• Title/Summary/Keyword: Viral host

Search Result 300, Processing Time 0.024 seconds

Systems biology of virus-host signaling network interactions

  • Xue, Qiong;Miller-Jensen, Kathryn
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.213-220
    • /
    • 2012
  • Viruses have evolved to manipulate the host cell machinery for virus propagation, in part by interfering with the host cellular signaling network. Molecular studies of individual pathways have uncovered many viral host-protein targets; however, it is difficult to predict how viral perturbations will affect the signaling network as a whole. Systems biology approaches rely on multivariate, context-dependent measurements and computational analysis to elucidate how viral infection alters host cell signaling at a network level. Here we describe recent advances in systems analyses of signaling networks in both viral and non-viral biological contexts. These approaches have the potential to uncover virus- mediated changes to host signaling networks, suggest new therapeutic strategies, and assess how cell-to-cell variability affects host responses to infection. We argue that systems approaches will both improve understanding of how individual virus-host protein interactions fit into the progression of viral pathogenesis and help to identify novel therapeutic targets.

Topological implications of DNA tumor viral episomes

  • Eui Tae, Kim;Kyoung-Dong, Kim
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.587-594
    • /
    • 2022
  • A persistent DNA tumor virus infection transforms normal cells into cancer cells by either integrating its genome into host chromosomes or retaining it as an extrachromosomal entity called episome. Viruses have evolved mechanisms for attaching episomes to infected host cell chromatin to efficiently segregate the viral genome during mitosis. It has been reported that viral episome can affect the gene expression of the host chromosomes through interactions between viral episomes and epigenetic regulatory host factors. This mini review summarizes our current knowledge of the tethering sites of viral episomes, such as EBV, KSHV, and HBV, on host chromosomes analyzed by three-dimensional genomic tools.

Dynamics of Viral and Host 3D Genome Structure upon Infection

  • Meyer J. Friedman;Haram Lee;Young-Chan Kwon;Soohwan Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1515-1526
    • /
    • 2022
  • Eukaryotic chromatin is highly organized in the 3D nuclear space and dynamically regulated in response to environmental stimuli. This genomic organization is arranged in a hierarchical fashion to support various cellular functions, including transcriptional regulation of gene expression. Like other host cellular mechanisms, viral pathogens utilize and modulate host chromatin architecture and its regulatory machinery to control features of their life cycle, such as lytic versus latent status. Combined with previous research focusing on individual loci, recent global genomic studies employing conformational assays coupled with high-throughput sequencing technology have informed models for host and, in some cases, viral 3D chromosomal structure re-organization during infection and the contribution of these alterations to virus-mediated diseases. Here, we review recent discoveries and progress in host and viral chromatin structural dynamics during infection, focusing on a subset of DNA (human herpesviruses and HPV) as well as RNA (HIV, influenza virus and SARS-CoV-2) viruses. An understanding of how host and viral genomic structure affect gene expression in both contexts and ultimately viral pathogenesis can facilitate the development of novel therapeutic strategies.

Relationship Between Plant Viral Encoded Suppressor to Post-transcriptional Gene Silencing and Elicitor to R Gene-specific Host Resistance

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • Many important horticultural and field crops are susceptible to virus infections or may possess a degree of resistance to some viruses, but become infected by others. Plant viruses enter cells through the presence of wounds, and replicate intracellularly small genomes that encode genes required for replication, cell-to-cell movement and encapsidation. There are numerous evidences from specific virus-host interactions to require the involvement of host factors and steps during viral replication cycle. However, viruses should deal with host defense responses either by general or specific mechanisms, targeting viral components or genome itself. On the other hand, the host plants have also adapted to defend themselves against viral attack by operating different lines of resistance responses. The defense-related interactions provide new insights into the complex molecular strategies for hosts for defense and counter-defense employed by viruses.

The Importance of Host Factors for the Replication of Plant RNA Viruses (식물 바이러스 증식에 관여하는 기주 요인의 중요성)

  • Park Mi-Ri;Kim Kook-Hyung
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • All viruses have few genes relative to their hosts. Viruses, thus, utilize many host factors for efficient viral replication in host cell. Virus-host interactions are crucial determinations of host range, replication, and pathology. Host factors participate in most steps of positive-strand RNA virus infection, including entry, viral gene expression, virion assembly, and release. Recent data show that host factors play important roles in assembling the viral RNA replication complex, selecting and recruiting viral RNA replication templates, activating the viral complex for RNA synthesis, and the other steps. These virus-host interactions may contribute to the host specificity and/or pathology. Positive-strand RNA viruses encompass over two-thirds of all virus genera and include numerous pathogens. This review focuses on the importance of host factors involved in positive strand plant RNA virus genome replication.

Beyond Viral Interferon Regulatory Factors: Immune Evasion Strategies

  • Myoung, Jinjong;Lee, Shin-Ae;Lee, Hye-Ra
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1873-1881
    • /
    • 2019
  • The innate immune response serves as a first-line-of-defense mechanism for a host against viral infection. Viruses must therefore subvert this anti-viral response in order to establish an efficient life cycle. In line with this fact, Kaposi's sarcoma-associated herpesvirus (KSHV) encodes numerous genes that function as immunomodulatory proteins to antagonize the host immune system. One such mechanism through which KSHV evades the host immunity is by encoding a viral homolog of cellular interferon (IFN) regulatory factors (IRFs), known as vIRFs. Herein, we summarize recent advances in the study of the immunomodulatory strategies of KSHV vIRFs and their effects on KSHV-associated pathogenesis.

Foamy Virus Integrase in Development of Viral Vector for Gene Therapy

  • Kim, Jinsun;Lee, Ga-Eun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1273-1281
    • /
    • 2020
  • Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.

Virus-induced Silencing of the WRKY1 Transcription Factor that Interacts with the SL1 Structure of Potato virus X Leads to Higher Viral RNA Accumulation and Severe Necrotic Symptoms

  • Park, Sang-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.40-48
    • /
    • 2012
  • $Potato$ $virus$ $X$ (PVX) replication is precisely regulated by regulatory viral sequences and by viral and/or host proteins. In a previous study, we identified a 54-kDa cellular tobacco protein that bound to a region within the first 46 nucleotides (nt) of the 5' non-translated region (NTR) of the viral genome. Optimal binding was dependent upon the presence of an ACCA sequence at nt 10-13. To identify host factors that bind to 5' NTR elements including AC-rich sequences as well as stemloop 1 (SL1), we used northwestern blotting and matrixassisted laser desorption/ionization time-of-flight mass spectrometry for peptide mass fingerprinting. We screened several host factors that might affect PVX replication and selected a candidate protein, $Nicotiana$ $tabacum$ WRKY transcription factor 1 (NtWRKY1). We used a $Tobacco$ $rattle$ $virus$ (TRV)-based virus-induced gene silencing (VIGS) system to investigate the role of NtWRKY1 in PVX replication. Silencing of $WRKY1$ in $Nicotiana$ $benthamiana$ caused lethal apical necrosis and allowed an increase in PVX RNA accumulation. This result could reflect the balancing of PVX accumulation in a systemic $N.$ $benthamiana$ host to maintain PVX survival and still produce a suitable appearance of mosaic and mottle symptoms. Our results suggest that PVX may recruit the WRKY transcription factor, which binds to the 5' NTR of viral genomic RNA and acts as a key regulator of viral infection.

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

Structure and Function of the Influenza A Virus Non-Structural Protein 1

  • Han, Chang Woo;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1184-1192
    • /
    • 2019
  • The influenza A virus is a highly infectious respiratory pathogen that sickens many people with respiratory disease annually. To prevent outbreaks of this viral infection, an understanding of the characteristics of virus-host interaction and development of an anti-viral agent is urgently needed. The influenza A virus can infect mammalian species including humans, pigs, horses and seals. Furthermore, this virus can switch hosts and form a novel lineage. This so-called zoonotic infection provides an opportunity for virus adaptation to the new host and leads to pandemics. Most influenza A viruses express proteins that antagonize the antiviral defense of the host cell. The non-structural protein 1 (NS1) of the influenza A virus is the most important viral regulatory factor controlling cellular processes to modulate host cell gene expression and double-stranded RNA (dsRNA)-mediated antiviral response. This review focuses on the influenza A virus NS1 protein and outlines current issues including the life cycle of the influenza A virus, structural characterization of the influenza A virus NS1, interaction between NS1 and host immune response factor, and design of inhibitors resistant to the influenza A virus.