress in Ramsey theory on the integers, in Combinatorial number theory, 305-313, de Gruyter, Berlin, 2007.
3 M. Kouril, Computing the van der Waerden number W(3, 4) = 293, Integers 12 (2012), Paper No. A46, 13 pp. https://doi.org/10.1093/lpr/mgs012
4 T. Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers 9 (2009), A6, 65-76. https://doi.org/10.1515/INTEG.2009.007   DOI
5 T. Ahmed, On computation of exact van der Waerden numbers, Integers 12 (2012), no. 3, 417-425. https://doi.org/10.1515/integ.2011.112   DOI
6 T. Ahmed, Some more van der Waerden numbers, J. Integer Seq. 16 (2013), no. 4, Art. 13.4.4, 9 pp.
7 T. Ahmed, O. Kullmann, and H. Snevily, On the van der Waerden numbers w(2; 3, t), Disc. Appl. Math. 174 (2014), 27-51.   DOI
8 T. Ahmed, Two new van der Waerden numbers: w(2; 3, 17) and w(2; 3, 18), Integers 10 (2010), 369-377.   DOI
9 M. Kouril and J. L. Paul, The van der Waerden number W(2, 6) is 1132, Experiment. Math. 17 (2008), no. 1, 53-61. http://projecteuclid.org/euclid.em/1227031896   DOI