• 제목/요약/키워드: Voltage balancing control

검색결과 146건 처리시간 0.029초

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.

Leg-Balancing Control of the DC-link Voltage for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Lin, Jiliang
    • Journal of Power Electronics
    • /
    • 제12권5호
    • /
    • pp.739-747
    • /
    • 2012
  • This paper applies carrier phase shifted pulse-width modulation (CPS-PWM) to transformerless modular multilevel converters (MMC) to improve the output spectrum. Because the MMC topology is characterized by the double-star connection of six legs consisting of cascaded modular chopper cells with floating capacitors, the balance control of the DC-link capacitor voltage is essential for safe operation. This paper presents a leg-balancing control strategy to achieve DC-link voltage balance under all operating conditions. This strategy based on circulating current decoupling control focused on DC-link balancing between the upper and lower legs in each phase pair by considering the six legs as three independent phase-pairs. Experiments are implemented on a 100-V 3-kVA downscaled prototype. The experimental results show that the proposed leg-balancing control is both effective and practical.

7-레벨 PWM 인버터의 직렬 커패시터 입력전원의 전압균형제어 (Voltage Balancing Control of Input Voltage Source Employing Series-connected Capacitors in 7-level PWM Inverter)

  • 김진산;강필순
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.209-215
    • /
    • 2018
  • This paper present a 7-level PWM inverter adopting voltage balancing control to series-connected input capacitors. The prior proposed 7-level PWM inverter consists of dc input source, three series-connected capacitors, two bidirectional switch modules, and an H-bridge. This circuit topology is useful to increase the number of output voltage levels, however it fails to generate 7-level in output voltage without consideration for voltage balancing among series-connected capacitors. Capacitor voltage imbalance is caused on the different period between charging and discharging of capacitor. To solve this problem, we uses the amplitude modulation of carrier wave, which is used to produce the center output voltage level. To verify the validity of the proposed control method, we carried out computer-aided simulation and experiments using a prototype.

예측제어를 이용한 T-형 3-레벨 인버터의 중성점 전압제어 (The DC-link Voltage Balancing of the Three-Level T-type Inverter Using the Predictive Control)

  • 김태훈;이우철
    • 전기학회논문지
    • /
    • 제65권2호
    • /
    • pp.311-318
    • /
    • 2016
  • This paper is a study on the neutral point voltage balancing of the three-phase 3-level T-type inverter using the predictive control techniques. Recently, multi-level inverter has been attracting attention as the advantages such as efficiency improving and harmonic reduction. Especially, the T-type inverter topology is advantageous in low DC-link voltage. However, in case of the prediction control, it takes a lot of time, because there exist 27 voltage vectors and it has to be calculated according to the respective voltage vectors. Therefore, in this paper, we propose a method to implement predictive control techniques while reducing the operation time. In order to reduce the operation time, the predictive control is implemented by using the minimum voltage vector except for the unnecessary voltage vector. The result of the implemented predictive control is added to the SPWM by using the offset voltage. It was verified through simulation and experimental results.

An Optimized Control Method Based on Dual Three-Level Inverters for Open-end Winding Induction Motor Drives

  • Wu, Di;Su, Liang-Cheng;Wu, Xiao-Jie;Zhao, Guo-Dong
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.315-323
    • /
    • 2014
  • An optimized space vector pulse width modulation (SVPWM) method with common mode voltage elimination and neutral point potential balancing is proposed for an open-end winding induction motor. The motor is fed from both of the ends with two neutral point clamped (NPC) three-level inverters. In order to eliminate the common mode voltage of the motor ends and balance the neutral point potential of the DC link, only zero common mode voltage vectors are used and a balancing control factor is gained from calculation in the strategy. In order to improve the harmonic characteristics of the output voltages and currents, the balancing control factor is regulated properly and the theoretical analysis is provided. Simulation and experimental results show that by adopting the proposed method, the common mode voltage can be completely eliminated, the neutral point potential can be accurately balanced and the harmonic performance for the output voltages and currents can be effectively improved.

A PDPWM Based DC Capacitor Voltage Control Method for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Liu, Teng
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.660-669
    • /
    • 2015
  • This paper presents a control scheme with a focus on the combination of phase disposition pulse width modulation (PDPWM) and DC capacitor voltage control for a chopper-cell based modular multilevel converter (MMC) for the purpose of eliminating the time-consuming voltage sorting algorithm and complex voltage balancing regulators. In this paper, the convergence of the DC capacitor voltages within one arm is realized by charging the minimum voltage module and discharging the maximum voltage module during each switching cycle with the assistances of MAX/MIN capacitor voltage detection and PDPWM signals exchanging. The process of voltage balancing control introduces no extra switching commutation, which is helpful in reducing power loss and improving system efficiency. Additionally, the proposed control scheme also possess the merit of a simple executing procedure in application. Simulation and experimental results indicates that the MMC circuit together with the proposed method functions very well in balancing the DC capacitor voltage and improving system efficiency even under transient states.

전기자동차 충전소용 양방향 DC-DC 컨버터 기능을 갖는 전압 밸런서 (A New Voltage Balancer With Bidirectional DC-DC Converter Function for EV Charging Station)

  • 남현택;김상훈;차헌녕;김흥근
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.313-320
    • /
    • 2018
  • This study proposes a new voltage balancer with bidirectional DC-DC converter function. The proposed balancer can serve as a voltage balancer and a bidirectional DC-DC converter. Thus, the balancer can be applied to battery management systems or fast chargers in electric vehicles (EVs) charging stations while balancing bipolar DC bus voltages. The proposed system has unlimited voltage balancing range unlike the conventional voltage balancing control using a three-level DC-DC converter. A comparison of the voltage balancing range between the proposed and conventional scheme is explored to confirm this superiority. Simulation and experimental results are provided to validate the effectiveness of the proposed system.

4-레벨 인버터의 DC-링크 전압 균형을 위한 향상된 전압 제어 기법 (An Improved Voltage Control Scheme for DC-Link Voltage Balancing in a Four-Level Inverter)

  • 김래영;이요한;최창호;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권10호
    • /
    • pp.544-554
    • /
    • 1999
  • Multi-level inverters are now receiving widespread interest form the industrial drives for high power variable speed applications. Especially, for the high power variable speed applications, a diode clamped multi-level inverter has been widely used. However, it has the inherent problem that the voltage of the link capacitors fluctuates. This paper describes a voltage control scheme effectively to suppress the DC-link potential fluctuation for a diode clamped four-level inverter. The current to flow from/into the each link capacitor is analyzed and the operation limit is obtained when a conventional SVPWM is used. To overcome the operation limit, a modified carrier-based SVPWM is proposed. Various simulation and experiment results are presented to verify the proposed voltage control scheme for DC-link voltage balancing.

  • PDF

Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC

  • Nam, Taesik;Kim, Heejin;Kim, Sangmin;Son, Gum Tae;Chung, Yong-Ho;Park, Jung-Wook;Kim, Chan-Ki;Hur, Kyeon
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.829-838
    • /
    • 2016
  • This paper focuses on the engineering trade-offs in designing capacitor voltage balancing schemes for modular multilevel converters (MMC) HVDC: regulation performance and switching loss. MMC is driven by the on/off switch operation of numerous submodules and the key design concern is balancing submodule capacitor voltages minimizing switching transition among submodules because it represents the voltage regulation performance and system loss. This paper first introduces the state-of-the-art MMC-HVDC submodule capacitor voltage balancing methods reported in the literatures and discusses the trade-offs in designing these methods for HVDC application. This paper further proposes a submodule capacitor balancing scheme exploiting a control signal to flexibly interchange between the on-state and the off-state submodules. The proposed scheme enables desired performance-based voltage regulation and avoids unnecessary switching transitions among submodules, consequently reducing the switching loss. The flexibility and controllability particularly fit in high-level MMC HVDC applications where the aforementioned design trade-offs become more crucial. Simulation studies for MMC HVDC are performed to demonstrate the validity and effectiveness of the proposed capacitor voltage balancing algorithm.

Capacitor Voltage Boosting and Balancing using a TLBC for Three-Level NPC Inverter Fed RDC-less PMSM Drives

  • Halder, Sukanta;Kotturu, Janardhana;Agarwal, Pramod;Srivastava, Satya Prakash
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.432-444
    • /
    • 2018
  • This paper presents a capacitor voltage balancing topology using a three-level boost converter (TLBC) for a neutral point clamped (NPC) three-level inverter fed surface permanent magnet synchronous motor drive (SPMSM). It enhanced the performance of the drive in terms of its voltage THD and torque pulsation. The main attracting feature of the proposed control is the boosting of the input voltage and at the same time the balancing of the capacitor voltages. This control also reduces the computational complexity. For the purpose of close loop vector control, a software based cost effective resolver to digital converter RDC-less estimation is implemented to calculate the speed and position. The proposed drive is simulated in the MATLAB/SIMULINK environment and an experimental investigation using dSPACE DS1104 validates the proposed drive system at different operating condition.