ORBITAL SHADOWING PROPERTY

BAHMAN HONARY AND ALIREZA ZAMANI BAHABADI

ABSTRACT. Let M be a generalized homogeneous compact space, and let Z(M) denotes the space of homeomorphisms of M with the C^0 topology. In this paper, we show that if the interior of the set of weak stable homeomorphisms on M is not empty then for any open subset W of Z(M) containing only weak stable homeomorphisms the orbital shadowing property is generic in W.

1. Introduction

The concept of shadowing is investigated by many authors (see e.g. [2, 4, 8]). In [3] Corless and Pilyugin proved that weak shadowing is a C^0 generic property for discrete dynamical systems of a compact smooth manifold M. Subsequently, Pilyugin and Plamenevskaya [9] improved this result by showing C^0 genericity of the shadowing property. Both proofs given in [3] and [9] required that M be a C^{∞} smooth manifold. Mazur in [7] showed that for C^0 genericity of weak shadowing neither the differential structure on M, nor even being a manifold is a crucial assumption, but what matters is a generalized version of a topological property called homogeneity. Koscielniak and Mazur in [5] have given a proof for C^0 genericity of periodic orbital shadowing on a compact topological manifold of dimension at least 2. In this note we show that if the space M is generalized homogeneous and has no isolated points, then in an open subset of Z(M) the orbital shadowing property is generic.

2. Notations

Let (M, d) be a compact metric space and let $f : M \to M$ be a homeomorphism (a discrete dynamical system on M). A sequence $\{x_n\}_{n \in \mathbb{Z}}$ is called an orbit of f, denote by o(x, f), if for each $n \in \mathbb{Z}$, $x_{n+1} = f(x_n)$ and we call it a δ -pseudo-orbit of f if,

$$d(f(x_n), x_{n+1}) \le \delta, \ \forall n \in \mathbb{Z}.$$

The homeomorphism f is said to have the weak shadowing property if for each $\epsilon > 0$ there exists $\delta > 0$ such that for any δ -pseudo-orbit $\{x_n\}_{n \in \mathbb{Z}}$ of f we

O2008 The Korean Mathematical Society

Received June 24, 2007; Revised August 22, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H20; Secondary 54F99.

Key words and phrases. orbital shadowing property, $\delta\text{-}\textsc{pseudo-orbit},$ shadowing property.

can find a point $y \in M$ such that $\{x_n\}_{n \in \mathbb{Z}} \subset N_{\epsilon}(o(y, f))$, where $N_{\epsilon}(S)$ is the ϵ -neighborhood of the set $S \subset M$.

A system f is said to have the orbital shadowing property if for each $\epsilon > 0$ there exists $\delta > 0$ such that for any δ -pseudo-orbit $\{x_n\}_{n \in \mathbb{Z}}$ of f we can find a point $y \in M$ with the property that $\{x_n\}_{n \in \mathbb{Z}} \subset N_{\epsilon}(o(y, f))$ and $o(y, f) \subset N_{\epsilon}(\{x_n\}_{n \in \mathbb{Z}})$. We denoted the set of all homeomorphisms of M by Z(M). Introduce in Z(M) the complete metric

$$d_0(f,g) = \max\{\max_{x \in M} d(f(x),g(x)), \max_{x \in M} d(f^{-1}(x),g^{-1}(x))\},\$$

which generates the C^0 topology.

The space M is said to be generalized homogeneous if for every $\epsilon > 0$ there exists $\delta > 0$ such that if $\{x_1, \ldots, x_n\}, \{y_1, \ldots, y_n\} \subset M$ is a pair of sets of mutually disjoint elements satisfying $d(x_i, y_i) \leq \delta$, $i \in \{1, \ldots, n\}$, then there exists $h \in Z(M)$ satisfying $d_0(h, id_M) \leq \epsilon$ and $h(x_i) = y_i, i \in \{1, \ldots, n\}$. Such a δ is called an ϵ -modulus of homogeneity of M. We say that $x \in M$ is a weak stable point for f if for any $\epsilon > 0$ there is $\delta > 0$ and positive integer N such that $o(z, f) \subset N_{\epsilon}(\{f^i(z) : i = -N, \ldots, N\})$ for every $z \in M$ with $d(x, z) < \delta$. We say that f is weak stable if every point of M is a weak stable point for f.

A property P is said to be generic for elements of a topological space M if the set of all $x \in M$ satisfying P is residual, i.e., it includes a countable intersection of open and dense subsets of M.

3. Results

Proposition 1. Let f be a homeomorphism on a compact metric space M. Then the set of weak stable points is residual in M.

Proof. Fix an $\epsilon > 0$. Let $U = \{U_i : i = 1, ..., k\}$ be a finite covering of M by open sets with diameter less than $\frac{\epsilon}{2}$. Put $K = \{1, 2, ..., k\}$. For each $x \in M$, choose a subset L_x of K satisfying the following conditions:

$$o(x, f) \subset \bigcup \{ U_i : i \in L_x \}$$
$$o(x, f) \cap U_i \neq \phi \text{ for all } i \in L_x.$$

Let A_{ϵ} be the set of all $x \in M$ such that there is δ_x and positive integer N_x such that $o(z, f) \subset N_{\epsilon}(\{f^i(z) : i = -N_x, \ldots, N_x\})$ for every $z \in M$ with $d(x, z) < \delta_x$. We claim that A_{ϵ} is open and dense in M. Clearly A_{ϵ} is open. To see that A_{ϵ} is dense, let $x \in M$ be arbitrary. We can find a positive integer T such that

$$\{f^i(x): i = -T, \dots, T\} \cap U_j \neq \phi \text{ for all } j \in L_x.$$

Hence $o(x, f) \subset N_{\epsilon}(\{f^i(x) : i = -T, \dots, T\})$. Choose $\delta > 0$ such that

$$d(f^{i}(x), f^{i}(z)) < \frac{\epsilon}{2}$$
 for all $i = -T, -T + 1, \dots, T$

for every $z \in M$ with $d(x,z) < \delta$. Suppose that $x \notin A_{\epsilon}$. Given any ζ with $0 < \zeta < \delta$ there is $x_1 \in N_{\zeta}(x)$ such that $f^{T_1}(x_1) \notin N_{\epsilon}(\{f^i(x) : i = -T, \dots, T\})$

for some T_1 with $|T_1| > T$. If $f^{T_1}(x_1) \in N_{\frac{\epsilon}{2}}(\{f^i(x) : i = -T, ..., T\})$, then we have

$$d(f^{T_1}(x_1), f^i(x_1)) \le d(f^{T_1}(x_1), f^i(x)) + d(f^i(x), f^i(x_1)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for some $i \in \{-T, \ldots, T\}$. This is a contradiction. Thus

$$f^{T_1}(x_1) \notin N_{\frac{\epsilon}{2}}(\{f^i(x) : i = -T, \dots, T\}).$$

Since $f_1^T(x_1) \notin U_j$ for all $j \in L_x$, there is $j \in K - L_x$ such that $f^{T_1}(x_1) \in U_j$. Thus L_x is a proper subset of L_{x_1} . We can find $T_2 \geq |T_1|$ such that

$$o(x_1, f) \subset N_{\epsilon}(\{f^i(x_1) : i = -T_2, \dots, T_2\}).$$

Choose $\delta_1 > 0$ such that $d(f^i(x_1), f^i(z)) < \frac{\epsilon}{2}$ for all $i \in \{-T_2, -T_2 + 1, \dots, T_2\}$ for every $z \in M$ with $d(x_1, z) < \delta_1$. If $x_1 \in A_{\epsilon}$ we are done, otherwise there is $x_2 \in N_{\xi}(X_1) \subset N_{\zeta}(x)$ such that

$$f^{T_3}(x_2) \notin N_{\epsilon}(\{f^i(x_2) : i = -T_2, \dots, T_2\})$$

for some T_3 with $|T_3| > T_2$, where $\xi = \min(\zeta, \delta_1)$. Since

$$f^{T_3}(x_2) \notin N_{\frac{\epsilon}{2}}(\{f^i(x_1) : i = -T_2, \dots, T_2\}),$$

 $f_3^T(x_2) \notin U_j$ for all $j \in L_x$. There is $j \in K - L_{x_1}$ such that $f^{T_3}(x_2) \in U_j$. Thus L_{x_1} is a proper subset of L_{x_2} . By continuing this process, since K is finite, we can find $x' \in N_{\xi}(x)$ such that $L_{x'} = K$. Then $x' \in A_{\epsilon}$. Thus A_{ϵ} is dense in M. Now let $R = \bigcap_{n=1}^{\infty} A_{\frac{1}{n}}$ then R is a residual subset of M consisting of weak stable points.

A homeomorphism $f: M \longrightarrow M$ is called minimal if f(A) = A, A closed, implies either A = M or $A = \phi$. It is easy to see that f is minimal if and only if $\overline{o(x, f)} = M$ for each $x \in M$.

Proposition 2. Let f be a homeomorphism on a compact metric space M. If f is minimal, then f is weak stable.

Proof. Let $x \in M$ and $\epsilon > 0$ be arbitrary. Let $U = \{U_i : i = 1, \dots, k\}$ be a finite covering of M by open sets with diameter less than $\frac{\epsilon}{2}$. Since o(x, f) = M, there are $n_1, n_2, \dots, n_k \in \mathbb{Z}$, such that $f^{n_i}(x) \in U_i$ for $i = 1, 2, \dots, k$. Let

$$N = \max\{|n_i| : 1 \le i \le k\}$$

There exists $\delta > 0$ such that if $d(x, y) < \delta$, then $d(f^i(x), f^i(y)) < \frac{\epsilon}{2}$ for all $-N \leq i \leq N$. Let $y \in N_{\delta}(x)$. Given any $n \in \mathbb{Z}$, since $f^n(y) \in M = \bigcup_{i=1}^k U_i$, $f^n(y) \in U_i$ for some $i = 1, \ldots, k$. But $f^{n_i}(x) \in U_i$ so $d(f^n(y), f^{n_i}(x)) \leq diam(U_i) < \frac{\epsilon}{2}$. Since $d(x, y) < \delta$ and $-N \leq n_i \leq N$ we have $d(f^{n_i}(x), f^{n_i}(y)) < \frac{\epsilon}{2}$. Thus we have

$$d(f^{n}(y), f^{n_{i}}(y)) \leq d(f^{n}(y), f^{n_{i}}(x)) + d(f^{n_{i}}(x), f^{n_{i}}(y)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence $o(y, f) \subset N_{\epsilon}(\{f^i(y) : i = -N, \dots, N\})$. This shows that x is an weak stable point and f is an weak stable homeomorphism.

We denote the set of all weak stable homeomorphisms by WSH.

Theorem 1. Let $int(WSH) \neq \phi$ and let W be an open subset of Z(M) containing only weak stable homeomorphisms. Then there is a residual subset R_1 of W such that for each $f \in R_1$ and $\epsilon > 0$, there is a neighborhood U_f of f and positive integer N_f such that $o(x,g) \subset \bigcup_{i=-N_f}^{N_f} \overline{N_{\epsilon}(g^i(x))}$ for every $g \in U_f$ and $x \in M$.

To prove this theorem we need the following two lemmas.

Lemma 1. Let $\epsilon > 0$ be arbitrary. Then the function $\psi_{\epsilon} : W \longrightarrow \mathbb{N}$; defined by

$$\psi_{\epsilon}(f) = N_f,$$

where

$$N_f = \min\{N \in \mathbb{N} : o(x, f) \subset \bigcup_{i=-N}^{N} \overline{N_{\epsilon}(f^i(x))} \forall x \in M\},\$$

is lower semi-continuous.

Proof. For $f \in W$ there is $x_0 \in M$ such that $o(x_0, f) \notin \bigcup_{i=-N_f+1}^{N_f-1} \overline{N_{\epsilon}(f^i(x_0))}$. So $f^k(x_0) \notin \bigcup_{i=-N_f+1}^{N_f-1} \overline{N_{\epsilon}(f^i(x_0))}$ for some $k \in \mathbb{Z}$ with $|k| \geq N_f$. Choose $\epsilon' > 0$ such that

(*)
$$d(f^{N_f}(x_0), f^l(x_0)) \ge \epsilon + \epsilon', \ -N_f + 1 \le l \le N_f - 1.$$

Choose a neighborhood U_f of f such that $d(f^i(x), g^i(x)) < \frac{\epsilon'}{2}, |i| \le k+1$ for each $x \in M$ and $g \in U_f$. If $N_g < N_f$, then $d(g^k(x_0), g^l(x_0)) < \epsilon$ for some $-N_f + 1 \le l \le N_f - 1$. So

$$d(f^{k}(x_{0}), f^{l}(x_{0})) \leq d(f^{k}(x_{0}), g^{k}(x_{0})) + d(g^{k}(x_{0}), g^{l}(x_{0})) + d(g^{l}(x_{0}), f^{l}(x_{0}))$$
$$< \frac{\epsilon'}{2} + \epsilon + \frac{\epsilon'}{2} = \epsilon + \epsilon',$$

which contradicts (*). Hence $N_g \ge N_f$. This complete the proof of the lemma.

Now, we recall a topology lemma, for the proof see [6].

Lemma 2. Let X be a Bair topological space and $\Gamma : X \longrightarrow \mathbb{N}$ be a lower semi-continuous map. Then there exists a residual subset R of X such that $\Gamma \mid_R$ is locally constant on each point of R.

Proof of Theorem 1. Using lemmas 1 and 2, for any $\epsilon > 0$ let R_{ϵ} be a residual subset of W such that ψ_{ϵ} is locally constant on R_{ϵ} . Then $R_1 = \bigcap \{R_{\frac{1}{n}} : n = 1, 2, \ldots\}$ is the required residual set.

Theorem 2. Let M be a generalized homogeneous space with no isolated point. Then either $int(WSH) = \phi$, or for every $f \in int(WSH)$ and every open neighborhood W of f in int(WSH) the orbital shadowing property is generic in W.

648

For the proof we need the following lemma from [10].

Lemma 3. If h is upper semi-continuous, then for any $\epsilon > 0$ the set of all $x \in X$ such that there exists a neighborhood U of x with the property that $d_H(h(x), h(y)) \leq \epsilon$ for all $y \in U$, is open and dense in X. Here d_H is the Hausdorff metric.

Proof of Theorem 2. Assuming $\operatorname{int}(WSH) \neq \phi$. Let $f \in \operatorname{int}(WSH)$ and W be an open neighborhood of f in $\operatorname{int}(WSH)$. Let $\epsilon > 0$ be arbitrary, and $A = \{U_1, \ldots, U_k\}$ be a finite covering of M by closed sets with diameter less than $\frac{\epsilon}{2}$. Consider the set $K = \{1, 2, \ldots, k\}$ as a compact metric space with discrete metric. Let C(K) be the set of all subset of K, then define the map $\varphi_{\epsilon}: Z(M) \longrightarrow C(C(K))$ by

$$\varphi_{\epsilon}(f) = \{ L \subset K : \exists x \in M \text{ such that } o(x, f) \subset \bigcup \{ U_i : i \in L \}, \\ o(x, f) \cap U_i \neq \phi \forall i \in L \}.$$

The map φ_{ϵ} is upper semi-continuous [1]. Let R_{ϵ} be the set of all $f \in Z(M)$ such that there exists a neighborhood U_f of f with the property that $d_H(\varphi_{\epsilon}(f), \varphi_{\epsilon}(g)) \leq \epsilon$ for every $g \in U_f$. The set R_{ϵ} is open and dense in Z(M) by Lemma 3. Moreover, it is easy to see that the map φ_{ϵ} is locally constant on the set R_{ϵ} if $\epsilon < 1$ that is for any $f \in R_{\epsilon}$ there is a neighborhood U_f of f satisfying $\varphi_{\epsilon}(f) = \varphi_{\epsilon}(g)$ for all $g \in U_f$. Consider $R_2 = \bigcap_{n=1}^{\infty} R_{\frac{1}{n}}$ and $R = R_2 \bigcap R_1 \bigcap W$, where R_1 is as in Theorem 1. To complete the proof, it remains to show that the set R has orbital shadowing property. Let $0 < \epsilon < 1$ be arbitrary and $f \in R$. There is a neighborhood U_f of f satisfying $\varphi_{\epsilon}(f) = \varphi_{\epsilon}(g)$ and $\psi_{\epsilon}(f) = \psi_{\epsilon}(g)$ for all $g \in U_f$. Choose $\beta > 0$ such that $N_{\beta}(f) \subset U_f$. Let $\gamma > 0$ be a β -modulus of homogeneity of M, and put $0 < \delta < \min\{\frac{\gamma}{2}, \frac{\epsilon}{2}\}$. Fix any δ -pseudo-orbit $y = \{y_n\}_{n=-l}^{l}$. Since M has no isolated point we can easily find a finite 2δ -pseudo-orbit $y'_t = \{y'_n\}_{n=-l}^{l}$ such that $y_t \subseteq N_{\epsilon}(y_t)$ and $y_i \neq y_j$ for $i \neq j$ ([11]). Since $d(f(y'_i), y'_{i+1}) < 2\delta < \gamma$ there exists $h \in Z(M)$ such that $d_0(h, id_M) \leq \beta$ and $h(f(y'_i)) = y'_{i+1}$ for all $i = -l, \ldots, l$. Set g = hof. Then the sequence

$$o(y'_0,g) = \{\dots, g^{-2}(y'_{-l}), g^{-1}(y'_{-l}), y'_{-l}, y'_{-l+1}, \dots, y'_l, g(y'_{-l}), g^2(y'_{-l}), \dots\}$$

is an orbit of g. Since $g \in N_{\beta}(f)$ we have $\varphi_{\epsilon}(f) = \varphi_{\epsilon}(g)$ and $\psi_{\epsilon}(f) = \psi_{\epsilon}(g)$. Choose $L \in \varphi_{\epsilon}(g)$ such that $o(y'_{0},g) \subset \bigcup_{i \in L} U_{i}$ and $o(y'_{0},g) \cap U_{i} \neq \phi$ for all $i \in L$. But $L \in \varphi_{\epsilon}(f)$, thus there exists $x \in M$ satisfying $o(x,f) \subset \bigcup_{i \in L} U_{i}$ and $o(x,f) \cap U_{i} \neq \phi$ for all $i \in L$. This implies that $y \subseteq N_{3\epsilon}(o(x,f)), o(x,f) \subset N_{\epsilon}(o(y'_{0},g))$. Since $\psi_{\epsilon}(f) = \psi_{\epsilon}(g)$ we have $o(y'_{0},g) \subset \bigcup_{n=-N_{f}}^{N_{f}} \overline{N_{\epsilon}(y'_{n})} \subset \bigcup_{n=-l}^{l} \overline{N_{\epsilon}(y'_{n})}$ and $y'_{t} \subset N_{\epsilon}(y_{t}) \subset N_{\epsilon}(y)$. Hence we get $o(x,f) \subset N_{3\epsilon}(y)$. This complete the proof of Theorem 2.

As Mazur has shown in [7] the spaces (i), (ii) and (iii) in the following corollary are homogeneous. Thus using Theorem 2 we have:

Corollary. If the space M is one of the followings:

- (i) a topological manifold with boundary (dim $M \ge 2$ If $\partial M \neq \phi$).
- (ii) a cartesian product of a countably infinite number of manifolds with nonempty boundary.
- (iii) a cantor set.

Then orbital shadowing is generic property in W.

Acknowledgment. We would like to thank the referee for valuable suggestions.

References

- T. Choi, S. Kim, and K. Lee, Weak inverse shadowing and genericity, Bull. Korean Math. Soc. 43 (2006), no. 1, 43–52.
- [2] B. A. Coomes, H. Koçak, and K. J. Palmer, *Periodic shadowing*, Chaotic numerics (Geelong, 1993), 115–130, Contemp. Math., 172, Amer. Math. Soc., Providence, RI, 1994.
- [3] R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409–423.
- [4] P. E. Kloeden and J. Ombach, Hyperbolic homeomorphisms and bishadowing, Ann. Polon. Math. 65 (1997), no. 2, 171–177.
- [5] P. Koscielniak and M. Mazur, Chaos and the shadowing property, Topology Appl. 154 (2007), no. 13, 2553–2557.
- [6] K. Kuratowski, Topology. Vol. II., Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warszawa, 1968.
- M. Mazur, Weak shadowing for discrete dynamical systems on nonsmooth manifolds, J. Math. Anal. Appl. 281 (2003), no. 2, 657–662.
- [8] _____, Tolerance stability conjecture revisited, Topology Appl. **131** (2003), no. 1, 33–38.
- [9] S. Yu. Pilyugin and O. B. Plamenevskaya, Shadowing is generic, Topology Appl. 97 (1999), no. 3, 253–266.
- [10] F. Takens, On Zeeman's tolerance stability conjecture, Lecture Notes in Mathematics 197, Spriger-Verlag, pp. 209–219, 1971.
- [11] P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., 668, Springer, Berlin, pp. 231–244, 1978.

Bahman Honary Department of Mathematics Ferdowsi University Mashhad 1159-91775, Iran *E-mail address*: honary@math.um.ac.ir

Alireza Zamani Bahabadi Department of Mathematics Ferdowsi University Mashhad 1159-91775, Iran *E-mail address*: bahabadi@wali.um.ac.ir

650