Browse > Article
http://dx.doi.org/10.4014/jmb.2003.03046

Foamy Virus Integrase in Development of Viral Vector for Gene Therapy  

Kim, Jinsun (Department of Systems Biotechnology, Chung-Ang University)
Lee, Ga-Eun (Department of Systems Biotechnology, Chung-Ang University)
Shin, Cha-Gyun (Department of Systems Biotechnology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.9, 2020 , pp. 1273-1281 More about this Journal
Abstract
Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.
Keywords
Foamy virus; integrase; intasome; viral vector;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bocket M, et al. 1997. Human foamy virus reverse transcription that occurs late in the viral replication cycle. J. Virol. 71: 7305-7311.   DOI
2 Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, et al. 2018. Spumaretroviruses: updated taxonomy and nomenclature. Virology 516: 158-164.   DOI
3 King AMQ, Lefkowitz EJ, Mushegian AR, Adams MJ, Dutilh BE, Gorbalenya AE, et al. 2018. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Arch. Virol. 163: 2601-2631.   DOI
4 Hamann MV, Stanke N, Mullers E, Stirnnagel K, Hutter S, Artegiani, B, et al. 2014. Efficient transient genetic manipulation in vitro and in vivo by prototype foamy virus-mediated nonviral RNA transfer. Mol. Ther. 22: 1460-1471.   DOI
5 Burtner CR, Beard BC, Kennedy DR, Wohlfahrt ME, Adair JE, Trobridge GD, et al. 2014. Intravenous injection of a foamy virus vector to correct canine SCID-X1. Blood 123: 3578-3584.   DOI
6 Humbert O, Chan F, Rajawat YS, Torgerson TR, Burtner CR, Hubbard NW, et al. 2018. Rapid immune reconstitution of SCID-X1 canines after G-CSF/AMD3100 mobilization and in vivo gene therapy. Blood Adv. 2: 987-999.   DOI
7 Rajawat YS, Humbert O, Kiem HP. 2019. In-vivo gene therapy with foamy virus vectors. Viruses 11: 1091.   DOI
8 Trobridge GD, Horn PA, Beard BC, Kiem HP. 2012. Large animal models for foamy virus vector gene therapy. Viruses 4: 3572-3588.   DOI
9 Meng J, Sweeney NP, Doreste B, Muntoni F, McClure M, Morgan J. 2020. Restoration of functional full-length dystrophin after intramuscular transplantation of foamy virus-transduced myoblasts. Hum. Gene. Ther. 31: 241-252.   DOI
10 Vassilopoulos G, Trobridge G, Josephson NC, Russell DW. 2001. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 98: 604-609.   DOI
11 Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont-Sarcos A, Tarrago-Litvak L, et al. 2005. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res. 33: 977-986.   DOI
12 Bao KK, Wang H, Miller JK, Erie DA, Skalka AM, Wong I. 2003. Functional oligomeric state of avian sarcoma virus integrase. J. Biol. Chem. 278: 1323-1327.   DOI
13 Jonsson CB, Donzella GA, Gaucan E, Smith CM, Roth MJ. 1996. Functional domains of Moloney murine leukemia virus integrase defined by mutation and complementation analysis. J. Virol. 70: 4585-4597.   DOI
14 Wei SQ, Mizuuchi K, Craigie R. 1997. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16: 7511-7520.   DOI
15 van Gent DC, Vink C, Groeneger AA, Plasterk RH. 1993. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12: 3261-3267.   DOI
16 Engelman A, Bushman FD, Craigie R. 1993. Identification of discrete functional domains of HIV‐1 integrase and their organization within an active multimeric complex. EMBO J. 12: 3269-3275.   DOI
17 Jones KS, Coleman J, Merkel GW, Laue TM, Skalka AM. 1992. Retroviral integrase functions as a multimer and can turn over catalytically. J. Biol. Chem. 267: 16037-16040.   DOI
18 Maertens GN, Hare S, Cherepanov P. 2010. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468: 326-329.   DOI
19 Chen H, Wei SQ, Engelman A. 1999. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J. Biol. Chem. 274: 17358-17364.   DOI
20 Grawenhoff J, Engelman AN. 2017. Retroviral integrase protein and intasome nucleoprotein complex structures. World J. Biol. Chem. 8: 32-44.   DOI
21 Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. 2010. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464: 232-236.   DOI
22 Ballandras-Colas A, Maskell DP, Serrao E, Locke J, Swuec P, Jonsson SR, et al. 2017. A supramolecular assembly mediates lentiviral DNA integration. Science 355: 93-95.   DOI
23 Roberts VA. 2015. C-terminal domain of integrase binds between the two active sites. J. Chem. Theory Comput. 11: 4500-4511.   DOI
24 Serrao E, Ballandras-Colas A, Cherepanov P, Maertens GN, Engelman AN. 2015. Key determinants of target DNA recognition by retroviral intasomes. Retrovirology 12: 39.   DOI
25 Yin Z, Lapkouski M, Yang W, Craigie R. 2012. Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration. Protein Sci. 21: 1849-1857.   DOI
26 Bosserman MA, O'Quinn DF, Wong I. 2007. Loop202-208 in avian sarcoma virus integrase mediates tetramer assembly and processing activity. Biochemistry 46: 11231-11239.   DOI
27 Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P. 2009. Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog. 5: e1000515.   DOI
28 Heuer TS, Brown PO. 1998. Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase−DNA complex. Biochemistry 37: 6667-6678.   DOI
29 Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, et al. 2003. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278: 372-381.   DOI
30 Hare S, Maertens GN, Cherepanov P. 2012. 3'-Processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J. 31: 3020-3028.   DOI
31 Mackler RM, Lopez Jr MA, Yoder KE. 2018. Assembly and purification of prototype foamy virus intasomes. J. Vis. Exp. 133: e57453.
32 Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, et al. 2005. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol. 3: 848-858.   DOI
33 Wu X, Li Y, Crise B, Burgess SM, Munroe DJ. 2005. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J. Virol. 79: 5211-5214.   DOI
34 Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, et al. 2007. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21: 1767-1778.   DOI
35 MacNeil A, Sankale JL, Meloni ST, Sarr AD, Mboup S, Kanki P. 2006. Genomic sites of human immunodeficiency virus type 2 (HIV-2) integration: similarities to HIV-1 in vitro and possible differences in vivo. J. Virol. 80: 7316-7321.   DOI
36 Holman AG, Coffin JM. 2005. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc. Natl. Acad. Sci. USA 102: 6103-6107.   DOI
37 Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521-529.   DOI
38 Crise B, Li Y, Yuan C, Morcock DR, Whitby D, Munroe DJ, et al. 2005. Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1. J. Virol. 79: 12199-12204.   DOI
39 Hacker CV, Vink CA, Wardell TW, Lee S, Treasure P, Kingsman SM, et al. 2006. The integration profile of EIAV-based vectors. Mol. Ther. 14: 536-545.   DOI
40 Kang Y, Moressi CJ, Scheetz TE, Xie L, Tran DT, Casavant TL, et al. 2006. Integration site choice of a feline immunodeficiency virus vector. J. Virol. 80: 8820-8823.   DOI
41 Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, et al. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2: e234.   DOI
42 Nowrouzi A, Dittrich M, Klanke C, Heinkelein M, Rammling M, Dandekar T, et al. 2006. Genome-wide mapping of foamy virus vector integrations into a human cell line. J. Gen. Virol. 87: 1339-1347.   DOI
43 Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, et al. 2006. Foamy virus vector integration sites in normal human cells. Proc. Natl. Acad. Sci. USA 103: 1498-1503.   DOI
44 Bodem J. 2011. Regulation of foamy viral transcription and RNA export. Adv. Virus Res. 81: 1-31.   DOI
45 Villanueva RA, Jonsson CB, Jones J, Georgiadis MM, Roth MJ. 2003. Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions. Virology 316: 146-160.   DOI
46 Stevens SW, Griffith JD. 1996. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J. Virol. 70: 6459-6462.   DOI
47 An DG, Hyun U, Shin CG. 2008. Characterization of nuclear localization signals of the prototype foamy virus integrase. J. Gen. Virol. 89: 1680-1684.   DOI
48 Hossain MA, Ali MK, Shin CG. 2014. Nuclear localization signals in prototype foamy viral integrase for successive infection and replication in dividing cells. Mol. Cells 37: 140-148.   DOI
49 Hamid FB, Kim J, Shin CG. 2017. Characterization of prototype foamy virus infectivity in transportin 3 knockdown human 293T cell line. J. Microbiol. Biotechnol. 27: 380-387.   DOI
50 Ali MK, Kim J, Hamid FB, Shin CG. 2015. Knockdown of the host cellular protein transportin 3 attenuates prototype foamy virus infection. Biosci. Biotechnol. Biochem. 79: 943-951.   DOI
51 Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML. 1996. Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271: 1579-1582.   DOI
52 Bodem J, Lochelt M, Winkler I, Flower RP, Delius H, Flugel RM. 1996. Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor site of the pol transcript is located in gag of foamy viruses. J. Virol. 70: 9024-9027.   DOI
53 Lochelt M, Muranyi W, Flugel RM. 1993. Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc. Natl. Acad. Sci. USA 90: 7317-7321.   DOI
54 Lochelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB, et al. 2005. The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc. Natl. Acad. Sci. USA 102: 7982-7987.   DOI
55 Guiot E, Carayon K, Delelis O, Simon F, Tauc P, Zubin E, et al. 2006. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J. Biol. Chem. 281: 22707-22719.   DOI
56 Engelman A, Cherepanov P. 2014. Retroviral integrase structure and DNA recombination mechanism. Microbiol. Spectr. 2: 1-22.
57 Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R, Hare S, et al. 2015. Structural basis for retroviral integration into nucleosomes. Nature 523: 366-369.   DOI
58 Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, et al. 2009. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res. 37: 243-255.   DOI
59 Cherepanov P, Surratt D, Toelen J, Pluymers W, Griffith J, De Clercq E, et al. 1999. Activity of recombinant HIV-1 integrase on mini-HIV DNA. Nucleic Acids Res. 27: 2202-2210.   DOI
60 Lopez Jr MA, Mackler RM, Yoder KE. 2016. Removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J. Virol. Methods 235: 134-138.   DOI
61 Yoo GW, Shin CG. 2013. Biochemical characteristics of functional domains using feline foamy virus integrase mutants. BMB Rep. 46: 53-58.   DOI
62 Lee GE, Kim J, Shin CG. 2019. Single residue mutation in integrase catalytic core domain affects feline foamy viral DNA integration. Biosci. Biotechnol. Biochem. 83: 270-280.   DOI
63 Lee D, Hyun U, Kim JY, Shin CG. 2010. Characterization of biochemical properties of feline foamy virus integrase. J. Microbiol. Biotechnol. 20: 968-973.   DOI
64 Pahl A, Flügel RM. 1995. Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. J. Biol. Chem. 270: 2957-2966.   DOI
65 Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C, et al. 2007. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J. Virol. 81: 6731-6741.   DOI
66 Lochelt M. 2003. Foamy virus transactivation and gene expression, pp. 27-61. In Rethwilm A (ed.), Foamy Viruses. Springer, New York, NY.
67 Ballandras-Colas A, Naraharisetty H, Li X, Serrao E, Engelman A. 2013. Biochemical characterization of novel retroviral integrase proteins. PLoS One 8: e76638.   DOI
68 Berry C, Hannenhalli S, Leipzig J, Bushman FD. 2006. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput. Biol. 2: e157.   DOI
69 Lee HS, Kang SY, Shin CG. 2005. Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Mol. Cells 19: 246-255.
70 Kim J, Lee GE, Lochelt M, Shin CG. 2018. Integrase C-terminal residues determine the efficiency of feline foamy viral DNA integration. Virology 514: 50-56.   DOI
71 Heinkelein M, Leurs C, Rammling M, Peters K. Hanenberg H, Rethwilm A. 2002. Pregenomic RNA is required for efficient incorporation of Pol polyprotein into foamy virus capsids. J. Virol. 76: 10069-10073.   DOI
72 Tobaly‐Tapiero J, Bittoun P, Lehmann‐Che J, Delelis O, Giron ML, de The H, et al. 2008. Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 9: 1717-1727.   DOI
73 Lo YT, Tian T, Nadeau PE, Park J, Mergia A. 2010. The foamy virus genome remains unintegrated in the nuclei of G1/S phase-arrested cells, and integrase is critical for preintegration complex transport into the nucleus. J. Virol. 84: 2832-2842.   DOI
74 Mullers E, Stirnnagel K, Kaulfuss S, Lindemann D. 2011. Prototype foamy virus (PFV) Gag nuclear localization: a novel pathway among retroviruses. J. Virol. 85: 9276-9285.   DOI
75 Lee EG, Roy J, Jackson D, Clark P, Boyer PL, Hughes SH, et al. 2011. Foamy retrovirus integrase contains a Pol dimerization domain required for protease activation. J. Virol. 85: 1655-1661.   DOI
76 Peters K, Barg N, Gärtner K, Rethwilm A. 2008. Complex effects of foamy virus central purine-rich regions on viral replication. Virology 373: 51-60.   DOI
77 Hartl MJ, Bodem J, Jochheim F, Rethwilm A, Rosch P, Wohrl BM. 2011. Regulation of foamy virus protease activity by viral RNA: a novel and unique mechanism among retroviruses. J. Virol. 85: 4462-4469.   DOI
78 Moschall R, Denk S, Erkelenz S, Schenk C, Schaal H, Boden J. 2017. A purine-rich element in foamy virus pol regulates env splicing and gag/pol expression. Retrovirology 14: 10.   DOI
79 Spannaus R, Hartl MJ, Wohrl BM, Rethwilm A, Bodem J. 2012. The prototype foamy virus protease is active independently of the integrase domain. Retrovirology 9: 41.   DOI
80 Pahl A, Flügel RM. 1993. Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J. Virol. 67: 5426-5434.   DOI
81 Sinha S, Grandgenett DP. 2005. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells. J. Virol. 79: 8208-8216.   DOI
82 Li M, Craigie R. 2005. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration. J. Biol. Chem. 280: 29334-29339.   DOI
83 Engelman AN, Cherepanov P. 2017. Retroviral intasomes arising. Curr. Opin. Struct. Biol. 47: 23-29.   DOI
84 Bera S, Pandey KK, Vora AC, Grandgenett DP. 2009. Molecular interactions between HIV-1 integrase and the two viral DNA ends within the synaptic complex that mediates concerted integration. J. Mol. Biol. 389: 183-198.   DOI
85 Li M, Mizuuchi M, Burke Jr TR, Craigie R. 2006. Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J. 25: 1295-1304.   DOI
86 Lopez Jr MA, Mackler RM, Altman MP, Yoder KE. 2017. Detection and removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J. Vis. Exp. 130: e56605.
87 Ciuffi A, Bushman FD. 2006. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet. 22: 388-395.   DOI
88 Delelis O, Carayon K, Guiot E, Leh H, Tauc P, Brochon JC, et al. 2008. Insight into the integrase-DNA recognition mechanism: a specific DNA-binding mode revealed by an enzymatically labeled integrase. J. Biol. Chem. 283: 27838-27849.   DOI
89 Chow SA, Vincent KA, Ellison V, Brown PO. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255: 723-726.   DOI
90 Knyazhanskaya ES, Smolov MA, Kondrashina OV, Gottikh MB. 2009. Relative comparison of catalytic characteristics of human foamy virus and HIV-1 integrases. Acta Naturae 1: 78-80.   DOI
91 Smolov M, Gottikh M, Tashlitskii V, Korolev S, Demidyuk I, Brochon JC, et al. 2006. Kinetic study of the HIV-1 DNA 3‐end processing. FEBS J. 273: 1137-1151.   DOI
92 Kang SY, Ahn DG, Lee C, Lee YS, Shin CG. 2008. Functional nucleotides of U5 LTR determining substrate specificity of prototype foamy virus integrase. J. Microbiol. Biotechnol. 18: 1044-1049.
93 Oh YT, Shin CG. 1999. Comparison of enzymatic activities of the HIV‐1 and HFV integrases to their U5 LTR substrates. IUBMB Life 47: 621-629.   DOI
94 Aiyer S, Rossi P, Malani N, Schneider WM, Chandar A, Bushman FD, et al. 2015. Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Res. 43: 5647-5663.   DOI
95 Mackler RM, Lopez MA, Osterhage MJ, Yoder KE. 2018. Prototype foamy virus integrase is promiscuous for target choice. Biochem. Biophys. Res. Commun. 503: 1241-1246.   DOI
96 Cavazza A, Moiani A, Mavilio F. 2013. Mechanisms of retroviral integration and mutagenesis. Hum. Gene Ther. 24: 119-131.   DOI
97 Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW. 2002. Improved foamy virus vectors with minimal viral sequences. Mol. Ther. 6: 321-328.   DOI
98 Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J, et al. 2002. Improved primate foamy virus vectors and packaging constructs. J. Virol. 76: 3774-3783.   DOI
99 Wiktorowicz T, Peters K, Armbruster N, Steinert AF, Rethwilm A. 2009. Generation of an improved foamy virus vector by dissection of cis-acting sequences. J. Gen. Virol. 90: 481-487.   DOI
100 Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM. 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331-2338.   DOI
101 Drelich M, Wilhelm R, Mous J. 1992. Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology 188: 459-468.   DOI
102 Li M, Lin S, Craigie R. 2016. Outer domains of integrase within retroviral intasomes are dispensible for catalysis of DNA integration. Protein Sci. 25: 472-478.   DOI
103 Enssle J, Moebes A, Heinkelein M, Panhuysen M, Mauser B, Schweizer M, et al. 1999. An active foamy virus integrase is required for virus replication. J. Gen. Virol. 80: 1445-1452.   DOI
104 Mullers E, Uhlig T, Stirnnagel K, Fiebig U, Zentgraf H, Lindemann D. 2011. Novel functions of prototype foamy virus Gag glycine-arginine-rich boxes in reverse transcription and particle morphogenesis. J. Virol. 85: 1452-1463.   DOI
105 Bauer Jr TR, Allen JM, Hai M, Tuschong LM, Khan IF, Olson EM, et al. 2008. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat. Med. 14: 93-97.   DOI
106 Engelman A, Mizuuchi K, Craigie R. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211-1221.   DOI
107 Davies DR, Goryshin IY, Reznikoff WS, Rayment I. 2000. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289: 77-85.   DOI
108 Nowotny M. 2009. Retroviral integrase superfamily: the structural perspective. EMBO Rep. 10: 144-151.   DOI
109 Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266: 1981-1986.   DOI
110 Yang W, Lee JY, Nowotny M. 2006. Making and breaking nucleic acids: two-$Mg^{2+}$-ion catalysis and substrate specificity. Mol. Cell 22: 5-13.   DOI
111 Busch H, Choi YC, Crooke ST, Okada S. 1972. Genetic engineering and cancer chemotherapy. Oncology 26: 152-179.   DOI
112 Nasimuzzaman M, Lynn D, Ernst R, Beuerlein M, Smith RH, Shrestha A, et al. 2016. Production and purification of high-titer foamy virus vector for the treatment of leukocyte adhesion deficiency. Mol. Ther. Methods Clin. Dev. 3: 16004.   DOI
113 Bauer Jr TR, Tuschong LM, Calvo KR, Shive HR, Burkholder TH, Karlsson EK, et al. 2013. Long-term follow-up of foamy viral vector-mediated gene therapy for canine leukocyte adhesion deficiency. Mol. Ther. 21: 964-972.   DOI
114 Hocum JD, Linde I, Rae DT, Collins CP, Matern LK, Trobridge GD. 2016. Retargeted foamy virus vectors integrate less frequently near proto-oncogenes. Sci. Rep. 6: 36610.   DOI
115 Deyle DR, Li Y, Olson EM, Russell DW. 2010. Nonintegrating foamy virus vectors. J. Virol. 84: 9341-9349.   DOI
116 Merten OW, Hebben M, Bovolenta C. 2016. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 3: 16017.   DOI
117 Sweeney NP, Meng J, Patterson H, Morgan JE, McClure M. 2017. Delivery of large transgene cassettes by foamy virus vector. Sci. Rep. 7: 8085.   DOI
118 Sweeney NP, Regan C, Liu J, Galleu A, Dazzi F, Lindemann D, et al. 2016. Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector. Mol. Ther. 24: 1227-1236.   DOI
119 Cepko CL, Roberts BE, Mulligan RC. 1984. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37: 1053-1062.   DOI
120 Goff SP, Berg P. 1976. Construction of hybrid viruses containing SV40 and l phage DNA segments and their propagation in cultured monkey cells. Cell 9: 695-705.   DOI
121 Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, et al. 1990. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323: 570-578.   DOI
122 Hidai C, Kitano H. 2018. Nonviral gene therapy for cancer: a review. Diseases 6: 57.   DOI
123 The Journal of Gene Medicine. 2019. Gene Therapy Clinical Trials Worldwide Database. Available from https://www.abedia.com/wiley/index.html. Accessed Mar. 10, 2020.
124 Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA, et al. 2003. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101: 2099-2114.   DOI
125 Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. 2003. Fatal systemic inflammatory response syndrome in an ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80: 148-158.   DOI
126 Enders JF, Peebles TC. 1954. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc. Soc. Exp. Biol. Med. 86: 277-286.   DOI
127 Lindemann D, Rethwilm A, 2011. Foamy virus biology and its application for vector development. Viruses 3: 561-585.   DOI
128 Meiering CD, Linial ML. 2001. Historical perspective of foamy virus epidemiology and infection. Clin. Microbiol. Rev. 14:165-176.   DOI