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Many important horticultural and field crops are
susceptible to virus infections or may possess a degree of
resistance to some viruses, but become infected by
others. Plant viruses enter cells through the presence of
wounds, and replicate intracellularly small genomes
that encode genes required for replication, cell-to-cell
movement and encapsidation. There are numerous
evidences from specific virus-host interactions to
require the involvement of host factors and steps during
viral replication cycle. However, viruses should deal
with host defense responses either by general or specific
mechanisms, targeting viral components or genome
itself. On the other hand, the host plants have also
adapted to defend themselves against viral attack by
operating different lines of resistance responses. The
defense-related interactions provide new insights into
the complex molecular strategies for hosts for defense
and counter-defense employed by viruvses.

Defense strategy of host plant by R gene-mediated
resistance

Induced resistance depends on the recognition of a
pathogen by the plant, generating a cascade of events,
which eventually leads to the expression of defense
mechanism. The recognition between virus and host is very
specific, sometimes host plants can distinguish strains of
virus. One such response involves recognition of pathogen-
encoded ligands (elicitors) by plant defense resistance (R)
gene encoded receptor (Dangl and Jones, 2001), suggesting
that viral Avr-R recognition likely occurs inside plant cells.
This results in a strain-specific induction of resistance
mechanism described by the gene-for-gene hypothesis
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(Flor, 1971), which is often manifested as a hypersensitive
response (HR) at the entry of infection and systemic
acquired resistance (SAR) in the whole plant (Hunt and
Ryals, 1996; Sticher et al., 1997). Generally, the speed of
recognition and ensuing induction of resistance are key
determinants in the success of resistance. Disease will occur
if the virus is faster than the induced response, if no elicitors
are produced or if suppressors prevent the plant defense. In
view of evolutionary point, virus overcomes cultivar-
specific resistance genes, suggesting that virus evolve at a
much faster rate than their resistant host.

Significant progress in the understanding of host-
pathogen interactions has been achieved in the last decade
by the cloning of a number of plant R genes from different
plant species (Dangle and Jones, 2001), including tobacco
N gene (Whitham et al., 1994) against Tobacco mosaiv
virus (TMV), potato Rx] and Rx2 genes (Bendahmane et
al., 1999) against Potato virus X (PVX), and Arabidopsis
HRT gene against Turnip crinkle virus (TCV) (Cooley et
al., 2000). Such R genes belong to the NBS-LRR family of
resistance gene, respectively, encoding a protein with a
specific amino terminal domain. N gene product contains a
domain similar to the toll-interlekin-1 receptor (TIR)
(Whitham et al., 1994; Baker et al., 1997), while HRT and
Rx genes contain coiled-coil sequences (CC domains)
between N-termini and NBS domains (Bendahmane et al.,
1999; Cooley et al., 2000). To induce resistance in a host
plant cultivar carrying R gene, a strain specific elicitor
encoded by or produced by the action of corresponding Avr
gene should be present in a particular strain of a virus.
Three major types of viral genes, encoding the coat protein
(CP) (Bendahmane et al., 1995; Berzal-Herranz et al.,
1995; Taraporewala and Culver, 1996), RNA replicase
(Kim and Palukaitis, 1997; Padgett et al., 1997), movement
protein (Meshi et al.,, 1989; Weber et al.,, 1993) or Nla
protease (Mestre et al., 2000) have been demonstrated to be

The Korean Society of Plant Pathology



Relationship Between Plant Viral Encoded Suppressor to Post-transcriptional Gene Silencing and Elicitor to R Gene-specific Host Resistance 23

avirulence determinants. The 126 kDa replicase protein
{Padgett et al., 1997; Abbink et al., 1998) of TMV is the
viral Avr protein for which the cloning of a matching R
gene, N has been reported. TCV CP has been found to be the
Avr gene product for the corresponding R gene, HRT present
in TCV-resistant Dijon-17 plants (Zhao 52 et al., 2000).

How R and Avr gene products activate plant defense
responses is not clearly understood. Since no single R
protein mediates direct interaction with corresponding Avr,
leading to the speculation that multi-protein complexes are
probably involved in virus recognition. There are several
reasons why the gene-for-gene model is not fit with some
evidences. First, numerous R genes have been identified,
corresponding to multiple and sometimes unrelated avr
genes (Rossi et al., 1998; Cooley et al., 2000; Mackey et al.,
2002). Secondly, the analysis of complete genome
sequences of A. thaliana has revealed that there are at most
200 putative R genes, the number is insufficient to account
for gene-for-gene resistance against all potential pathogens.
Thirdly, it is not reasonable for viruses to encode a gene or
its product recognizable by a host R gene or its product that
ultimately would lead to their removal.

Recently, an interesting explanation of plant R gene
recognition called a “guard role” for R gene products,
namely, the ‘guard hypothesis’ was proposed (van der
Biezen and Jones 1998) to explain the interactions between
the major classes of molecules identified in resistance
responses. The hypothesis describes that R gene products
“guard” the targets of microbial virulence factors, detect
interaction of pathogen’s virulence factors with its host
intracellular target, and subsequently induce defense responses.
This hypothesis is supported from the observation that
many avirulence gene products constitute a subset of
pathogen virulence factors involved in the mediation of
disease (White et al., 2000). More recently, Dangl and
Jones (2001) reiterated the presence of direct interactions
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among these components and predicted two “mechanistic
scenarios”. Most recently, it is proposed that R proteins
monitor the activities of multiple effectors, by detecting
physiological changes of ‘guardee’ caused by ‘effectors’ in
the cell, not by direct binding of effectors (Shao et al., 2002;
Schneider, 2002). Figure 1 shows an update model of
‘guard hypothesis’ modified according to Schneider (2002).
Typical evidence supporting this model is Pto and Prf, are
both required for AvrPto-triggered resistance in tomato to
the bacterial pathogen Pseudomonas syringae pv. tomato
(Salmeron et al., 1996). AvrPto is the elicitor (effector),
small hydrophobic protein that is delivered into the plant
cell by the bacterial type III secretion system (Jin and He,
2001). It interacts with Pto protein, one of the host factors,
which encodes serine/threonine kinase referred to the
‘guardee’, because it is protected by “guard” molecule Prf.
Another similar evidence is HRT resistance pathway of
TCV-Arabidopsis system, where Arabidopsis protein, TIP,
was found to interact specifically with TCV CP (Ren et al.,
2000). TIP belong to a member of NAC family of proteins,
suggesting that it may be a transcriptional activator, but lacks
both NBS and LRR motifs like Pto protein. On the other
hand, the product of HRT contains both NBS and LRR
motifs like Prf.

Defense strategy of host plant by post-transcriptional
gene silencing

Transgenic expression of viral genes has been shown to
provide high level of resistance due to activation of an
intrinsic sequence-specific plant defense mechanism. It is
believed to have evolved as a defense mechanism against
foreign genetic elements, such as viruses, viroids and trans-
posable elements (Vance and Vaucheret, 2001). If transcrip-
tion of the target gene is blocked, it can be transcriptional
gene silencing (TGS), but if the target gene is transcribed
but its mRNA is degraded in a sequence-specific manner
before it is translated, it can be post-transcriptional gene
silencing (PTGS). Taken together called gene silencing or
RNA silencing, which is characterized by a decrease in the
steady state levels of mRNA of a specific target gene. In
plants, virus-induced gene silencing (VIGS) is a PTGS
phenomenon in which a hosts target endogenous gene or
transgene is silenced upon infection by a plant virus
carrying a sequence with homology to the target gene.
VIGS can be induced by RNA viruses (Jones et al., 1999;
Pelissier et al., 1999; Wassenegger, 2000; Waterhouse et al.,
2001) and DNA viruses (Atkinson et al., 1998; Kjemtrup et
al., 1998; Peele et al., 2001; Turnage et al., 2002),
suggesting that plant virus replicating in the cytoplasm can
function as both the initiator and the target of PTGS (Jones
et al., 1998; Baulcombe, 1999; Guo et al., 1999). Similar
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mechanisms were later discovered in other organisms,
including quelling in filamentous fungus Neurospora crassa
(Cogoni and Macino, 1999) or RNA interference (RNAI) in
Caenorhabditis elegans (Fire et al., 1998) and Drosophila
melanogaster (Kennerdell and Carthew, 1998). Therefore,
PTGS is a conserved eukaryotic RNA surveillance system
that leads to the elimination of the targeted RNA and
eliminates the functions encoded by the targeted RNA
(Carrington et al, 2001; Vance and Vaucheret, 2001;
Waterhouse et al., 2001; Baulcombe, 2002).

RNA virus-induced VIGS of transgenes can be separated
into a virus-dependent initiation stage and a virus-indepen-
dent but transgene-dependent maintenance stage process
(Ruiz et al., 1998; Voinnet et al., 1998; Dalmay et al.,
2000). The most potent initiator of PTGS is considered to
be double-stranded RNA (dsRNA) (Fire 52 et al., 1998;
Kennerdell and Carthew 1998; Waterhouse et al., 1998;
Chuang and Meyerowitz, 2000), although single-stranded
RNA (ssRNA), both sense and antisense orientations, or
even DNA trigger RNA silencing (Voinnet et al., 1998;
Voinnet et al., 1999; De Serio et al., 2001). The dsRNA
trigger for PTGS can be: (1) the dsRNA replication
intermediate in the case of silencing induced by plant RNA
viruses and viroids; (2) complementary sense and antisense
transcripts from inverted repeats or from antisense trans-
gene RNA interacting with endogene sense mRNA; (3) the
product of RNA-dependent RNA polymerase (RdRP) on
‘aberrant’ transcripts (Vance and Vaucheret, 2001). DsRNA
form converted from ssRNA by a host-encoding RARP
(Cogoni and Macino, 1999; Dalmay et al., 2000b; Moutrain
et al., 2000; Smardon et al., 2000), which are then degraded
by an RNase III-like RNase called Dicer, originally found
in cultured Drosophila S2 cells (Hammond et al., 2000;
Bernstein et al., 2001; Knight and Bass, 2001). Therefore,
in the initiation stage the invading RNA triggers a pathway
that results in its being degraded into a small RNA species
called small interfering RNAs (siRNA), having size of 21-
25 nucleotides (nt) that function as a guide for further
degradation in the maintenance stage (Hamilton and
Baulcombe, 1999; Zamore et al., 2000). The siRNAs lead to
sequence-specific cleavage of the homologous host-encoded
mRNA by RNA-induced silencing complex (RISC), thought
to be a multicomponent nuclease (Zamore et al., 2000;
Hammond et al., 2001).

PTGS is independent of trigger RNAs at the maintenance
stage, but involves an RARP activity that amplifies the siRNAs
and hence the efficiency of silencing (Lipardi et al., 2001; Sijen
et al., 2001; Vaistij et al, 2002). The maintenance stage is
highly dependent on a gene silencing signal, thought to be
siRNA, that is able to move systemically in plants to virus-
free tissues (Jones et al., 1999; Peele et al., 2001; Waterhouse

et al., 2001). Another key feature of PTGS in plants is the
association with intracellular signaling between the cyto-
plasm and the nucleus as well as the systemic spread of the
silencing signal between cells and in the vascular system,
even if the initiator molecule remains localized or is
removed. This signal can move locally through plasmodes-
mata and systemically via the vascular system (Fagard and
Vaucheret, 2000; Mlotshwa et al., 2002). Therefore, a system
to amplify the silencing signal must also exist. On the other
hand, as in viral exclusion from the shoot apex, the PTGS
signal seems to be incapable of entering into and activating
PTGS within the apex (Beclin et al., 1998; Voinnet et al.,
1998). Most plant viruses cannot invade the shoot apex
(Matthews, 1991), suggesting an operating mechanism that
protects this region of the plant from viral infection. An RNA
signal surveillance system acts to allow the selective entry of
RNA into the shoot apex by signal regulation, protecting the
shoot apex (Foster et al., 2002). Another evidence for
intracellular signaling is that RNA degradation is typically
correlated with methylation of homogeneous DNA in the
nucleus, as well as to distant parts of the plant. TGS is
accompanied by hypermethylation of the promoter region of
silenced genes, while PTGS is often associated with
hypermethylated DNA in the coding region. The de novo
methylation of transgenes in PTGS is RNA-directed DNA
methylation (RdDM) (Ruiz et al., 1998; Jones et al., 1999;
Matzke et al., 2001). It is unclear whether the signal for
RdDM is aberrant RNA, dsRNA, or siRNA, although all
cases of virus-induced RdADM reported to date involve
RNA viruses and viroids that have a dsRNA replication
intermediate. DNA methylation is necessary for the
initiation of silencing in some case (English et al., 1996;
Elmayan et al., 1998; Jones et al., 1998; Kovarik et al.,
2000; Morel et al., 2000; Mourrain et al., 2000; Dalmay et
al., 2001; Rodman et al., 2002), but not in others (Scheid
et al., 1998; Jones et al., 1999; Sonoda and Nishiguchi,
2000; Wang and Waterhouse, 2000; Mallory et al., 2001).
Although methylation is associated with VIGS of trans-
genes, it has been shown to be absent in the silencing of
endogenous genes (Jones 52 et al., 1999), suggesting that
there may be multiple mechanisms for gene silencing. It is
not clear that the transgene methylation and systemic
silencing are directed by the same signal molecule(s). In
addition to siRNAs, a class of larger small RNAs (24-27
nts) has recently been reported to accumulate in plants
silenced by agroinfiltration and in transgenic tobacco lines
suppressed for silencing by HC-Pro (Mallory et al., 2002).
In contrast to the results from transient assays, grafting
experiments revealed no consistent correlation between
capacity for systemic silencing and accumulation of any
particular class of small RNA (Mallory et al., 2003).
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Counter-defense strategy plant viral-encoded sup-
pressor against post-transcriptional gene silencing

To counter this PTGS, many viruses have developed strate-
gies to suppress PTGS and encoded the genes encoding
proteins acting as a suppressor. This was first recognized
for the potyvirus protein P1/HC-Pro; helper component-
proteinase (Brigneti et al., 1998; Kasschau and Carrington,
1998) and later for a wide range of numerous viruses,
leading to the suggestion that this was a property associated
with most viruses (Voinnet et al., 1999; Voinnet et al.,
2000). HC-Pro prevents the plant from responding to the
mobile silencing signal but does not eliminate its ability to
produce or send the signal, suggesting that HC-Pro operates
Jownstream of transgene methylation and the mobile signal
at a step proceeding accumulation of the small RNAs
Mallory et al.,, 2002). Therefore, potyviral HC-Pro can
suppress silencing in tissues where it was already establish-
2d and thus seems to disrupt the maintenance step of PTGS.
Different PTGS-suppressor proteins appear to act at
different points in the PTGS pathway. In the case of PVX,
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the p25 movement protein has been shown to interfere with
an initiation step, possibly preventing conversion ssRNA to
dsRNA (Voinnet et al., 2000). Another case of early
initiation step was demonstrated with a strong suppressor
encoding CP of TCV that most likely interferes the function
of the Dicer-like RNase in plants (Qu et al., 2002). In
contrast, HC-Pro of Tobacco etch virus (TEV) appears to
interfere with the maintenance stage (Llave et al., 2000;
Mallory et al., 2001), whereas the 2b protein of Cucumber
mosaic virus (CMV) inhibits the systemic transport of the
silencing signal (Guo and Ding, 2002). In contrast, CMV
have no effect in tissues where PTGS is established, but are
able to prevent the initiation of gene silencing in newly
emerging tissues (Brigneti et al., 1998). The difference in
inhibition step requires additional characterization of
silencing suppressor, contributing to define the mechanism
operating the RNA silencing pathway. To date nearly
twenty suppressors have been reported, most of which are
viral non-structural protein except TCV CP. None of these
proteins show sequence similarity and hence appear to have
evolved independently to counter silencing-mediated defense.
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The N-terminal 25 amino acids of TCV CP were shown to
be important suppressor activity of which forms part of the
unexposed R-domain that interacts with RNA within the
virus particle (Thomas et al., 2003). P15 is a small cysteine-
rich protein with no sequence similarity to previously
described PTGS-suppressor proteins, possessing 4 C-
terminal heptad repeats that can potentially mediate a
coiled-coil interaction and targeting to peroxisomes via a C-
terminal SKL motif (Dunoyer et al., 2002).

Relationship R gene-mediated resistance with post-
transcriptional gene silencing

The CP of TCV suppresses PTGS (Qu et al., 2002) and also
the elicitor of resistance response in the Arabidopsis
ecotype Di-17 carrying the HRT resistance gene by
mapping the resistance-eliciting domain to the N-terminal
RNA-binding (R) domain. Transcriptional factor, TIP, in the
HRT-mediated resistance pathway, is sufficient to interacting
with N-terminal 25 amino acid of TCV CP (Ren et al.,
2000). In order to determine the relationship between
eliciting activity in HRT-based resistance and suppressing
activity of CP, CP mutants were constructed and agroinfiltrated
into transgenic Nicotiana bentamiana containing GFP (Fig.
2). However, a small deletion within R domain of TCV CP
eliminated four amino acid residues critical for eliciting the
HRT-based resistance retains the capability to suppress
RNA silencing. Bigger in-frame deletions throughout the
whole CP all lost the silencing-suppression activity91252 |
concluding from these results that the silencing suppression
of TCV CP is not correlated with HRT-mediated resistance
and most likely requires the intact CP (Choi et al., 2003).
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