1 |
Lieberman PM (2013) Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol 11, 863-875
DOI
|
2 |
Lieberman PM (2016) Epigenetics and genetics of viral latency. Cell Host Microbe 19, 619-628
DOI
|
3 |
Crosbie EJ, Einstein MH, Franceschi S and Kitchener HC (2013) Human papillomavirus and cervical cancer. Lancet 382, 889-899
DOI
|
4 |
Goncalves PH, Ziegelbauer J, Uldrick TS and Yarchoan R (2017) Kaposi sarcoma herpesvirus-associated cancers and related diseases. Curr Opin HIV AIDS 12, 47-56
DOI
|
5 |
Matsukura T, Koi S and Sugase M (1989) Both episomal and integrated forms of human papillomavirus type 16 are involved in invasive cervical cancers. Virology 172, 63-72
DOI
|
6 |
Okabe A, Huang KK, Matsusaka K et al (2020) Cross-species chromatin interactions drive transcriptional rewiring in Epstein-Barr virus-positive gastric adenocarcinoma. Nat Genet 52, 919-930
DOI
|
7 |
Chakravorty A, Sugden B and Johannsen EC (2019) An epigenetic journey: Epstein-Barr virus transcribes chromatinized and subsequently unchromatinized templates during its lytic cycle. J Virol 93, e02247-18
DOI
|
8 |
Mrozek-Gorska P, Buschle A, Pich D et al (2019) Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A 116, 16046-16055
DOI
|
9 |
Chang Y, Cesarman E, Pessin MS et al (1994) Identification of herpesvirus-like DNA sequences in AIDSassociated Kaposi's sarcoma. Science 266, 1865-1869
DOI
|
10 |
Purushothaman P, Dabral P, Gupta N, Sarkar R and Verma SC (2016) KSHV genome replication and maintenance. Front Microbiol 7, 54
|
11 |
Ueda K, Sakakibara S, Ohsaki E and Yada K (2006) Lack of a mechanism for faithful partition and maintenance of the KSHV genome. Virus Res 122, 85-94
DOI
|
12 |
Lu F, Day L, Gao SJ and Lieberman PM (2006) Acetylation of the latency-associated nuclear antigen regulates repression of Kaposi's sarcoma-associated herpesvirus lytic transcription. J Virol 80, 5273-5282
DOI
|
13 |
Zhu FX, Cusano T and Yuan Y (1999) Identification of the immediate-early transcripts of Kaposi's sarcoma-associated herpesvirus. J Virol 73, 5556-5567
DOI
|
14 |
Jenner RG, Alba MM, Boshoff C and Kellam P (2001) Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75, 891-902
DOI
|
15 |
Toth Z, Brulois K, Lee HR et al (2013) Biphasic euchromatin-to-heterochromatin transition on the KSHV genome following de novo infection. PLoS Pathog 9, e1003813
|
16 |
Tu T, Budzinska MA, Vondran FWR, Shackel NA and Urban S (2018) Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via sodium taurocholate cotransporting polypeptide-dependent uptake of enveloped virus particles. J Virol 92, e02007-17
|
17 |
Tuttleman JS, Pourcel C and Summers J (1986) Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 47, 451-460
DOI
|
18 |
Allweiss L, Volz T, Giersch K et al (2018) Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfection efficiently deplete nuclear cccDNA in vivo. Gut 67, 542-552
DOI
|
19 |
Lieberman PM (2014) Virology. Epstein-Barr virus turns 50. Science 343, 1323-1325
DOI
|
20 |
Pyeon D, Pearce SM, Lank SM, Ahlquist P and Lambert PF (2009) Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 5, e1000318
|
21 |
Jones CH, Hayward SD and Rawlins DR (1989) Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. J Virol 63, 101-110
DOI
|
22 |
Rawlins DR, Milman G, Hayward SD and Hayward GS (1985) Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell 42, 859-868
DOI
|
23 |
Ambinder RF, Shah WA, Rawlins DR, Hayward GS and Hayward SD (1990) Definition of the sequence requirements for binding of the EBNA-1 protein to its palindromic target sites in Epstein-Barr virus DNA. J Virol 64, 2369-2379
DOI
|
24 |
Morgan SM, Tanizawa H, Caruso LB et al (2022) The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat Commun 13, 187
|
25 |
Jourdan N, Jobart-Malfait A, Dos Reis G et al (2012) Live-cell imaging reveals multiple interactions between Epstein-Barr virus nuclear antigen 1 and cellular chromatin during interphase and mitosis. J Virol 86, 5314-5329
DOI
|
26 |
Deschamps T, Bazot Q, Leske DM et al (2017) Epstein-Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle. J Gen Virol 98, 251-265
DOI
|
27 |
Lin A, Wang S, Nguyen T, Shire K and Frappier L (2008) The EBNA1 protein of Epstein-Barr virus functionally interacts with Brd4. J Virol 82, 12009-12019
DOI
|
28 |
Barbera AJ, Chodaparambil JV, Kelley-Clarke B et al (2006) The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 311, 856-861
DOI
|
29 |
Shire K, Ceccarelli DF, Avolio-Hunter TM and Frappier L (1999) EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 73, 2587-2595
DOI
|
30 |
Cotter MA, 2nd and Robertson ES (1999) The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264, 254-264
DOI
|
31 |
Lim C, Choi C and Choe J (2004) Mitotic chromosome-binding activity of latency-associated nuclear antigen 1 is required for DNA replication from terminal repeat sequence of Kaposi's sarcoma-associated herpesvirus. J Virol 78, 7248-7256
DOI
|
32 |
Barbera AJ, Ballestas ME and Kaye KM (2004) The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 N terminus is essential for chromosome association, DNA replication, and episome persistence. J Virol 78, 294-301
DOI
|
33 |
Kumar A, Lyu Y, Yanagihashi Y et al (2022) KSHV episome tethering sites on host chromosomes and regulation of latency-lytic switch by CHD4. Cell Rep 39, 110788
|
34 |
Ohsaki E, Ueda K, Sakakibara S, Do E, Yada K and Yamanishi K (2004) Poly(ADP-ribose) polymerase 1 binds to Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeat sequence and modulates KSHV replication in latency. J Virol 78, 9936-9946
DOI
|
35 |
Si H, Verma SC, Lampson MA, Cai Q and Robertson ES (2008) Kaposi's sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J Virol 82, 6734-6746
DOI
|
36 |
Piirsoo M, Ustav E, Mandel T, Stenlund A and Ustav M (1996) Cis and trans requirements for stable episomal maintenance of the BPV-1 replicator. EMBO J 15, 1-11
DOI
|
37 |
Krithivas A, Fujimuro M, Weidner M, Young DB and Hayward SD (2002) Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J Virol 76, 11596-11604
DOI
|
38 |
Xiao B, Verma SC, Cai Q et al (2010) Bub1 and CENP-F can contribute to Kaposi's sarcoma-associated herpesvirus genome persistence by targeting LANA to kinetochores. J Virol 84, 9718-9732
DOI
|
39 |
Belloni L, Pollicino T, De Nicola F et al (2009) Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc Natl Acad Sci U S A 106, 19975-19979
DOI
|
40 |
Bastien N and McBride AA (2000) Interaction of the papillomavirus E2 protein with mitotic chromosomes. Virology 270, 124-134
DOI
|
41 |
Ilves I, Kivi S and Ustav M (1999) Long-term episomal maintenance of bovine papillomavirus type 1 plasmids is determined by attachment to host chromosomes, which Is mediated by the viral E2 protein and its binding sites. J Virol 73, 4404-4412
DOI
|
42 |
Sullivan CS and Pipas JM (2002) T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 66, 179-202
DOI
|
43 |
Calattini S, Sereti I, Scheinberg P, Kimura H, Childs RW and Cohen JI (2010) Detection of EBV genomes in plasmablasts/plasma cells and non-B cells in the blood of most patients with EBV lymphoproliferative disorders by using Immuno-FISH. Blood 116, 4546-4559
|
44 |
Kim KD, Tanizawa H, De Leo A et al (2020) Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat Commun 11, 877
|
45 |
van de Werken HJ, Landan G, Holwerda SJ et al (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 9, 969-972
DOI
|
46 |
Kempfer R and Pombo A (2020) Methods for mapping 3D chromosome architecture. Nat Rev Genet 21, 207-226
DOI
|
47 |
Zhao Z, Tavoosidana G, Sjolinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38, 1341-1347
DOI
|
48 |
Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293
DOI
|
49 |
van de Werken HJ, de Vree PJ, Splinter E et al (2012) 4C technology: protocols and data analysis. Methods Enzymol 513, 89-112
DOI
|
50 |
Mifsud B, Tavares-Cadete F, Young AN et al (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47, 598-606
DOI
|
51 |
Yang B, Li B, Jia L et al (2020) 3D landscape of Hepatitis B virus interactions with human chromatins. Cell Discov 6, 95
|
52 |
Moquin SA, Thomas S, Whalen S et al (2018) The Epstein-Barr virus episome maneuvers between nuclear chromatin compartments during reactivation. J Virol 92, e01413-17
|
53 |
Wang L, Laing J, Yan B et al (2020) Epstein-Barr virus episome physically interacts with active regions of the host genome in lymphoblastoid cells. J Virol 94, e01390-20
|
54 |
Tang D, Zhao H, Wu Y et al (2021) Transcriptionally inactive hepatitis B virus episome DNA preferentially resides in the vicinity of chromosome 19 in 3D host genome upon infection. Cell Rep 35, 109288
|
55 |
Toth Z, Papp B, Brulois K, Choi YJ, Gao SJ and Jung JU (2016) LANA-mediated recruitment of host polycomb repressive complexes onto the KSHV genome during de novo infection. PLoS Pathog 12, e1005878
|
56 |
Hensel KO, Cantner F, Bangert F, Wirth S and Postberg J (2018) Episomal HBV persistence within transcribed host nuclear chromatin compartments involves HBx. Epigenetics Chromatin 11, 34
|
57 |
Moreau P, Cournac A, Palumbo GA et al (2018) Tridimensional infiltration of DNA viruses into the host genome shows preferential contact with active chromatin. Nat Commun 9, 4268
|
58 |
Heslop HE (2020) Sensitizing Burkitt lymphoma to EBVCTLs. Blood 135, 1822-1823
DOI
|
59 |
Benhenda S, Cougot D, Buendia MA and Neuveut C (2009) Hepatitis B virus X protein molecular functions and its role in virus life cycle and pathogenesis. Adv Cancer Res 103, 75-109
DOI
|
60 |
Leupin O, Bontron S, Schaeffer C and Strubin M (2005) Hepatitis B virus X protein stimulates viral genome replication via a DDB1-dependent pathway distinct from that leading to cell death. J Virol 79, 4238-4245
DOI
|
61 |
Dowen JM, Fan ZP, Hnisz D et al (2014) Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374-387
DOI
|
62 |
Risca VI and Greenleaf WJ (2015) Unraveling the 3D genome: genomics tools for multiscale exploration. Trends Genet 31, 357-372
|
63 |
Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59-64
DOI
|
64 |
Nagano T, Lubling Y, Varnai C et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61-67
DOI
|
65 |
Decorsiere A, Mueller H, van Breugel PC et al (2016) Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 531, 386-389
DOI
|
66 |
Tempera I, Wiedmer A, Dheekollu J and Lieberman PM (2010) CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 6, e1001048
|
67 |
Pentland I and Parish JL (2015) Targeting CTCF to control virus gene expression: a common theme amongst diverse DNA viruses. Viruses 7, 3574-3585
DOI
|
68 |
Bloom DC, Giordani NV and Kwiatkowski DL (2010) Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta 1799, 246-256
DOI
|