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SEMI-CUBICALLY HYPONORMAL WEIGHTED SHIFTS

WITH STAMPFLI’S SUBNORMAL COMPLETION

Seunghwan Baek and Mi Ryeong Lee

Abstract. Let α : 1, (1,
√
x,
√
y)∧ be a weight sequence with Stampfli’s

subnormal completion and let Wα be its associated weighted shift. In
this paper we discuss some properties of the region U : ={(x, y) : Wα is

semi-cubically hyponormal} and describe the shape of the boundary of

U . In particular, we improve the results of [19, Theorem 4.2].

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space and let
L(H) be the algebra of all bounded linear operators on H. A bounded oper-
ator T is said to be subnormal if it is the restriction of a normal operator to
an invariant subspace ([15]). An operator T in L(H) is called hyponormal if
T ∗T ≥ TT ∗. In [5], Curto defined some classes of weak subnormality between
hyponormality and subnormality in L(H), for examples, k-hyponormality and
weak k-hyponormality. The weakly k-hyponormal weighted shift (whose defi-
nition will be defined below) is the main model in this paper. For a positive
integer k, an operator T ∈ L(H) is said to be weakly k-hyponormal if for every
polynomial p of degree k or less, p(T ) is hyponormal ([5,8,11,12]). An operator
T ∈ L(H) is called semi-weakly k-hyponormal if T + sT k is hyponormal for
s ∈ C ([13]). It is obvious that a weakly k-hyponormal operator is semi-weakly
k-hyponormal. In particular, weak 2-hyponormality is equivalent to semi-weak
2-hyponormality. The weak 2-hyponormality (weak 3-hyponormality, semi-
weak 3-hyponormality, resp.) is referred to as the quadratic hyponormality
(cubic hyponormality, semi-cubic hyponormality, resp.). In particular, the qua-
dratic hyponormality makes an important role in the study of gap on operator
properties such as flatness, completion, and backward extension theory since
1990 (see, for instance, [1, 4, 6, 9, 10, 14, 16, 20]). In [6], Curto proved that a
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2-hyponormal weighted shift with two equal weights αn = αn+1 for some non-
negative integer n has the flatness property, i.e., α1 = α2 = · · · . Moreover, he
obtained a quadratically hyponormal weighted shift with first two equal weights
which does not satisfy flatness ([6]). Also in [17], they showed that the weighted

shift Wα with α :
√

2
3 ,
√

2
3 ,
√

n+1
n+2 (n ≥ 2) is not cubically hyponormal. Hence

the following question arises naturally ([7]):

Problem 1.1. Describe all quadratically hyponormal weighted shifts with first
two equal weights.

Recently Li-Cho-Lee in [18] proved that if a weighted shift Wα is cubically
hyponormal with first two equal weights, then Wα has the flatness property.
The structure of semi-cubically hyponormal weighted shifts has been studied
by several authors (cf. [2, 3, 19]). To detect the structure of semi-cubically
hyponormal weighted shifts, the following problem arises naturally:

Problem 1.2. Describe all semi-cubically hyponormal weighted shifts with
first two equal weights.

As a study of Problem 1.2 it is worthwhile to describe the region U =
{(x, y) : Wα is semi-cubically hyponormal} for weighted shifts Wα with weight
sequence α : 1, (1,

√
x,
√
y)∧, where (1,

√
x,
√
y)∧ is Stampfli’s subnormal com-

pletion. Recall that Curto-Jung studied the shape of the region {(x, y) : Wα

is quadratically hyponormal} in [9]. In this paper we describe the region U in
detail as a parallel study.

This note consists of four sections. In Section 2 we recall characterizations
for semi-cubic hyponormality of a weighted shift Wα with weight sequence
α : 1, (1,

√
x,
√
y)∧. In Section 3, we describe the geometric shapes of the region

U above. In Section 4, we discuss some remarks concerning the extremality of
the region U .

Throughout this note we denote R+ for the set of nonnegative real numbers.
For a region V in R2(:= R× R), we denote the boundary of V by ∂V.

Some of the calculations in this paper were aided by using the software tool
Mathematica ([22]).

2. Preliminaries

We recall Stampfli’s subnormal completion of three values ([21]). Let α0,
α1, α2 be the first three weights in R+ such that α0 < α1 < α2 (to avoid the
flatness)1. Define

(2.1) α̂n =

(
Ψ1 +

Ψ0

α2
n−1

)1/2

, n ≥ 3,

1If Wα is a subnormal weighted shift such that α0 = α1 or α1 = α2, then α1 = α2 = · · · .
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where

Ψ0 = −α
2
0α

2
1(α2

2 − α2
1)

α2
1 − α2

0

, Ψ1 =
α2
1(α2

2 − α2
0)

α2
1 − α2

0

.

This produces a bounded sequence α̂ := {α̂i}∞i=0 , where α̂i = αi (0 ≤ i ≤ 2)
such that its associated weighted shift Wα̂ is subnormal. As usual, we write
(α0, α1, α2)

∧
for this weight sequence α̂ induced by (2.1).

We now recall a characterization of the semi-cubic hyponormality of weighted
shifts Wα with weight sequence α : 1, (1,

√
x,
√
y)∧.

Lemma 2.1 ([19, Th. 4.1]). Let α : 1, (1,
√
x,
√
y)∧ with 1 < x < y be a weight

sequence and let Wα be its associated weighted shift. Then Wα is semi-cubically
hyponormal if and only if f (x, y) :=

∑9
i=0 ζiy

i ≥ 0, where

ζ0 = x8, ζ1 = −x5 + 8x6 − 18x7 + 2x8,

ζ2 = x2 − 8x3 + 39x4 − 108x5 + 131x6 − 20x7 + x8,

ζ3 = −3x+ 32x2 − 151x3 + 338x4 − 298x5 − 12x6 + 10x7,

ζ4 = 4− 42x+ 169x2 − 274x3 + 40x4 + 276x5 − 43x6 − 4x7,

ζ5 = 16x− 130x2 + 359x3 − 330x4 − 75x5 + 34x6,

ζ6 = −2x+ 38x2 − 172x3 + 260x4 − 34x5 − 6x6,

ζ7 = −x+ 4x2 + 17x3 − 74x4 + 18x5,

ζ8 = −2x2 + 6x3 + 7x4 − 2x5, ζ9 = −x3.

Let α(x, y) : 1, (1,
√
x,
√
y)∧ with 1 < x < y be a weight sequence with

Stampfli’s subnormal completion tail and let Wα(x,y) be the associated weighted
shift. For our convenience, we denote x = 1 +h and y = 1 +h+k (h, k ∈ R+).
Then we can rewrite the polynomials in Lemma 2.1 as following

(2.2) p (h, k) := f(1 + h, 1 + h+ k) = −
9∑
i=0

ξi(h)ki ≥ 0,

where

ξ0(h) = 2h9 (h+ 1)
4
, ξ1(h) = h8 (16h+ 7) (h+ 1)

3
,

ξ2(h) = 4h6
(
3h+ 14h2 + 14h3 − 1

)
(h+ 1)

2
,

ξ3(h) = h5 (h+ 1)
(
3h+ 98h2 + 190h3 + 112h4 − 4

)
,

ξ4(h) = h4
(
2h+ 109h2 + 322h3 + 356h4 + 140h5 − 5

)
,

ξ5(h) = 2h3 (h+ 1)
(
5h+ 46h2 + 88h3 + 56h4 − 1

)
,

ξ6(h) = h2 (h+ 1)
(
13h+ 64h2 + 104h3 + 56h4 − 1

)
,

ξ7(h) = h2 (h+ 1)
(
34h+ 42h2 + 16h3 + 9

)
,

ξ8(h) = 2h
(
4h+ h2 + 2

)
(h+ 1)

2
, ξ9(h) = (h+ 1)

3
.
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For α(x, y) : 1, (1,
√
x,
√
y)∧ with x = 1 + h and y = 1 + h+ k (h, k ∈ R+), we

denote

R := {(h, k) : Wα(x,y) is semi-cubically hyponormal}
and

Rq := {(h, k) : Wα(x,y) is quadratically hyponormal}.
Then it follows from [19, Theorem 4.2] that both R \ Rq and Rq \ R are
nonempty sets, indeed, a line segment {( 1

100 , k) : β1 ≤ k < α1} (or {( 1
100 , k) :

β2 < k ≤ α2}) contains in R \ Rq (or Rq \ R, respectively), where α1 ≈
0.000787776068 . . ., α2 ≈ 0.0422764016 . . ., β1 ≈ 0.000786885627 . . . , and β2 ≈
0.0402782805 . . .; see the proof of [19, Theorem 4.2]. In the next section, the
polynomial in (2.2) can be used to describe the shape of R as a crucial parts.

3. The shape of the region with semi-cubic hyponormality

Let α(x, y) : 1, (1,
√
x,
√
y)∧ with 1 < x < y be a weight sequence as usual

and let Wα(x,y) be the associated weighted shift with x = 1+h and y = 1+h+k
(h, k ∈ R+). We may replace k by th, where t is a positive real number. Then
p(h, k) in (2.2) can be represented by

p(h, k) = p(h, th)

= h8
(
φ0(t) + φ1(t)h+ φ2(t)h2 + φ3(t)h3 + φ4(t)h4 + φ5(t)h5

)
,

where

φ0(t) = 4t2 + 4t3 + 5t4 + 2t5 + t6,

φ1(t) = −2− 7t− 4t2 + t3 − 2t4 − 8t5 − 12t6 − 9t7 − 4t8 − t9,
φ2(t) = −8− 37t− 76t2 − 101t3 − 109t4 − 102t5 − 77t6 − 43t7 − 16t8 − 3t9,

φ3(t) = −12− 69t− 180t2− 288t3− 322t4− 268t5− 168t6− 76t7− 22t8− 3t9,

φ4(t) = −8− 55t− 168t2 − 302t3 − 356t4 − 288t5 − 160t6 − 58t7 − 12t8 − t9,
φ5(t) = −2− 16t− 56t2 − 112t3 − 140t4 − 112t5 − 56t6 − 16t7 − 2t8.

For brevity, we set

(3.1) ρ(h, t) = φ0(t) + φ1(t)h+ φ2(t)h2 + φ3(t)h3 + φ4(t)h4 + φ5(t)h5.

Then Wα(x,y) is semi-cubically hyponormal if and only if ρ(h, t) ≥ 0 for all
positive numbers h and t. We will detect the set

C := {(h, th)|ρ(h, t) = 0 and h > 0, t > 0} ∪ {(0, 0)}

to consider the region of semi-cubic hyponormality of Wα(x,y) below. In fact,
the set C will be a curve (see Lemma 3.1).

Lemma 3.1. The set C is a loop with polar form of r = f(θ), 0 ≤ θ ≤ π
2 .

Therefore R is a starlike region with nonempty interior and C = ∂R.
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Proof. First we fix t = t0 > 0. Since φi(t0) (i = 1, . . . , 5) is negative obviously,

∂

∂h
ρ(h, t0) = φ1(t0) + 2φ2(t0)h+ 3φ3(t0)h2 + 4φ4(t0)h3 + 5φ5(t0)h4

is negative for h > 0. Then it follows that ρ(h, t0) is decreasing in h. Since
φ0(t0) is positive, the equation ρ(h, t0) = 0 of h has a unique solution. �

The following corollary improves the results of [19, Theorem 4.2], and its
proof follows from the fact that the boundaries of Rq and R are loops with
polar forms of r = f(θ), 0 ≤ θ ≤ π

2 .

Corollary 3.2. Under the above notation, we have the following assertions:
(i) Rq ∩R is a starlike region with nonempty interior,
(ii) R \Rq and Rq \ R are regions with nonempty interiors.

We now consider the tangent line to the closed curve C near the origin.

Lemma 3.3. The tangent line to C converges to the x-axis as (h, t)→ (0+, 0+)
and it converges to the y-axis as (k, t)→ (0+,∞).

Proof. We mimic the proof of [9, Lemma 4.7]. From k = th, we have

(3.2)
dk

dh
=
dt

dh
h+ t.

Since ρ(h, t) = 0 on C, we get

dt

dh
= −

∂ρ
∂h
∂ρ
∂t

= − φ1(t) + 2φ2(t)h+ 3φ3(t)h2 + 4φ4(t)h3 + 5φ5(t)h4

φ′0(t) + φ′1(t)h+ φ′2(t)h2 + φ′3(t)h3 + φ′4(t)h4 + φ′5(t)h5
.

Furthermore, we have

lim
(h,t)→(0+,0+)

dk

dh
= lim

(h,t)→(0+,0+)

dt

dh
h.

Since lim(h,t)→(0+,0+)
dt
dh =∞, by using the L’Hospital’s rule and some elemen-

tary computations, we can obtain

lim
(h,t)→(0+,0+)

dt

dh
h = lim

(h,t)→(0+,0+)

h
dh
dt

= lim
(h,t)→(0+,0+)

1
d
dh

(
dh
dt

)
= lim

(h,t)→(0+,0+)

1
∂
∂t

(
dh
dt

)
dt
dh + ∂

∂h

(
dh
dt

)
= lim

(h,t)→(0+,0+)

F1(h, t)

F2(h, t)
= 0

for some polynomials F1 and F2 of h and t (see http://arxiv.org/pdf/1803.03349
.pdf for expressions of F1 and F2) such that

lim
(h,t)→(0+,0+)

F1(h, t) = 0 and lim
(h,t)→(0+,0+)

F2(h, t) = 32.

Similarly, we have lim(k,t)→(0+,∞)
dk
dh =∞. Hence the proof is complete. �
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We now set

(3.3) hM = max{h : (h, k) ∈ R, k ∈ R+}, kM = max{k : (h, k) ∈ R, h ∈ R+}.

Obviously two maximum values hM and kM are well defined. Recall that the
problem [9, Problem 5.1] which is finding the values or expressions of max{h :
(h, k) ∈ Rq, k ∈ R+} and max{k : (h, k) ∈ Rq, h ∈ R+} are not solved yet.
Hence it is worthwhile finding extremal values hM and kM . We discuss the
values of hM and kM below.

Lemma 3.4. Under the same notation in (3.3), we have 0 < hM < 14
100 .

Proof. We can obtain that

ρ

(
14

100
, t

)
=

1

156250000

9∑
k=0

ckt
k,

where

c0 = −73892007, c1 = −299457081, c2 = 217020204, c3 = 195013758,

c4 = 243084610, c5 = −308008392, c6 = −424167096, c7 = −364763406,

c8 = −146669607, c9 = −32408775.

This can be represented by

9∑
k=0

ckt
k < 107(−29t+ 30t2 + 20t3 + 25t4 − 30t5 − 40t6 − 35t7 − 10t8 − 3t9)

= 107t(−29 + 30t+ 20t2 + 25t3 − 30t4 − 40t5 − 35t6 − 10t7 − 3t8)

= 107t((−4 + 20t2 − 30t4) + (−5 + 25t3 − 35t6)− 10t7 − 3t8 − η(t))

= 107t

(
−A2 − 5B2 − 101

84
− 10t7 − 3t8 − η(t)

)
,

where A =
√

30t2 −
√

10
3 , B =

√
7t3 − 5√

28
and η(t) = 20 − 30t + 40t5. Here,

since η(t) has exactly one critical number 4

√
3
20 on R+ and η′′(t) > 0 on R+,

η(t) has a positive minimum at 4

√
3
20 . So, ρ

(
14
100 , t

)
is negative and since C is a

loop in the first quadrant, C lies on the left side of a line h = 14
100 . �

Recall Descartes’ rule of signs that if p(x) is a polynomial with real coef-
ficients, then the number of positive roots either is equal to the number of
variations in sign of p(x) or is less than that number by an even number; and
the number of negative roots either is equal to the number of variations in sign
of p(−x) or is less than that number by an even number.

Lemma 3.5. Given h > 0, there exist at most two roots (possibly a double
root) k0 > 0 such that p(h, k0) = 0.
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Proof. According to Lemma 3.4, it is sufficient to consider h < 14
100 . Recall that

p (h, k) = −
9∑
i=0

ξi(h)ki,

where ξi(h) are shown in (2.2). Here, all of the coefficients of ξi(h), i =
0, 1, 7, 8, 9 are positive and ξi(h), i = 2, 3, 4, 5, 6 has one variation in sign, so
it has exactly one positive root εi for i = 2, 3, 4, 5, 6, respectively. Especially,
ε6 ≈ 0.0584537 and ε2, ε3, ε4, ε5 >

14
100 , so ξ2(h), ξ3(h), ξ4(h), ξ5(h) are negative

for h < 14
100 . Hence the signs of the coefficients of p(h, k) change twice as a

polynomial in k for h < 14
100 . By Descartes’ rule of signs, it follows that for

fixed h > 0, the equation p(h, k) = 0 of k has no or two roots. �

We may obtain the following lemma similarly.

Lemma 3.6. Given k > 0, there exist at most two roots (possibly a double
root) h0 > 0 such that p(h0, k) = 0.

Note that C consists of two functions k = f1(h) and k = f2(h) on the interval
(0, hM ]. Similarly, C consists of two functions h = g1(k) and h = g2(k) on the
interval (0, kM ].

Combining above lemmas, we obtain the main theorem of this paper.

Theorem 3.7. The region R is a simply connected with boundary ∂R such
that

(i) ∂R is a loop with polar form r = f(θ), 0 ≤ θ ≤ π
2 ,

(ii) the tangent lines of ∂R near origin (0, 0) converge to the x- and y-axes,
(iii) card(∂R∩ {(a, k) : k ∈ R}) = 2, where 0 < a < hM ,
(iv) card(∂R∩ {(h, b) : h ∈ R}) = 2, where 0 < b < kM .2

4. Further remarks

Let α(x, y) : 1, (1,
√
x,
√
y)∧ be a weight sequence with x = 1 + h and

y = 1 + h + k (h, k ∈ R+). Recall that hM and kM are well defined (see
Section 3). The problems of expressions about the extremal values hM and kM
are a parallel ones which were suggested as a question in [9, Prob. 5.1]. So it is
worth describing the extremal values hM and kM . For this purpose, we denote

(4.1) Q := Q(h, t) =
∂ρ

∂t
=

5∑
i=0

φ′i(t)h
i.

From (3.2), we obtain

dk

dh
=
dt

dh
h+ t =

S

Q
,

2card(·) denotes for the cardinality of ·.
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for a polynomial

(4.2) S := S(h, t) =

4∑
j=0

νj(t)h
j ,

where

ν0(t) = 8t2 + 12t3 + 20t4 + 10t5 + 6t6,

ν1(t) = 2− 4t2 + 2t3 − 6t4 − 32t5 − 60t6 − 54t7 − 28t8 − 8t9,

ν2(t) = 16 + 37t− 101t3 − 218t4 − 306t5 − 308t6 − 215t7 − 96t8 − 21t9,

ν3(t) = 36 + 138t+ 180t2 − 322t4 − 536t5 − 504t6 − 304t7 − 110t8 − 18t9,

ν4(t) = 32 + 165t+ 336t2 + 302t3 − 288t5 − 320t6 − 174t7 − 48t8 − 5t9,

ν5(t) = 10 + 64t+ 168t2 + 224t3 + 140t4 − 56t6 − 32t7 − 6t8.

Hence we arrive at the following proposition.

Proposition 4.1. Under the notation as in (3.3), we have that
(i) hM = max {h : ρ(h, t) = 0 and Q(h, t) = 0} ,
(ii) kM = max {th : ρ(h, t) = 0 and S(h, t) = 0} ,

where ρ(h, t), Q(h, t) and S(h, t) are as in (3.1), (4.1) and (4.2), respectively.

Before closing this note, we describe the curvature of ∂R for the further
information above the shape of R. Since k = th,

d2k

dh2
=
d2t

dh2
h+ 2

dt

dh
,

and since ρ(h, t) = 0 on C,
∂ρ

∂t

dt

dh
+
∂ρ

∂h
= 0.

By differentiation with respect to h, we obtain that[
∂2ρ

∂t2
dt

dh
+

∂

∂h

(
∂ρ

∂t

)]
dt

dh
+
∂ρ

∂t

d2t

dh2
+
∂

∂t

(
∂ρ

∂h

)
dt

dh
+
∂2ρ

∂h2
= 0.

Then

(4.3)
d2t

dh2
= −

(
∂2ρ
∂t2

dt
dh + ∂2ρ

∂h∂t

)
dt
dh + ∂2ρ

∂t∂h
dt
dh + ∂2ρ

∂h2

∂ρ
∂t

.

It follows from (4.3) that

d2k

dh2
=

2(t+ 1)P

Q3
,

where a polynomial P := P (h, t) as follows:

(4.4) P (h, t) =

14∑
j=0

µj(t)h
j
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(see https://arxiv.org/pdf/1803.03349.pdf for detail expression). Hence the
curvature κ of C can be represented by

κ =

∣∣∣ d2kdh2

∣∣∣(
1 +

(
dk
dh

)2) 3
2

=
2(t+ 1) |P |
(Q2 + S2)

3
2

.
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