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Viruses have evolved to manipulate the host cell machinery for 
virus propagation, in part by interfering with the host cellular 
signaling network. Molecular studies of individual pathways 
have uncovered many viral host-protein targets; however, it is 
difficult to predict how viral perturbations will affect the 
signaling network as a whole. Systems biology approaches rely 
on multivariate, context-dependent measurements and com-
putational analysis to elucidate how viral infection alters host 
cell signaling at a network level. Here we describe recent 
advances in systems analyses of signaling networks in both 
viral and non-viral biological contexts. These approaches have 
the potential to uncover virus- mediated changes to host 
signaling networks, suggest new therapeutic strategies, and 
assess how cell-to-cell variability affects host responses to 
infection. We argue that systems approaches will both improve 
understanding of how individual virus-host protein interactions 
fit into the progression of viral pathogenesis and help to 
identify novel therapeutic targets. [BMB reports 2012; 45(4): 
213-220]

INTRODUCTION

Cells respond to environmental changes by translating a com-
plex network of protein interactions and biochemical signaling 
reactions into functional responses (e.g., cytokine secretion or 
cell death). In human diseases such as pathogenic viral in-
fections and cancer, malfunctioning signaling networks cause 
cells to incorrectly respond to stimuli and produce the dis-
eased state (1, 2). Viruses and other pathogens often induce 
malfunction by mimicking interaction domains of host pro-
teins, which can rewire signaling networks and change cell re-
sponses for their own purposes (3). Frequently, viruses interact 
with host proteins that have many interacting partners and/or 
are central to many paths in the network (4), presumably be-
cause targeting these central interactions provides the most ef-
ficient means of changing host responses at a systems level. 

Therefore, viral infection represents a valuable model for per-
forming systems-level analyses of signaling network function; 
and quantitative, systems-level approaches are needed to fully 
understand the mechanisms of viral pathogenicity.  
　The advent of high throughput and multiplex techniques, 
such as DNA microarrays (5), mass spectrometry (6), and high-
ly multiparametric flow cytometry (7, 8), has enabled simulta-
neous experimental measurement of many components in a 
biological system and contributed to the growing field of sys-
tems biology. Although initially applied primarily to gene reg-
ulation and genomic analysis, systems biology studies are in-
creasingly applied to protein networks–including cell signaling 
networks-due to the increased availability of high-throughput 
techniques to probe large protein data sets (9). It is possible to 
divide systems biology studies into two categories: static stud-
ies, which take a “snapshot” of a biological network under a 
single condition, or limited set of conditions; and dynamic 
studies, which measure time-dependent changes in the net-
work following treatment with environmental stimuli or other 
biological cues. Both approaches have the potential to sig-
nificantly increase our understanding of the complex mecha-
nisms involved in viral infection; however, dynamic systems 
biology studies have been less widely pursued.
　In the past few years, large-scale genomic and proteomic 
methods have been used to uncover the complex network of 
interactions that characterize viral infections of a host (Fig. 1). 
For example, a physical, regulatory and functional network of 
human-influenza H1N1 interactions constructed using a yeast 
two-hybrid screen and a genome-wide analysis of gene ex-
pression, led to the identification of 1735 candidate genes that 
might be involved in host response to influenza infection (10). 
Similarly, three RNAi screens of the determinants of HIV in-
fection implicated hundreds of host proteins that were not pre-
viously identified (11-13). And very recently, microarray analy-
sis was used to compare altered gene expression regulation in 
three different host cell systems following avian influenza 
(H5N1) infection (14). Network analyses of these data sets pro-
vide a comprehensive and organizational picture of pro-
tein-protein or genetic interactions (usually undirected) that de-
fine the cellular state following viral infection. Such maps of 
the virus-host interactome improve our understanding of the 
global nature of viral infection on the host cell’s regulatory net-
work; however they do not explain how virus–host interactions 
function at a systems level to affect pathogenesis.  
　In contrast, dynamic systems biology approaches attempt to 
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Bayesian network

Boolean logic model

Cluster analysis (clustering)

Graphical Gaussian modeling

Hierarchical clustering 
Multiple linear regression
Artificial neural network

Ordinary differential equation model

Partial least squares regression

Stochastic fluctuation

Superposition of effect

A form of graphical modeling that calculates the most probable set of interactions between a set of variables 
(e.g., proteins) based on experimental measurements of these variables

A discrete modeling technique which calculates a binary state of a protein (either "active" or "inactive") 
based on its dependence on the states of other proteins in the network

A type of model that classifies objects (e.g., biological sample or conditions) based on the similarity of meas-
ured characteristics (e.g., activation state of proteins over time)

A graphical modeling technique that calculates the dependecy of each variable on all other variables in the 
network 

A subgroup of clustering analysis that arranges clusters in a hierarchical tree
A model in which the dependent variable is a linear combination of one or more independent variables
A learning-based approach that infers a function relating an output (e.g., biological state) to input variables 

(e.g., protein measurements) based on a set of input-output observations 
A system of equations that defines the time-dependent change of each variable in the network in terms of the 

other variables and a set of parameters that characterize the system
A modeling technique for relating independent and dependent variables via regression when the number of 

measured variables is greater than the number of experimental observations
Random fluctuation due to small numbers of biological molecules (e.g., transcripts or proteins) that can lead 

to non-genetic heterogeneity
A model that quantifies interactions between single agents (both synergy and antagonism)

Table 1. Glossary

Fig. 1.  Dynamic systems biology approaches to study virus-host in-
teractions (center) complement large-scale studies of networks of vi-
rus-host protein-protein interactions (left) and molecular level studies 
of single pathways targeted by infection (right).  In this schematic of 
an infected host cell’s signaling network, host proteins (white circles) 
or viral proteins (black circles) are depicted as undirected interactions 
(black), activating interactions (green), or inhibitory interactions (red). 
Computational models (see Table 1) can be developed to understand 
how viral infection alters downstream signaling responses.

describe the mechanisms of regulation between components 
within the system by measuring cell responses to stimuli, usu-
ally as a function of time or dose (15). The resulting data is 
generally context-dependent (e.g., specific to a particular cell 
type or condition) and multivariate, and an array of mathemat-
ical and computational modeling approaches have been used 
to extract underlying regulatory mechanisms (16). Measuring 
time-dependent responses to stimuli for defined experimental 
systems has been applied over the years to study the effect of 
viral infection or viral proteins on single signaling proteins or 
pathways, generating invaluable information on the mecha-
nism of action in the network (Fig. 1). However it is often diffi-
cult to predict the effect of these interactions in the larger 

network. Application of dynamic systems biology approaches 
to virus-host signaling interactions, in which multiple signals in 
the network are measured simultaneously over time, may pro-
vide a better understanding of how a virus hijacks the host pro-
tein signaling network and wires signaling in favor of virus sur-
vival and replication (Fig. 1). 
　In this review, we will describe recent advances in quantita-
tive, perturbation-based systems biology approaches applied to 
1) defining the organization and function of virus-mediated 
changes to host signaling networks; 2) designing and evaluat-
ing anti-viral therapies; and 3) analysis of cell-to-cell variability 
and how it affects host response to viral infection. We high-
light studies from both the viral and non-viral literature to dem-
onstrate the range of computational approaches used to ana-
lyze dynamic, multivariate data to extract novel biological 
mechanisms. We suggest that application of these approaches 
to a broader range of viral infections would significantly im-
prove our understanding of viral pathogenesis, and may un-
cover novel targets for antiviral therapies to treat the multitude 
of viral infections that continue to confound the medical 
community.

SYSTEMS APPROACHES TO ANALYZE VIRAL-MEDIATED 
CHANGES TO SIGNALING NETWORK ORGANIZATION 
AND FUNCTION

Viruses alter normal regulation of host signaling processes, in 
part by interacting with host signaling proteins to “rewire” the 
network (3, 17). Protein interaction networks generated from 
large-scale, high-throughput studies have provided topological 
information about the complexity of these interactions. 
However, such networks do not provide information about 
how viral infection alters host cell responses, both directly and 
in response to extracellular stimuli. Experimental data linking 
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extracellular cues with downstream signals and responses 
(so-called “cue-signal-response” approaches) are extremely val-
uable for understanding which protein interactions are func-
tionally linked to host cell responses. For example, 82 protein 
interactions are implicated in the immediate-early response of 
human cells to a range of cytokines based on literature in-
formation of the network (18). However, experimental data 
from time courses of signals and responses gathered in liver 
cells following stimulation with the same cytokine cues reveals 
a different picture. To assess the functional interactions evident 
from the cue-signal-response data, the data were fit to a 
Boolean logic model, which essentially adds direction of influ-
ence to protein interaction diagrams (Table 1). The resulting 
model had greater predictive power than the literature-derived 
network, while reducing the total number of connections, sug-
gesting that many interactions found in the literature were not 
functional in the specific experimental system considered (i.e., 
liver hepatocarcinoma cells) (18). Similarly, experimental data 
measuring time-dependent changes in the viral systems of in-
terest will be necessary to extract the most useful information 
from the viral–host protein interactome data rapidly becoming 
available. Below we describe a range of systems approaches 
that are well suited to address this challenge.
　Several recent studies have directly measured time-depend-
ent changes across multiple pathways in response to virus 
infection. For example, in an effort to understand why SIV in-
fection is pathogenic in Asian macaques (a non-natural host) 
and not pathogenic in African green monkeys (a natural host), 
Lederer et al. measured viral-induced changes in gene ex-
pression over time and in multiple tissues derived from each 
host (19). The dynamic measurements showed that both in-
fections induce a strong type I interferon response, but the in-
terferon response peaks and falls in the non-pathogenic in-
fection, while a sustained response is associated with 
pathogenesis. Another non-viral study measured a time course 
of global gene expression using microarrays data, and reported 
that infection of wild type and mutant Salmonella induced sig-
nificantly different patterns of host signaling within phosphati-
dylinositol, CCR3, Wnt, TGF-β and actin regulation pathways 
(20). In contrast to gene expression, few studies have meas-
ured multivariate changes in signaling protein activity follow-
ing viral infection. A recent pioneering investigation of host 
cell signaling responses to coxsackievirus B3 (CVB3) infection 
sampled phospho-protein dynamics in the presence of single 
or pairwise combinations of small molecule inhibitors (21). 
The signaling network reconstructed using graphical Gaussian 
modeling (Table 1) uncovered an extracellular autocrine cir-
cuit involving TNF and IL-1 necessary for CVB3 cardiotoxicity, 
and suggested a potential strategy for therapy (see below).      
　Another effective way to identify viral–host protein inter-
actions that alter underlying signaling mechanisms is to meas-
ure virus-induced changes in signaling and phenotypic re-
sponses to extracellular stimuli. For example, in cells infected 
with an attenuated adenoviral vector (Adv), Adv infection satu-

rated Akt pro-survival signaling and blocked insulin-mediated 
anti-apoptotic signaling in cells treated with TNF, causing 
apoptosis in host cells (2). In another study comparing HIV-1 
infected and uninfected monocytes, HIV-1 infection sig-
nificantly changed monocyte activation in response to gran-
ulocyte-macrophage colony-stimulating factor (GM-CSF) via 
down-regulation of Jak/STAT signaling but enhancement of 
MAPK signaling (22), resulting in defective antigen presen-
tation. These studies focused on a single pathway, however 
the extent of viral-mediated changes could be more fully un-
derstood by measuring changes across multiple pathways in 
the network and using computational methods to analyze the 
experimental data. For example, in an effort to understand sys-
tem-level changes in a cell signaling network induced by can-
cer, secretion of 50 cytokines and measurements of 17 intra-
cellular signals were compared between primary hepatocytes 
and transformed liver cell lines following stimulation with 7 in-
ducers of inflammation, innate immunity and proliferation in 
the presence or absence of 7 small molecule inhibitors of spe-
cific pathways (23). The authors used multiple linear re-
gression (Table 1) to correlate the strength of interaction be-
tween cytokine cues, signaling proteins and cytokine secretion 
responses, and overlaid these onto literature-constructed sig-
naling network diagrams. This study revealed significant differ-
ences in the engagement of toll-like receptors and NF-κB de-
pendent cytokine and chemokine release in the normal and 
transformed cells (23), demonstrating the underlying changes 
in signaling that produce the cancer phenotype. Such an ap-
proach could be analogously applied to compare virally-in-
fected and uninfected cells. 
　Another approach is to compare systems-level signaling re-
sponses between viruses and environmental stimuli that act on 
the same network. For example, a time course analysis of ge-
nome-wide expression patterns induced in Jurkat cells in re-
sponse to expression of HIV Nef or TCR stimulation with an-
ti-CD3 demonstrated that Nef closely mimics T cell activation, 
and that this may prime the T cell for HIV infection (24). In an-
other study applied to a non-viral pathogen, Franke et al. com-
pared how Helicobacter pylori (H. pylori) and hepatocyte 
growth factor (HGF) induce activation of c-Met receptor signal-
ing (25). The study, which applied a variation of Boolean mod-
eling (Table 1), revealed protein targets downstream of c-Met 
activated only during H. pylori infection, but not following 
HGF stimulation in uninfected cells. Another recent non-viral 
pathogen study similarly compared growth factor- and 
Salmonella enterica-induced signaling events in host cells us-
ing a global, temporal phospho-proteomic mass spectrometry 
data set and clustering analysis (Table 1) (26). The authors 
demonstrated that changes in phosphorylation patterns in the 
infected cells were a result of altered Akt, protein kinase C and 
Pim activity, and many altered phosphorylation events de-
pended on a single bacterial effector protein (26). Both studies 
thus suggest possible intervention targets for diseases induced 
by the respective bacterial infections, and have clear parallels 
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to viral infection. 
　Following an experimental systems analysis of how network 
function is altered after viral infection, the information en-
coded in the resulting multivariate signaling measurements 
can be used to build models that predict biological responses 
in the presence and absence of infection. The first study to 
demonstrate this approach in a non-viral system analyzed the 
molecular basis of apoptosis induction in response to combi-
nations of both pro- and anti-apoptotic stimuli (TNF, EGF and 
insulin). Nineteen intracellular measurements and four distinct 
apoptotic outputs were quantified (27), and a partial least 
squares regression model (PLSR; Table 1) constructed from 
these data identified the underlying combination of time-de-
pendent signals associated with apoptosis. Furthermore, the 
model predicted the effect of small molecule inhibition of au-
tocrine feedback loops induced by TNF, results that were sub-
sequently confirmed experimentally. This same type of model, 
based on information included in multivariate measurements 
of signaling responses, was able to correctly predict how in-
fection with an adenoviral vector altered apoptotic responses 
to TNFα in different cell types (28). Measurements of signaling 
activation and apoptosis in colon carcinoma cells in response 
to combinations of TNF and adenoviral vector infection or 
IFN-γ were used to build a PLSR model that could accurately 
predict the increases in TNF-mediated apoptosis observed in 
infected cells. Surprisingly, the same model could also cor-
rectly predict how infection changed apoptotic responses in 
other epithelial cell types (28). The finding that a model based 
on multivariate signaling measurements in one cell type could 
predict a wide range of virus-altered responses across di-
vergent epithelial cell lines suggests a highly promising appli-
cation to a broader range of viral infection studies. Dynamic 
systems approaches that accurately predict cell-specific re-
sponses following viral infection could be used to test the out-
comes of viral infection and anti-viral drug administration in 
silico, before pursuing different approaches experimentally.     

SYSTEMS APPROACHES TO DESIGN AND EVALUATE 
ANTI-VIRAL THERAPIES

An improved understanding of how signal transduction path-
ways are altered by viral infection can be extended to reveal 
how manipulation of these pathways will change cellular re-
sponses to ligands or drugs, and therefore inform novel strat-
egies for therapy. In the following studies, dynamic systems bi-
ology approaches were used to reveal network regulatory 
mechanisms which have significant clinical relevance.
　Evaluation of drug efficacy and safety is a major endeavor in 
the pharmaceutical industry. Enormous effort has been di-
rected into understanding the mechanisms of anti-viral drugs, 
such as anti-HCV drugs, interferon and ribavirin (29-31). 
However, these studies focused on how drugs affected isolated 
molecules or signaling pathways, and little was known about 
the effect on signaling pathways in the context of the larger 

network. In contrast, studies based on dynamic, multivariate 
measurements of multiple pathways can provide a compre-
hensive evaluation of drug action. Mitsos et al. monitored 
drug-induced signaling alterations at a systems level by meas-
uring activation of thirteen key phospho-proteins in the pres-
ence or absence of EGFR inhibitors in a hepatocarcinoma cell 
line (32). By integrating their data using a Boolean-based mod-
el, they confirmed the main targets of four drugs as well as un-
covered several unknown off-target effects, demonstrating an 
efficient way to determine drug selectivity and potency. 
Similarly, a Boolean model of growth factor receptor activities 
in response to different ligands or drugs discovered a poorly 
documented off target effect of TPCA-1, an IκB inhibitor (33). 
Similar approaches may demonstrate promising applications to 
investigate anti-viral drug actions. 
　Current anti-viral drugs generally target viral factors, such as 
the neuraminidase or the M2 ion channel of influenza (34) and 
protease, integrase or reverse transcriptase in HIV-1 (35). 
However, in part due to the emergence of drug-resistant 
strains, increasingly pre-clinical approaches focus on host cel-
lular factors or pathways that affect virus replication (36). 
Given the complexity of virus–host interactions as described 
above, systems-level studies are well suited for evaluating such 
strategies. For example, recent research on novel anti-viral 
therapies to treat Hepatitis C virus (HCV) have focused on host 
sterol and protein prenylation pathways (37). To date, how-
ever, HCV therapies targeting the sterol pathway have not 
yielded satisfactory results. To address this problem, Owens et 
al. adopted a systems biology approach to study HCV repli-
cation in host cells treated with single or pairwise combina-
tions of 16 chemical inhibitors that targeted the sterol and pro-
tein prenylation pathways (37). A superposition of effect model 
(Table 1) revealed that the causes underlying failure of the 
therapy were from complicated pathway regulation: sterol 
pathway inhibition often results in host toxicity and epistatic 
side effects. More interestingly, the model demonstrated that 
high synergistic inhibition of HCV replication can be achieved 
by combinatorial targeting of two downstream enzymes in the 
sterol pathway, revealing a potential strategy for HCV therapy.
　As demonstrated by the HCV study, combinatorial drug 
therapy is an approach increasingly used to overcome viral 
drug resistance by targeting multiple factors or pathways nec-
essary for infection (38). For the treatment of many viruses, in-
cluding HIV, HCV and Influenza, combinatorial drug admin-
istration has shown increased and broadened efficacy (38-40). 
However, not all drugs can be combined in an effective way 
without increased toxicity, and therefore investigations into the 
combined effects of two or more anti-viral drugs are especially 
significant. Dynamic systems approaches combined with sig-
naling perturbation and computational modeling offer a 
unique and efficient way to estimate combined drug actions. 
For example, a strategy called pairwise agonist scanning 
trained a neural network model (Table 1) based on ex-
perimental data sets of human platelet responses to all single 
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and pairwise combinations of input agonists (41). The model 
was able to accurately predict responses from combinations of 
three to six inputs, indicating the potential of such models to 
provide useful in silico data about combinations of physio-
logical inputs not yet tested experimentally. 
　Systems biology studies can also lead to unintuitive pre-
dictions of network regulatory mechanisms during virus in-
fection and therefore guide therapeutic strategy. Oncolytic ad-
enovirus has been tested in clinical trials for cancer therapy, 
but efficacy has so far been inadequate. Inhibition of MEK has 
the potential to enhance adenovirus infection but also de-
creases adenovirus replication, making it unclear how to opti-
mize this strategy (42). To resolve this dilemma, Bagheri et al. 
constructed an ordinary differential equation model (Table 1) 
based on virus receptor expression, cell viability and pro-
liferation, and virus infection and replication in order to test 
various treatment strategies (42). Modeling dynamic cancer 
cell activities in response to MEK inhibition and adenovirus in-
fection predicted that optimal oncolytic treatments could be 
achieved by simultaneous treatment with oncolytic adenovirus 
infection and MEK inhibitors. 
　Another common problem leading to unexpected con-
sequences of therapy, both in viral infection and other diseases 
such as cancer, is the existence of autocrine loops, in which 
secreted cytokines induce unexpected responses downstream 
of an initial stimulus. In a study on TNF-induced human epi-
thelial cell signaling (43), a classifier based regression model 
built on ∼8,000 intracellular measurements revealed that 
TNF, a pro-death stimulus, activated a sequential release of 
three cytokines, both pro- and anti-apoptotic in function. The 
signaling induced by the autocrine cascade specified the ex-
tent of apoptosis induced by TNF. This study provided insight 
into why certain anti-tumor drugs targeting only one compo-
nent of this response are sometimes ineffective (43). Autocrine 
circuits similarly confound effective treatment strategies for 
coxsackievirus B3 (CVB3) infection (see above).  The same sys-
tems biology study that uncovered an extracellular autocrine 
circuit involving TNF and IL-1 necessary for CVB3 cardiotox-
icity, demonstrated that blocking this positive feedback circuit 
significantly inhibited CVB3 replication and improved host 
cell viability (21). These discoveries have important parallels 
in host-viral systems as several viruses have been reported to 
interact with TNF/TNFR pathways to favor virus replication 
(Epstein-Barr virus) or trigger the killing of bystander cells 
(Hepatitis B virus and HCV) (44). Thus, future investigations of 
the role of extracellular autocrine circuits in host-viral systems 
may provide invaluable insights on viral pathogenesis and the 
development of efficient anti-viral therapy. 

SYSTEMS APPROACHES TO ASSESS THE EFFECT OF 
CELL-TO-CELL VARIABILITY IN VIRAL INFECTION

One question facing much of biology is why cells exposed to 
the same stimuli or pathogen demonstrate different phenotypic 

outcomes (45). Significant effort has been and continues to be 
made in understanding how cells integrate and respond to en-
vironmental perturbations at a population level. However, 
population-averaged measurements often fail to recognize im-
portant information that originated from population hetero-
geneity. In the past, cell-to-cell heterogeneity was often consid-
ered an obstacle to interpreting population responses induced 
by extracellular stimuli. However, quantitative systems analy-
ses of signaling networks at a single cell level are using the in-
formation encoded in cell population heterogeneity to yield 
valuable insights into understanding signaling network func-
tion, including in response to viral infection. 
　Cell-to-cell heterogeneity is seen at all levels of the viral life-
cycle, including 1) heterogeneity in the incidence of infection 
itself (46); 2) variation in host cell response following infection 
(47); and 3) heterogeneity in viral fate, such as replication ver-
sus latency (48, 49). To understand cell-to-cell variability in vi-
ral infection, Snijder et al. collected large numbers of sin-
gle-cell measurements of each cells’ local environment (e.g., 
cell population size, local cell density, single cell position, cell 
size, mitotic state and apoptotic state) from three types of cells 
infected by one of three viruses (46). Using graphical Gaussian 
modeling and linear regression (Table 1), the researchers built 
a model that was able to predict heterogeneous infection pat-
terns based on each cells’ population context. Moreover, 
Bayesian network learning (Table 1) revealed a novel infection 
mechanism for SV40 virus, which was further validated by 
experiments. This study not only revealed how heterogeneity 
of cellular activities during virus infection accounts for varia-
bility in infection, but also demonstrated how systems biology 
approaches at the single cell level can improve understanding 
of viral infection mechanisms.
　Viral infection can also induce cell-to-cell viability in activa-
tion of signaling pathways.  A recent study in mouse cells in-
fected with Sendal virus demonstrated that cells infected with 
similar levels of virus showed stochastic expression of interfer-
on-β (IFNβ) and other virus-inducible genes (50). The reason 
for the stochastic IFNβ response appeared to be due to 
cell-to-cell variability in host protein factors mediating all lev-
els of the infection process, including sensors of infection, sig-
naling proteins, and transcription factors (50). Interestingly, 
naturally-occurring variations in protein levels were also 
shown to account for cell-to-cell heterogeneity in apoptotic re-
sponses to treatment with TRAIL (51). This suggests that resist-
ance to treatment exhibited by many cancer cell populations 
may not be genetically based, a result that may also apply to 
anti-viral treatment. Such natural stochastic fluctuations (Table 
1) may also account for observed differences in cell fate, such 
as the replication-versus-latency decision of HIV-1 (48, 49). 
Stochastic fluctuations in the viral protein Tat were shown to 
result in different patterns of gene expression in populations of 
Jurkat cells clonally infected with a minimal HIV vector (52, 
53). Whether or not variability in host proteins also contributes 
to this viral fate decision remains to be worked out.    
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　Measurements of signaling proteins at the single cell level 
increasingly reveal network functions and mechanisms that are 
masked in the population-level measurements. For example, 
uniform stimulation of a PC12 cell population by nerve growth 
factor (NGF) causes some cells to differentiate and some cells 
to proliferate. A two-dimensional phospho-ERK-phospho-Akt 
single cell response map constructed by single cell imaging 
analysis of cells treated with NGF revealed a distinct boundary 
separating differentiating and proliferating cells (54). The same 
pERK–pAkt boundary separated proliferation-versus-differ-
entiation fate decision in response to other growth factors, 
which suggested a mechanistic strategy by which cells regulate  
differentiation within the population (54). Interestingly, anoth-
er recent study exploited the cell-to-cell variability of viral in-
fection to quantify signaling responses to heterogeneous levels 
of MYC protein (55). By using single cell imaging to quantify 
signal activation in response to a wide range of overexpressed 
MYC delivered by an adenoviral vector, the authors revealed a 
biphasic pattern in the activation of MYC’s downstream effec-
tor, E2f1, accounting for conflicting reports of the effect of 
MYC overexpression.
　Increasingly, single cell studies at a systems level are reveal-
ing the complexity of signaling responses in cells of the im-
mune system. Given the close relationship between viral in-
fection and the resulting host immune response, these studies 
may provide important insights to improving anti-viral thera-
pies and vaccine development. For example, a serial, time-de-
pendent, single cell analysis of IFN-gamma, IL-2 and TNF-al-
pha secretion by primary human T cells in response to activat-
ing stimuli showed that cytokine release is asynchronous and 
that the majority of cells secrete only one cytokine at a time 
(56). Furthermore, the study showed that T cells release cyto-
kines following a programmatic pattern which is associated 
with the differentiated state of the cell. A similar study applied 
information theory to investigate fluctuations in protein secre-
tion from single human macrophage cells in response to LPS. 
By characterizing the fluctuations of different secreted proteins 
in a single cell and in small cell colonies, the authors were 
able to construct a protein-protein interaction network and 
quantitatively predict the role of perturbations (57). Notably, 
both of these studies were conducted in microfluidic devices, 
which increasingly facilitate quantification of signaling and cy-
tokine responses in single cells due to the sensitivity provided 
by miniaturization of assays (58). 
　Single cells from the same viral-infected population exhibit 
differences in the number of produced virus particles spanning 
over 300-fold (59), and this diversity will surely impact in-
fection dynamics and treatment strategies. Therefore, studies of 
virus–host interactions will be especially enhanced by the 
growing availability of multiplexed experimental measure-
ments of proteins in single cells, and computational ap-
proaches to derive biological understanding from this multi-
tude of data.

CONCLUSIONS

Viral infection is a systems-level perturbation, and therefore 
systems biology approaches are naturally suited to studying 
the complexity of viral pathogenesis. We have highlighted a 
number of innovative examples from both the viral and non-vi-
ral literature, which demonstrate the potential for dynamic sys-
tems biology signaling studies–characterized by time-variant, 
context-dependent responses to viral infection–to complement 
both molecular, single pathway efforts and high-throughput, 
large-scale analyses of viral–host interactomes (Fig. 1). We ex-
pect that systems biology approaches designed to define sig-
naling network organization, discover novel regulatory mecha-
nisms, and predict phenotypic responses to viral infection will 
uncover many novel mechanisms underlying viral patho-
genesis and point to promising strategies for anti-viral therapy. 
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