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Abstract. It is known that a semi-cubically hyponormal weighted shift need not satisfy

the flatness property, in which equality of two weights forces all or almost all weights to be

equal. So it is a natural question to describe all semi-cubically hyponormal weighted shifts

Wα with first two weights equal. Let α : 1, 1,
√
x, (

√
u,

√
v,
√
w)∧ be a backward 3-step

extension of a recursively generated weight sequence with 1 < x < u < v < w and let

Wα be the associated weighted shift. In this paper we characterize completely the semi-

cubical hyponormal Wα satisfying the additional assumption of the positive determinant

coefficient property, which result is parallel to results for quadratic hyponormality.

1. Introduction and Notation

Let H be a separable infinite dimensional complex Hilbert space and let L(H)
be the algebra of all bounded linear operators on H. For A, B ∈ L(H), we set
[A,B] := AB−BA. A k-tuple T = (T1, ..., Tk) of operators on H is called hyponor-
mal if the operator matrix ([T ∗j , Ti])

k
i,j=1 is positive on the direct sum of H⊕· · ·⊕H
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(k copies). Also an operator T is said to be (strongly) k-hyponormal for each pos-
itive integer k if (I, T, ..., T k) is hyponormal. The Bram-Halmos criterion shows
that an operator T is subnormal if and only if T is k-hyponormal for all k ≥ 1 ([2],
[16]). An operator T is polynomially hyponormal if for every polynomial p, p(T )
is hyponormal, and T is weakly k-hyponormal if for every polynomial p of degree
k or less, p(T ) is hyponormal ([5],[10],[11]). In particular, weak 2-hyponormality
(or weak 3-hyponormality) is referred to as quadratically hyponormal (or cubically
hyponormal, respectively). For a positive integer k, an operator T ∈ L(H) is called
semi-weakly k-hyponormal if T+sT k is hyponormal for all s ∈ C ([12]). It is obvious
that a weakly k-hyponormal operator is semi-weakly k-hyponormal. In particular,
weak 2-hyponormality is equivalent to semi-weak 2-hyponormality.

It is well known that k-hyponormality implies weak k-hyponormality for each
positive integer k. The following results provide a bridge between subnormal and
hyponormal operators: subnormal ⇒ polynomially hyponormal ⇒ · · · ⇒ weakly
3-hyponormal ⇒ weakly 2-hyponormal ⇒ hyponormal. However, one does not yet
have concrete examples about the converse implications for n ≥ 3; see [9], [17] and
[18] for weak 2- and weak 3-hyponormalities.

J. Stampfli ([21]) proved that a subnormal weighted shift with two equal weights
αn = αn+1 for some nonnegative n has the property that α1 = α2 = · · · , which
is known as the “flatness property.” Stampfli’s result has been used to attempt
the construction of nonsubnormal polynomially hyponormal weighted shifts (cf.
[1],[3],[4],[7],[12],[15],[17]). In [3], Choi proved that if a weighted shift Wα is poly-
nomially hyponormal with the first two weights equal, then Wα has the flatness
property. In [4], Curto obtained a quadratically hyponormal weighted shift with
first two weights equal but not satisfying flatness. Also in [17], the authors showed

that a weighted shift Wα with weights α :
√

2
3 ,
√

2
3 ,
√

n+1
n+2 (n ≥ 2) is not cubically

hyponormal. And in [19], it was shown that if a weighted shift Wα is cubically
hyponormal with first two weights equal, then Wα has flatness. However, in [12], it
was proved that there exists a semi-cubically hyponormal weighted shift Wα with
α0 = α1 < α2 which is not 2-hyponormal. Hence the following problem arises nat-
urally as the analog to the question for quadratically hyponormal weighted shifts.

Problem 1.1. Describe all semi-cubically hyponormal weighted shifts Wα with
first two weights equal.

In [12], Do-Exner-Jung-Li characterized the semi-cubical hyponormality of the
weighted shift Wα(x) with positive determinant coefficients (p.d.c. – definition re-

viewed below), where α(x) :
√
x,
√
x,
√

k+1
k+2 (k ≥ 2) is a weight sequence with

Bergman tail. In this paper we describe the semi-cubical hyponormality of the
weighted shifts having the p.d.c. property but with recursive tails. More precisely,
for a three step backward extended weight sequence α : 1, 1,

√
x, (
√
u,
√
v,
√
w)∧

with 1 < x < u < v < w, where (
√
u,
√
v,
√
w)∧ is the Stampfli (recursively gen-

erated) subnormal completion of u, v, w (cf. [21]), we characterize completely the
semi-cubical hyponormality of Wα with p.d.c. Note that, by the nature of a recur-
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sive tail, the one and two step backward extensions are special cases of the three
step backward extension (see Remark 3.5).

For the reader’s convenience, we recall the Stampfli subnormal completion (cf.
[6],[21]). For given numbers α0, α1, α2 with 0 < α0 < α1 < α2, define

(1.1) α2
n = Ψ1 +

Ψ0

α2
n−1

for all n ≥ 3,

where Ψ0 = −α
2
0α

2
1(α

2
2−α

2
1)

α2
1−α2

0
and Ψ1 =

α2
1(α

2
2−α

2
0)

α2
1−α2

0
. Then we may obtain a weight

sequence {αn}∞n=0 generated recursively by (1.1), which is usually denoted by
(α0, α1, α2)∧ (for example, see [21]); the associated shift is subnormal. It follows
from [6] that

αn ↗ L :=
1√
2

(
Ψ1 +

√
Ψ2

1 + 4Ψ0

)1/2

as n→∞.

The organization of this paper is as follows. In Section 2 we recall some ter-
minology concerning semi-cubically hyponormal weighted shifts. In Section 3 we
characterize the semi-cubic hyponormality of weighted shifts Wα with p.d.c., where
α : 1, 1,

√
x, (
√
u,
√
v,
√
w)∧ with 1 < x < u < v < w, and then consider a related

example.
Throughout this paper, R+, N, and N0 are the sets of nonnegative real numbers,

positive integers, and nonnegative integers, respectively.

2. Preliminaries

We recall some standard terminology for semi-cubically hyponormal weighted
shifts (cf. [12]). Let `2(N0) be the space of square summable sequences in C and let
{ei}∞i=0 be an orthonormal basis of `2(N0). For a weight sequence α = {αi}∞i=0 in
R+, the associated weighted shift Wα acting on `2(N0) is semi-cubically hyponormal
if

(2.1) D(s) := [(Wα + sW 3
α)∗,Wα + sW 3

α] ≥ 0, s ∈ C.

In fact, the condition in (2.1) is equivalent to a simpler one, as in the following

proposition whose proof comes from [8, Prop. 1].

Proposition 2.1. Let Wα be a weighted shift with a weight sequence α = {αi}∞i=0 in
R+. Then Wα is semi-weakly n-hyponormal if and only if Wα+tWn

α is hyponormal
for all t ≥ 0.

Proof. It is sufficient to show the necessity. For any s ∈ C, we may take nonnegative
real numbers t and θ such that s = tei(n−1)θ. Recall that there exists a unitary
operator U such that UWαU

∗ = e−iθWα. Then

U(Wα + sWn
α )U∗ = UWαU

∗ + s(UWαU
∗)n = e−iθ(Wα + tWn

α ),
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so the inequality for all t ≥ 0 suffices to yield (2.1). 2

By Proposition 2.1, Wα is semi-cubically hyponormal if and only if D(s) ≥ 0
for all s ∈ R+. Observe that

D(s) =



q0 0 z0 0 · · ·

0 q1 0 z1
. . .

z0 0 q2
. . .

. . .

0 z1
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .


, s ∈ R+,

where for all k ∈ N0,

qk := uk + vks
2, zk :=

√
wks, uk := α2

k − α2
k−1,

vk := α2
kα

2
k+1α

2
k+2 − α2

k−3α
2
k−2α

2
k−1, wk := α2

kα
2
k+1(α2

k+2 − α2
k−1)2,

with α−3 = α−2 = α−1 = 0. Consider two submatrices

D(1)(s) =



q0 z0 0
z0 q2 z2 0

0 z2 q4 z4
. . .

0 z4
. . .

. . .

. . .
. . .

. . .


and D(2)(s) =



q1 z1 0
z1 q3 z3 0

0 z3 q5 z5
. . .

0 z5
. . .

. . .

. . .
. . .

. . .


and observe that D(s) = D(1)(s)⊕D(2)(s), s ∈ R+. Define
(2.2)

D(1)
n (t) =



q0 z0 0
z0 q2 z2 0

0 z2 q4 z4
. . .

0 z4
. . .

. . .

. . .
. . . q2n


, D(2)

n (t) =



q1 z1 0
z1 q3 z3 0

0 z3 q5 z5
. . .

0 z5
. . .

. . .

. . .
. . . q2n+1


,

where t = s2. Then Wα is semi-cubically hyponormal if and only if D
(j)
n (t) ≥ 0 for

all n ≥ 0, j = 1, 2.

To detect the positivity of D
(j)
n (t) in (2.2), we consider a matrix with the form
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below:

Mn (t) =



q̌0 ř0 0
ř0 q̌1 ř1 0

0 ř1 q̌2 ř2
. . .

0 ř2
. . .

. . . 0
. . .

. . . q̌n−1 řn−1

0 řn−1 q̌n


,

where q̌k := ǔk + v̌kt, řk :=
√
w̌kt (k ≥ 0) , and ǔk ≥ 0, v̌k ≥ 0, w̌k ≥ 0, t ≥ 0. (We

take the approach in [6] for what follows.) Then

(2.3) dn (t) := detMn(t) =

n+1∑
i=0

c (n, i) ti,

and it follows from [6] that

c(0, 0) = ǔ0, c(0, 1) = v̌0,

c(1, 0) = ǔ0ǔ1, c(1, 1) = ǔ1v̌0 + ǔ0v̌1 − w̌0, c(1, 2) = v̌1v̌0,

c(n, i) = ǔnc(n− 1, i) + v̌nc(n− 1, i− 1)− w̌n−1c(n− 2, i− 1),

c(n, n+ 1) = v̌0v̌1 · · · v̌n, n ≥ 2, 0 ≤ i ≤ n,

with c(−n,−i) := 0 for all n, i ∈ N. Suppose that ǔnv̌n+1 = w̌n (n ≥ 2); this yields
that

(2.4) c(n, i) =


v̌n · · · v̌2c(1, 2), if i = n+ 1,
ǔnc(n− 1, n) + v̌n · · · v̌3ρ, if i = n,
ǔnc(n− 1, n− 1) + v̌n · · · v̌3τ, if i = n− 1,
ǔnc(n− 1, i), if 0 ≤ i ≤ n− 2,

for all n ≥ 3, where

(2.5) ρ := v̌2c(1, 1)− w̌1c(0, 1) and τ := v̌2c(1, 0)− w̌1c(0, 0).

To detect the positivity of D
(j)
n (t), j = 1, 2, we consider

d(j)
n (t) := detD(j)

n (t) =

n+1∑
i=0

cj(n, i)t
i,

for j = 1, 2. Note that if cj(n, n+1) > 0 and cj(n, i) ≥ 0 for all n ≥ 0 with 0 ≤ i ≤ n,

then every matrix D
(j)
n (t) is obviously positive for all n ≥ 0 and t > 0. Recall that

Wα has positive determinant coefficients (p.d.c.) (and is therefore semi-cubically

hyponormal) if all coefficients in d
(j)
n (t) are nonnegative and the cj(n, n + 1) are

strictly positive for all n ∈ Z+ and j = 1, 2 (cf. [12, Def. 2.2]).
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The following is the crucial lemma which can be obtained from the proof of

Theorem 4.3 in [6], and which we will apply in succession to D
(1)
n (t) and D

(2)
n (t).

Lemma 2.2. Under the notation above, we suppose that ǔnv̌n+1 = w̌n (n ≥ 2).
Then the determinant of Mn(t) in (2.3) has non-negative coefficients c(n, i) for all
n and i if and only if the following conditions hold:

(i) c(1, 1), c(2, 1), c(2, 2), c(3, 2) are all positive,

(ii) Γn := v̌2v̌1v̌0 + v̌n
ǔn
ρ ≥ 0, for all n ≥ 3,

(iii) Ωn := v̌2v̌1v̌0 + v̌n−1

ǔn−1
ρ+ v̌n−1

ǔn−1

v̌n
ǔn
τ ≥ 0, for all n ≥ 4.

3. A Special Case of Semi-cubical Hyponormality with p.d.c.

Let α : 1, 1,
√
x, (
√
u,
√
v,
√
w)∧ with 1 < x < u < v < w. To determine when

Wα is a semi-cubically hyponormal weighted shift with p.d.c., we will use Lemma 2.2
for j = 1, 2 considering conditions (i), (ii), and (iii) in Lemma 2.2. We will denote
the coefficients of the determinants c1(n, i) and c2(n, i) with the obvious meaning,
and distinguish other quantities between j = 1 and j = 2 with superscripts (for
example, ρ(1) and ρ(2)). Note first that it follows from Lemma 3.1 of [20] that we

have both u
(1)
n v

(1)
n+1 = w

(1)
n and u

(2)
n v

(2)
n+1 = w

(2)
n for n ≥ 2.

3.1. The p.d.c. condition for D
(1)
n .

The following (n+ 1)× (n+ 1) matrix is the expression of D
(1)
n :

D(1)
n =



u0 + v0t
√
w0t 0 0 · · · 0√

w0t u2 + v2t
√
w2t 0 · · · 0

0
√
w2t u4 + v4t

√
w4t · · · 0

0 0
√
w4t u6 + v6t

. . .
...

...
...

...
. . .

. . .
√
w2n−2t

0 0 0 · · ·
√
w2n−2t u2n + v2nt


.

Since c1(1, 1) = (uv − 1)x > 0 and positivity conditions for the coefficients c1(2, 1),
c1(2, 2), c1(3, 2) can be obtained by some direct computations, we will concentrate
our consideration on (ii) and (iii) in Lemma 2.2.

Set ηn = vn
un
. Then we may prove that ηn ↗ U ; see [20, Lemma 3.3], where

U =
(Ψ2

1 + Ψ0)2

2Ψ2
0

(
2Ψ0 + Ψ2

1 + Ψ1

√
4Ψ0 + Ψ2

1

)
,

where the values Ψ0 and Ψ1 are those associated with the Stampfli completion.

Lemma 3.1. With the notation above, we have that Γ
(1)
n := v4v2v0 + η2nρ

(1) ≥ 0
for all n ≥ 3, if and only if one of the following conditions holds:
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(i) ρ(1) ≥ 0,

(ii) ρ(1) < 0 and v4v2v0 + Uρ(1) ≥ 0,

where ρ(1) = v4c1(1, 1)− w2c1(0, 1) is as in (2.5).

Proof. We consider first Γ
(1)
n = v4v2v0 + η2nρ

(1), where ρ(1) is as in (2.5). In this

case, to check the positivity of Γ
(1)
n , we define

∆Γ(1)
n = Γ

(1)
n+1 − Γ(1)

n .

Then ∆Γ
(1)
n = (ηn+2−ηn)ρ(1). If ρ(1) ≥ 0, since {ηn} is increasing, ∆Γ

(1)
n is positive,

i.e., Γ
(1)
n is increasing in n, so to detect the positivity of Γ

(1)
n for n ≥ 3, it is enough

to consider only the positivity of Γ
(1)
3 . On the other hand, if ρ(1) < 0, then ∆Γ

(1)
n is

negative. So Γ
(1)
n is decreasing in n, and to detect the positivity of Γ

(1)
n for n ≥ 3,

it is enough to examine the positivity of the limit of Γ
(1)
n . Since ηn ↗ U , we can

obtain
lim
n→∞

Γ(1)
n = v4v2v0 + Uρ(1).

Hence the proof is complete. 2

Lemma 3.2. With above notation, we have that Ω
(1)
n := v4v2v0 + η2n−2ρ

(1) +
η2n−2η2nτ

(1) ≥ 0 for n ≥ 4 if and only if one of the following conditions holds:

(i) s ≥ 0 and v4v2v0 + η6ρ
(1) + η6η8τ

(1) ≥ 0,

(ii) s < 0 and v4v2v0 + Uρ(1) + U2τ (1) ≥ 0,

where τ (1) = v4c1(1, 0)− w2c1(0, 0) as in (2.5) and

s = ρ(1) +
η8η10 − η6η8

η8 − η6
τ (1).

Proof. To consider the positivity of Ω
(1)
n , we first define ∆Ω

(1)
n = Ω

(1)
n+1 − Ω

(1)
n for

any n ∈ N. Then

∆Ω(1)
n = (η2n − η2n−2) ρ(1) + (η2nη2n+2 − η2n−2η2n) τ (1)

= (η2n − η2n−2)

(
ρ(1) +

η2nη2n+2 − η2n−2η2n

η2n − η2n−2
τ (1)

)
.(3.1)

For brevity, we set

sn(x, u, v, w) := ρ(1) +
η2nη2n+2 − η2n−2η2n

η2n − η2n−2
τ (1).

We will claim that sn(x, u, v, w) is constant in n ≥ 4, i.e., sn is independent of n
for n ≥ 4. The original idea for the proof comes from [14, Lemma 4.3]; see more
recently [13]. Define

(3.2) Qn :=
ηnηn+2 − ηn−2ηn

ηn − ηn−2
.
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Observe that with α : 1, 1,
√
x, (
√
u,
√
v,
√
w)∧,

(3.3) ηn (α) = ηn−3

(
(
√
u,
√
v,
√
w)∧

)
, n ≥ 6.

Then it follows from (3.1) and (3.2) that

Qn (α) = Qn−3

(
(
√
u,
√
v,
√
w)∧

)
, n ≥ 8.

A direct computation shows that

Q5

(
(
√
u,
√
v,
√
w)∧

)
= Q6

(
(
√
u,
√
v,
√
w)∧

)
;

in fact, we can confirm that its value is

v(2u2w − u2v + 2uv2 − 4uvw + vw2)(uv2 + u2w − 3uvw + vw2)2

u2(v − u)4(w − v)2
.

Put p = α2
6, where α6 is the 6th term of α. Then it is well known that

(
√
u,
√
v,
√
w)∧ =

√
u, (
√
v,
√
w,
√
p)∧,

which implies that

Qn
(
(
√
u,
√
v,
√
w)∧

)
= Qn−1

(
(
√
v,
√
w,
√
p)∧
)
, n ≥ 5.

If we mimic the proof of [14, Lemma 4.3], we get

Q7

(
(
√
u,
√
v,
√
w)∧

)
= Q6

(
(
√
u,
√
v,
√
w)∧

)
.

Repeating this argument, we obtain

Qn
(
(
√
u,
√
v,
√
w)∧

)
= Q5

(
(
√
u,
√
v,
√
w)∧

)
, for all n ≥ 5.

Hence Qn is constant in n, n ≥ 8, and so sn(x, u, v, w) is constant in n for n ≥ 4.
Now, we set s = s(x, u, v, w) := s4(x, u, v, w). By (3.1), obviously

∆Ω(1)
n = (η2n − η2n−2) s, n ≥ 4.

Repeating the method in the proof of Lemma 3.1, we obtain that Ω
(1)
n ≥ 0 for n ≥ 4

if and only if either (i) s ≥ 0 and Ω
(1)
4 = v4v2v0 + η6ρ

(1) + η6η8τ
(1) ≥ 0 or (ii) s < 0

and
lim
n→∞

Ω(1)
n = v4v2v0 + Uρ(1) + U2τ (1) ≥ 0.

Hence the proof is complete. 2
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3.2. The p.d.c. condition for D
(2)
n .

The following (n+ 1)× (n+ 1) matrix is D
(2)
n :

D(2)
n =



u1 + v1t
√
w1t 0 0 · · · 0√

w1t u3 + v3t
√
w3t 0 · · · 0

0
√
w3t u5 + v5t

√
w5t · · · 0

0 0
√
w5t u7 + v7t

. . .
...

...
...

...
. . .

. . .
√
w2n−1t

0 0 0 · · ·
√
w2n−1t u2n+1 + v2n+1t


.

As in the case of D
(1)
n , conditions for the positivity of the coefficients c2(1, 1),

c2(2, 1), c2(2, 2), c2(3, 2) can be obtained by some direct computations. One may
also compute that

(3.4) c2(2, 1) = (w − v)c2(1, 1) and c2(3, 2) =
u2(w − u)3

w(v − u)(uv − 2uw + w2)
c2(2, 2).

It is straightforward to verify that u2(w−u)3

w(v−u)(uv−2uw+w2) is positive, and it results from

the above that c2(2, 1) and c2(1, 1) have the same sign, as do c2(3, 2) and c2(2, 2).

Lemma 3.3. With the above notation, the following conditions are equivalent:

(i) Γ
(2)
n := v5v3v1 + η2n+1ρ

(2) ≥ 0 for all n ≥ 3,

(ii) Ω
(2)
n = v5v3v1 + η2n−1ρ

(2) ≥ 0 for all n ≥ 4,

(iii) one of the following conditions holds:
(iii-a) ρ(2) ≥ 0,
(iii-b) ρ(2) < 0 and v5v3v1 + Uρ(2) ≥ 0,

where ρ(2) = v5c2(1, 1)− w3c2(0, 1) is as in (2.5).

Proof. (i) ⇔ (iii). Since the proof is exactly that of Lemma 3.1, we omit it here.

(i) ⇔ (ii). Recall that Ω
(2)
n := v5v3v1 + η2n−1ρ

(2) + η2n−1η2n+1τ
(2). Since

τ (2) = v5c2(1, 0)− w3c2(0, 0) = u1(v5u3 − w3) = 0,

Ω
(2)
n = Γ

(2)
n−1 for all n ≥ 4. Hence the proof is complete. 2

3.3. The main theorem.

We now give the main theorem of this paper. Combining results in Subsections
3.1 and 3.2, we obtain the following theorem with the above notation.

Theorem 3.4. Let α : 1, 1,
√
x, (
√
u,
√
v,
√
w)∧ with 1 < x < u < v < w. Then Wα

is a semi-cubically hyponormal weighted shift with p.d.c. if and only if the following
conditions hold:
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(i) c1(2, 1), c1(2, 2), c1(3, 2), c2(1, 1), c2(2, 2) are nonnegative,

(ii) one of the following conditions holds:
(ii-a) ρ(1) ≥ 0,
(ii-b) ρ(1) < 0 and v4v2v0 + Uρ(1) ≥ 0,

(iii) one of the following conditions holds:
(iii-a) s ≥ 0 and v4v2v0 + η6ρ

(1) + η6η8τ
(1) ≥ 0,

(iii-b) s < 0 and v4v2v0 + Uρ(1) + U2τ (1) ≥ 0,

(iv) one of the following conditions holds:
(iv-a) ρ(2) ≥ 0,
(iv-b) ρ(2) < 0 and v5v3v1 + Uρ(2) ≥ 0.

Remark 3.5. According to the construction of Stampfli’s completion from three
values u, v and w, Theorem 3.4 can yield a characterization of semi-cubical hy-
ponormality of a backward 2-step weighted shift Wα with Stampfli’s completion
tail, where α : 1, 1, (

√
x,
√
u,
√
v)∧ with 1 < x < u < v, because if we choose w =

u(v2+ux−2vx)
v(u−x) for our backward 3-step extension, then α′ : 1, 1,

√
x, (
√
u,
√
v,
√
w)∧

produces the same weighted shift Wα. Of course, the case of 1-step extension can
be considered similarly; this case was studied in [20, Th. 3.7].

Remark 3.6. Using some technical computations, we believe it is possible to
characterize the semi-cubical hyponormality of backward n-step extended weighted
shifts Wα with Stampfli’s completion tail. We presume their proofs will be intricate.

In what follows, we consider an example related to Theorem 3.4.

Example 3.7. Let α : 1, 1,
√
x,
(√

111
100 ,

√
112
100 ,

√
113
100

)∧
, where x is a real variable

with 1 < x < 111
100 . We obtain a range of x for semi-cubical hyponormality with

p.d.c. of Wα.

(i) c1(2, 1) ≥ 0⇔ 69375x2 − 158688x+ 90160 ≤ 0,
c1(2, 2) ≥ 0⇔ x ≤ 195776

152625 ,
c1(3, 2) ≥ 0⇔ 1149751875x2 − 2603155192x+ 1462768720 ≤ 0,
c2(1, 1) ≥ 0⇔ 122− 111x ≥ 0,
c2(2, 2) ≥ 0⇔ 4648721− 4082025x ≥ 0.

Thus we get (i) holds if and only if 4(19836−
√

2538771)
69375 < x < 122

111 .

(ii) Since 1 < x < 111
100 , we can check without difficulty that ρ(1) > 0; i.e., (ii) always

holds for 1 < x < 111
100 .

(iii) One computes that

s ≥ 0⇔ ϕ(x) = 1800279654375x2 − 4093200707344x+ 2314100115040 ≤ 0;

a computation shows that this yields also v4v2v0 + η6ρ
(1) + η6η8τ

(1) ≥ 0. Hence
(iii-a) holds ⇔ δ ≤ x < 111

100 , where δ ≈ 1.053 is the smallest root of ϕ(x) = 0. And

v4v2v0 + Uρ(1) + U2τ (1) ≥ 0⇔ φ(x) = a3x
3 + a2x

2 − a1x+ a0 ≤ 0,
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where aj are positive real numbers. We can check easily that φ(x) has roots δ3 <
0 < δ2 < δ1, with δ2 ≈ 1.036. Assembling these computations gives

s < 0 and v4v2v0 + Uρ(1) + U2τ (1) ≥ 0⇔ δ2 ≤ x < δ.

Therefore we get (iii) holds if and only if δ2 ≤ x < 111
100 .

(iv) holds for 1 < x < 111
100 , because further computation shows v5v3v1 + η7ρ

(2) ≥ 0

and v5v3v1 + Uρ(2) ≥ 0 for 1 < x < 111
100 .

Combining the analyses of (i)-(iv) above, we get that Wα is semi-cubically hy-

ponormal with p.d.c. if and only if 4(19836−
√

2538771)
69375 < x < 122

111 .
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