Browse > Article
http://dx.doi.org/10.5370/JEET.2016.11.4.829

Trade-Off Strategies in Designing Capacitor Voltage Balancing Schemes for Modular Multilevel Converter HVDC  

Nam, Taesik (LSIS Co. Ltd)
Kim, Heejin (Dept. of Electrical and Electronic Engineering, Yonsei University)
Kim, Sangmin (Dept. of Electrical and Electronic Engineering, Yonsei University)
Son, Gum Tae (LSIS Co. Ltd)
Chung, Yong-Ho (LSIS Co. Ltd)
Park, Jung-Wook (Dept. of Electrical and Electronic Engineering, Yonsei University)
Kim, Chan-Ki (Korea Electric Power Research Institute Power System Research Laboratory)
Hur, Kyeon (Yonsei University)
Publication Information
Journal of Electrical Engineering and Technology / v.11, no.4, 2016 , pp. 829-838 More about this Journal
Abstract
This paper focuses on the engineering trade-offs in designing capacitor voltage balancing schemes for modular multilevel converters (MMC) HVDC: regulation performance and switching loss. MMC is driven by the on/off switch operation of numerous submodules and the key design concern is balancing submodule capacitor voltages minimizing switching transition among submodules because it represents the voltage regulation performance and system loss. This paper first introduces the state-of-the-art MMC-HVDC submodule capacitor voltage balancing methods reported in the literatures and discusses the trade-offs in designing these methods for HVDC application. This paper further proposes a submodule capacitor balancing scheme exploiting a control signal to flexibly interchange between the on-state and the off-state submodules. The proposed scheme enables desired performance-based voltage regulation and avoids unnecessary switching transitions among submodules, consequently reducing the switching loss. The flexibility and controllability particularly fit in high-level MMC HVDC applications where the aforementioned design trade-offs become more crucial. Simulation studies for MMC HVDC are performed to demonstrate the validity and effectiveness of the proposed capacitor voltage balancing algorithm.
Keywords
Modular multilevel converter (MMC); High voltage direct current (HVDC); Capacitor voltage balancing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Hagiwara and H. Akagi, “Control and experiment of pulse width modulated modular multilevel converters,” IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1737-1746, Jul. 2009.   DOI
2 J. Qin, and M. Saeedifard, “Reduced SwitchingFrequency Voltage-Balancing Strategies for Modular Multilevel HVDC Converters,” IEEE Trans. Power Delivery, vol. 28, no. 4, pp. 2403-2410, Oct. 2013.   DOI
3 F. Deng, and Z. Chen, “A Control Method for Voltage Balancing in Modular Multilevel Converters,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 66-76, Jan. 2014.   DOI
4 Kim, H.; Kim, S.; Chung, Y.; Yoo, D.; Kim, C.; Hur, K., “Operating Region of Modular Multilevel Converter for HVDC with Controlled Second-order Harmonic Circulating Current: Elaborating P-Q Capability,” in Power Delivery, IEEE Transactions on (early access).
5 G. T. Son, H. J. Lee, T. S. Nam, Y. H. Chung, U. H. Lee, S. T. Baek, K. Hur, and J. W. Park, “Design and Control of a Modular Multilevel HVDC Converter with Redundant Power Modules for Non-Interruptible Energy Transfer,” IEEE Trans. on power delivery, vol. 27, no. 3, pp. 1611-1619, July 2012.   DOI
6 Q. Tu, Z. Xu, and L. Xu, “Reduced switching-frequency modulation and circulating current sup pression for modular multilevel converters,” IEEE Trans. Power Del., vol. 26, no. 3, pp. 2009-2017, Jul. 2011.   DOI
7 A. Lesnicar, J. Hildinger, and R. Marquardt, “Modulares stromrichterkonzept fr netzkupplungsanwendungen bei hohen spannungen,” in Proc. ETG-Fachbericht, Bad Nauheim, Germany, vol. 88, pp. 155-161, Apr. 2002.
8 D. Siemaszko, “Fast Sorting Method for Balancing Capacitor Voltages in Modular Multilevel Converters,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 463-470 , Jan. 2015.
9 I. Kalle, T. Franz, N. Staffan, A. Antonios, H. Lennart, and N. Hans-Peter, “A submodule implementation for parallel connection of capacitors in modular multilevel converters,” in Proc. 15th Eur. Conf. Power Electron. Appl., Sep. 2-6, 2013, pp. 1-10.
10 K. Ilves, L. Harnefors, S. Norrga, and H.-P. Nee, “Predictive sorting algorithm for modular multilevel converters minimizing the spread in the submodule capacitor voltages,” in Proc. IEEE Asia Downunder, Jun. 3-6, 2013, pp. 325-331.
11 U. Drofenik and J. Kolar, “A general scheme for calculating switching and conduction-losses of power semiconductors in numerical circuit simulations of power electronic systems,” Proc. Int. Power Electron. Conf., 2005
12 A. D. Rajapakse, A. M. Gole, and P. L. Wilson, “Electromagnetic transients simulation models for accurate representation of switching losses and thermal performance in power electronic systems,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 319-327, Jan. 2005.   DOI
13 M. Saeedifard and R. Iravani, “Dynamic performance of a modular multilevel back-to-back HVDC system,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2903-2912, Oct. 2010.   DOI
14 S. Rohner, S. Bernet, M. Hiller, and R. Sommer, “Modulation, losses and semiconductor requirements of modular multilevel converters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2633-2642, Aug. 2010.   DOI
15 Z. Li, P. Wang, H. Zhu, Z. Chu, and Y. Li, “An improved pulse width modulation method for chopper-cell-based multilevel inverters,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3472-3481, Aug. 2012.   DOI
16 J. Mei, B. Xiao, K. Shen, L. M. Tolbert, and J. Y. Zheng, “Modular multilevel inverter with new modulation method and its application to photovoltaic grid-connected generator,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5063-5073, Nov. 2013.   DOI
17 F. Shengfang, Z. Kai, X. Jian, and X. Yaosuo, “An improved control system for modular multilevel converters featuring new modulation strategy and voltage balancing control,” in Proc. IEEE Energy Convers. Congr. Expo., Sep. 15-19, 2013, pp. 4000-4007.
18 N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics-Converters, Applications and Design, 3rd ed. New York: Wiley, 2003.
19 G. T. Son, S. H. Lee, and J. Park, “Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System,” J. Elect. Eng. Technol., vol. 9, no. 5, pp. 1471-1481, 2014.   DOI
20 G. T. Son, K. Hur, J. W. Park, S. T. Beak, U. H. Lee, and Y. H Chung, “Computationally Efficient Sub-module Selection Scheme for Voltage Balancing Controller of Modular Multilevel Converter,” in Proc. CIGRE Meeting 2012, Paris, pp. 1-8.
21 P. T. Krein, Elements of Power Electronics. New York, NY: Oxford Univ. Press, 1998.
22 R. Marquardt, and A. Lesnicar, “A new modular voltage source inverter topology,” in Proc. Euro. Conf. Power Electron. Appl. (EPE), 2003, CD-ROM
23 U. N. Gnanarathna, A. M. Gole, and R. P. Jayasinghe, “Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs,” IEEE Trans. Power Delivery, vol. 26, no. 1, pp.316-324. Jan. 2011.   DOI
24 S. Teeuwsen, “Modeling the Trans Bay Cable project as voltage-sourced converter with modular multilevel converter design,” in Proc. IEEE Power Energy Soc. Annu. Meeting, pp. 1-8, Jul. 2011.
25 K. Wang, Y. Li, Z. Zheng, and L. Xu, “Voltage balancing and fluctuation suppression methods of floating capacitors in a new modular multilevel converter,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1943-1954, May 2013.   DOI
26 M. Guan and Z. Xu, “Control and modulation strategies for modular multilevel converter based HVDC system,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc., pp. 849-854, Nov. 2011.
27 M. Hagiwara, R. Maeda, and H. Akagi, “Control and analysis of the modular multilevel cascade converter based on double-star chopper cells (MMCC-DSCC),” IEEE Trans. Power Electron., vol. 26, no. 6, pp. 1649-1658, Jun. 2011.   DOI
28 H. Akagi, “Classification, terminology, and application of the modular multilevel cascade converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3119-3130, Nov. 2011.   DOI