DOI QR코드

DOI QR Code

Foamy Virus Integrase in Development of Viral Vector for Gene Therapy

  • Kim, Jinsun (Department of Systems Biotechnology, Chung-Ang University) ;
  • Lee, Ga-Eun (Department of Systems Biotechnology, Chung-Ang University) ;
  • Shin, Cha-Gyun (Department of Systems Biotechnology, Chung-Ang University)
  • Received : 2020.03.24
  • Accepted : 2020.07.14
  • Published : 2020.09.28

Abstract

Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.

Keywords

References

  1. Busch H, Choi YC, Crooke ST, Okada S. 1972. Genetic engineering and cancer chemotherapy. Oncology 26: 152-179. https://doi.org/10.1159/000224665
  2. Goff SP, Berg P. 1976. Construction of hybrid viruses containing SV40 and l phage DNA segments and their propagation in cultured monkey cells. Cell 9: 695-705. https://doi.org/10.1016/0092-8674(76)90133-1
  3. Cepko CL, Roberts BE, Mulligan RC. 1984. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 37: 1053-1062. https://doi.org/10.1016/0092-8674(84)90440-9
  4. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, et al. 1990. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N. Engl. J. Med. 323: 570-578. https://doi.org/10.1056/NEJM199008303230904
  5. The Journal of Gene Medicine. 2019. Gene Therapy Clinical Trials Worldwide Database. Available from https://www.abedia.com/wiley/index.html. Accessed Mar. 10, 2020.
  6. Baum C, Düllmann J, Li Z, Fehse B, Meyer J, Williams DA, et al. 2003. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101: 2099-2114. https://doi.org/10.1182/blood-2002-07-2314
  7. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. 2003. Fatal systemic inflammatory response syndrome in an ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80: 148-158. https://doi.org/10.1016/j.ymgme.2003.08.016
  8. Hidai C, Kitano H. 2018. Nonviral gene therapy for cancer: a review. Diseases 6: 57. https://doi.org/10.3390/diseases6030057
  9. Enders JF, Peebles TC. 1954. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc. Soc. Exp. Biol. Med. 86: 277-286. https://doi.org/10.3181/00379727-86-21073
  10. Lindemann D, Rethwilm A, 2011. Foamy virus biology and its application for vector development. Viruses 3: 561-585. https://doi.org/10.3390/v3050561
  11. Meiering CD, Linial ML. 2001. Historical perspective of foamy virus epidemiology and infection. Clin. Microbiol. Rev. 14:165-176. https://doi.org/10.1128/CMR.14.1.165-176.2001
  12. Moebes A, Enssle J, Bieniasz PD, Heinkelein M, Lindemann D, Bocket M, et al. 1997. Human foamy virus reverse transcription that occurs late in the viral replication cycle. J. Virol. 71: 7305-7311. https://doi.org/10.1128/JVI.71.10.7305-7311.1997
  13. Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, et al. 2018. Spumaretroviruses: updated taxonomy and nomenclature. Virology 516: 158-164. https://doi.org/10.1016/j.virol.2017.12.035
  14. King AMQ, Lefkowitz EJ, Mushegian AR, Adams MJ, Dutilh BE, Gorbalenya AE, et al. 2018. Changes to taxonomy and the international code of virus classification and nomenclature ratified by the International Committee on Taxonomy of Viruses (2018). Arch. Virol. 163: 2601-2631. https://doi.org/10.1007/s00705-018-3847-1
  15. Hamann MV, Stanke N, Mullers E, Stirnnagel K, Hutter S, Artegiani, B, et al. 2014. Efficient transient genetic manipulation in vitro and in vivo by prototype foamy virus-mediated nonviral RNA transfer. Mol. Ther. 22: 1460-1471. https://doi.org/10.1038/mt.2014.82
  16. Burtner CR, Beard BC, Kennedy DR, Wohlfahrt ME, Adair JE, Trobridge GD, et al. 2014. Intravenous injection of a foamy virus vector to correct canine SCID-X1. Blood 123: 3578-3584. https://doi.org/10.1182/blood-2013-11-538926
  17. Humbert O, Chan F, Rajawat YS, Torgerson TR, Burtner CR, Hubbard NW, et al. 2018. Rapid immune reconstitution of SCID-X1 canines after G-CSF/AMD3100 mobilization and in vivo gene therapy. Blood Adv. 2: 987-999. https://doi.org/10.1182/bloodadvances.2018016451
  18. Rajawat YS, Humbert O, Kiem HP. 2019. In-vivo gene therapy with foamy virus vectors. Viruses 11: 1091. https://doi.org/10.3390/v11121091
  19. Trobridge GD, Horn PA, Beard BC, Kiem HP. 2012. Large animal models for foamy virus vector gene therapy. Viruses 4: 3572-3588. https://doi.org/10.3390/v4123572
  20. Vassilopoulos G, Trobridge G, Josephson NC, Russell DW. 2001. Gene transfer into murine hematopoietic stem cells with helper-free foamy virus vectors. Blood 98: 604-609. https://doi.org/10.1182/blood.V98.3.604
  21. Meng J, Sweeney NP, Doreste B, Muntoni F, McClure M, Morgan J. 2020. Restoration of functional full-length dystrophin after intramuscular transplantation of foamy virus-transduced myoblasts. Hum. Gene. Ther. 31: 241-252. https://doi.org/10.1089/hum.2019.224
  22. Engelman A, Cherepanov P. 2014. Retroviral integrase structure and DNA recombination mechanism. Microbiol. Spectr. 2: 1-22.
  23. Maskell DP, Renault L, Serrao E, Lesbats P, Matadeen R, Hare S, et al. 2015. Structural basis for retroviral integration into nucleosomes. Nature 523: 366-369. https://doi.org/10.1038/nature14495
  24. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, et al. 2009. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res. 37: 243-255. https://doi.org/10.1093/nar/gkn938
  25. Lopez Jr MA, Mackler RM, Altman MP, Yoder KE. 2017. Detection and removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J. Vis. Exp. 130: e56605.
  26. Engelman AN, Cherepanov P. 2017. Retroviral intasomes arising. Curr. Opin. Struct. Biol. 47: 23-29. https://doi.org/10.1016/j.sbi.2017.04.005
  27. Ciuffi A, Bushman FD. 2006. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet. 22: 388-395. https://doi.org/10.1016/j.tig.2006.05.006
  28. Delelis O, Carayon K, Guiot E, Leh H, Tauc P, Brochon JC, et al. 2008. Insight into the integrase-DNA recognition mechanism: a specific DNA-binding mode revealed by an enzymatically labeled integrase. J. Biol. Chem. 283: 27838-27849. https://doi.org/10.1074/jbc.M803257200
  29. Chow SA, Vincent KA, Ellison V, Brown PO. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255: 723-726. https://doi.org/10.1126/science.1738845
  30. Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM. 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331-2338. https://doi.org/10.1128/MCB.12.5.2331
  31. Drelich M, Wilhelm R, Mous J. 1992. Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology 188: 459-468. https://doi.org/10.1016/0042-6822(92)90499-F
  32. Li M, Lin S, Craigie R. 2016. Outer domains of integrase within retroviral intasomes are dispensible for catalysis of DNA integration. Protein Sci. 25: 472-478. https://doi.org/10.1002/pro.2837
  33. Engelman A, Mizuuchi K, Craigie R. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211-1221. https://doi.org/10.1016/0092-8674(91)90297-C
  34. Davies DR, Goryshin IY, Reznikoff WS, Rayment I. 2000. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289: 77-85. https://doi.org/10.1126/science.289.5476.77
  35. Nowotny M. 2009. Retroviral integrase superfamily: the structural perspective. EMBO Rep. 10: 144-151. https://doi.org/10.1038/embor.2008.256
  36. Enssle J, Moebes A, Heinkelein M, Panhuysen M, Mauser B, Schweizer M, et al. 1999. An active foamy virus integrase is required for virus replication. J. Gen. Virol. 80: 1445-1452. https://doi.org/10.1099/0022-1317-80-6-1445
  37. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266: 1981-1986. https://doi.org/10.1126/science.7801124
  38. Yang W, Lee JY, Nowotny M. 2006. Making and breaking nucleic acids: two-$Mg^{2+}$-ion catalysis and substrate specificity. Mol. Cell 22: 5-13. https://doi.org/10.1016/j.molcel.2006.03.013
  39. Cherepanov P, Surratt D, Toelen J, Pluymers W, Griffith J, De Clercq E, et al. 1999. Activity of recombinant HIV-1 integrase on mini-HIV DNA. Nucleic Acids Res. 27: 2202-2210. https://doi.org/10.1093/nar/27.10.2202
  40. Villanueva RA, Jonsson CB, Jones J, Georgiadis MM, Roth MJ. 2003. Differential multimerization of Moloney murine leukemia virus integrase purified under nondenaturing conditions. Virology 316: 146-160. https://doi.org/10.1016/S0042-6822(03)00559-2
  41. Lopez Jr MA, Mackler RM, Yoder KE. 2016. Removal of nuclease contamination during purification of recombinant prototype foamy virus integrase. J. Virol. Methods 235: 134-138. https://doi.org/10.1016/j.jviromet.2016.06.002
  42. Yoo GW, Shin CG. 2013. Biochemical characteristics of functional domains using feline foamy virus integrase mutants. BMB Rep. 46: 53-58. https://doi.org/10.5483/BMBRep.2013.46.1.118
  43. Lee GE, Kim J, Shin CG. 2019. Single residue mutation in integrase catalytic core domain affects feline foamy viral DNA integration. Biosci. Biotechnol. Biochem. 83: 270-280. https://doi.org/10.1080/09168451.2018.1530969
  44. Lee D, Hyun U, Kim JY, Shin CG. 2010. Characterization of biochemical properties of feline foamy virus integrase. J. Microbiol. Biotechnol. 20: 968-973. https://doi.org/10.4014/jmb.1003.03006
  45. Ballandras-Colas A, Naraharisetty H, Li X, Serrao E, Engelman A. 2013. Biochemical characterization of novel retroviral integrase proteins. PLoS One 8: e76638. https://doi.org/10.1371/journal.pone.0076638
  46. Bera S, Pandey KK, Vora AC, Grandgenett DP. 2009. Molecular interactions between HIV-1 integrase and the two viral DNA ends within the synaptic complex that mediates concerted integration. J. Mol. Biol. 389: 183-198. https://doi.org/10.1016/j.jmb.2009.04.007
  47. Li M, Mizuuchi M, Burke Jr TR, Craigie R. 2006. Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J. 25: 1295-1304. https://doi.org/10.1038/sj.emboj.7601005
  48. Guiot E, Carayon K, Delelis O, Simon F, Tauc P, Zubin E, et al. 2006. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J. Biol. Chem. 281: 22707-22719. https://doi.org/10.1074/jbc.M602198200
  49. Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont-Sarcos A, Tarrago-Litvak L, et al. 2005. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res. 33: 977-986. https://doi.org/10.1093/nar/gki241
  50. Bao KK, Wang H, Miller JK, Erie DA, Skalka AM, Wong I. 2003. Functional oligomeric state of avian sarcoma virus integrase. J. Biol. Chem. 278: 1323-1327. https://doi.org/10.1074/jbc.C200550200
  51. Jonsson CB, Donzella GA, Gaucan E, Smith CM, Roth MJ. 1996. Functional domains of Moloney murine leukemia virus integrase defined by mutation and complementation analysis. J. Virol. 70: 4585-4597. https://doi.org/10.1128/JVI.70.7.4585-4597.1996
  52. van Gent DC, Vink C, Groeneger AA, Plasterk RH. 1993. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12: 3261-3267. https://doi.org/10.1002/j.1460-2075.1993.tb05995.x
  53. Engelman A, Bushman FD, Craigie R. 1993. Identification of discrete functional domains of HIV‐1 integrase and their organization within an active multimeric complex. EMBO J. 12: 3269-3275. https://doi.org/10.1002/j.1460-2075.1993.tb05996.x
  54. Jones KS, Coleman J, Merkel GW, Laue TM, Skalka AM. 1992. Retroviral integrase functions as a multimer and can turn over catalytically. J. Biol. Chem. 267: 16037-16040. https://doi.org/10.1016/S0021-9258(18)41960-6
  55. Wei SQ, Mizuuchi K, Craigie R. 1997. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16: 7511-7520. https://doi.org/10.1093/emboj/16.24.7511
  56. Chen H, Wei SQ, Engelman A. 1999. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J. Biol. Chem. 274: 17358-17364. https://doi.org/10.1074/jbc.274.24.17358
  57. Grawenhoff J, Engelman AN. 2017. Retroviral integrase protein and intasome nucleoprotein complex structures. World J. Biol. Chem. 8: 32-44. https://doi.org/10.4331/wjbc.v8.i1.32
  58. Maertens GN, Hare S, Cherepanov P. 2010. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468: 326-329. https://doi.org/10.1038/nature09517
  59. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. 2010. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464: 232-236. https://doi.org/10.1038/nature08784
  60. Ballandras-Colas A, Maskell DP, Serrao E, Locke J, Swuec P, Jonsson SR, et al. 2017. A supramolecular assembly mediates lentiviral DNA integration. Science 355: 93-95. https://doi.org/10.1126/science.aah7002
  61. Roberts VA. 2015. C-terminal domain of integrase binds between the two active sites. J. Chem. Theory Comput. 11: 4500-4511. https://doi.org/10.1021/ct501125r
  62. Serrao E, Ballandras-Colas A, Cherepanov P, Maertens GN, Engelman AN. 2015. Key determinants of target DNA recognition by retroviral intasomes. Retrovirology 12: 39. https://doi.org/10.1186/s12977-015-0167-3
  63. Bosserman MA, O'Quinn DF, Wong I. 2007. Loop202-208 in avian sarcoma virus integrase mediates tetramer assembly and processing activity. Biochemistry 46: 11231-11239. https://doi.org/10.1021/bi700197a
  64. Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P. 2009. Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog. 5: e1000515. https://doi.org/10.1371/journal.ppat.1000515
  65. Heuer TS, Brown PO. 1998. Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase−DNA complex. Biochemistry 37: 6667-6678. https://doi.org/10.1021/bi972949c
  66. Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, et al. 2003. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278: 372-381. https://doi.org/10.1074/jbc.M209278200
  67. Hare S, Maertens GN, Cherepanov P. 2012. 3'-Processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J. 31: 3020-3028. https://doi.org/10.1038/emboj.2012.118
  68. Yin Z, Lapkouski M, Yang W, Craigie R. 2012. Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration. Protein Sci. 21: 1849-1857. https://doi.org/10.1002/pro.2166
  69. Mackler RM, Lopez Jr MA, Yoder KE. 2018. Assembly and purification of prototype foamy virus intasomes. J. Vis. Exp. 133: e57453.
  70. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, et al. 2005. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol. 3: 848-858. https://doi.org/10.1038/nrmicro1263
  71. Wu X, Li Y, Crise B, Burgess SM, Munroe DJ. 2005. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J. Virol. 79: 5211-5214. https://doi.org/10.1128/JVI.79.8.5211-5214.2005
  72. Shun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, et al. 2007. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21: 1767-1778. https://doi.org/10.1101/gad.1565107
  73. Holman AG, Coffin JM. 2005. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc. Natl. Acad. Sci. USA 102: 6103-6107. https://doi.org/10.1073/pnas.0501646102
  74. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521-529. https://doi.org/10.1016/S0092-8674(02)00864-4
  75. Crise B, Li Y, Yuan C, Morcock DR, Whitby D, Munroe DJ, et al. 2005. Simian immunodeficiency virus integration preference is similar to that of human immunodeficiency virus type 1. J. Virol. 79: 12199-12204. https://doi.org/10.1128/JVI.79.19.12199-12204.2005
  76. MacNeil A, Sankale JL, Meloni ST, Sarr AD, Mboup S, Kanki P. 2006. Genomic sites of human immunodeficiency virus type 2 (HIV-2) integration: similarities to HIV-1 in vitro and possible differences in vivo. J. Virol. 80: 7316-7321. https://doi.org/10.1128/JVI.00604-06
  77. Hacker CV, Vink CA, Wardell TW, Lee S, Treasure P, Kingsman SM, et al. 2006. The integration profile of EIAV-based vectors. Mol. Ther. 14: 536-545. https://doi.org/10.1016/j.ymthe.2006.06.006
  78. Kang Y, Moressi CJ, Scheetz TE, Xie L, Tran DT, Casavant TL, et al. 2006. Integration site choice of a feline immunodeficiency virus vector. J. Virol. 80: 8820-8823. https://doi.org/10.1128/JVI.00719-06
  79. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, et al. 2004. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2: e234. https://doi.org/10.1371/journal.pbio.0020234
  80. Nowrouzi A, Dittrich M, Klanke C, Heinkelein M, Rammling M, Dandekar T, et al. 2006. Genome-wide mapping of foamy virus vector integrations into a human cell line. J. Gen. Virol. 87: 1339-1347. https://doi.org/10.1099/vir.0.81554-0
  81. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, et al. 2006. Foamy virus vector integration sites in normal human cells. Proc. Natl. Acad. Sci. USA 103: 1498-1503. https://doi.org/10.1073/pnas.0510046103
  82. Stevens SW, Griffith JD. 1996. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J. Virol. 70: 6459-6462. https://doi.org/10.1128/JVI.70.9.6459-6462.1996
  83. Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C, et al. 2007. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J. Virol. 81: 6731-6741. https://doi.org/10.1128/JVI.02752-06
  84. Berry C, Hannenhalli S, Leipzig J, Bushman FD. 2006. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput. Biol. 2: e157. https://doi.org/10.1371/journal.pcbi.0020157
  85. Lee HS, Kang SY, Shin CG. 2005. Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Mol. Cells 19: 246-255.
  86. Kim J, Lee GE, Lochelt M, Shin CG. 2018. Integrase C-terminal residues determine the efficiency of feline foamy viral DNA integration. Virology 514: 50-56. https://doi.org/10.1016/j.virol.2017.10.022
  87. Pahl A, Flügel RM. 1995. Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. J. Biol. Chem. 270: 2957-2966. https://doi.org/10.1074/jbc.270.7.2957
  88. Heinkelein M, Leurs C, Rammling M, Peters K. Hanenberg H, Rethwilm A. 2002. Pregenomic RNA is required for efficient incorporation of Pol polyprotein into foamy virus capsids. J. Virol. 76: 10069-10073. https://doi.org/10.1128/JVI.76.19.10069-10073.2002
  89. Tobaly‐Tapiero J, Bittoun P, Lehmann‐Che J, Delelis O, Giron ML, de The H, et al. 2008. Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 9: 1717-1727. https://doi.org/10.1111/j.1600-0854.2008.00792.x
  90. Lo YT, Tian T, Nadeau PE, Park J, Mergia A. 2010. The foamy virus genome remains unintegrated in the nuclei of G1/S phase-arrested cells, and integrase is critical for preintegration complex transport into the nucleus. J. Virol. 84: 2832-2842. https://doi.org/10.1128/JVI.02435-09
  91. Mullers E, Stirnnagel K, Kaulfuss S, Lindemann D. 2011. Prototype foamy virus (PFV) Gag nuclear localization: a novel pathway among retroviruses. J. Virol. 85: 9276-9285. https://doi.org/10.1128/JVI.00663-11
  92. An DG, Hyun U, Shin CG. 2008. Characterization of nuclear localization signals of the prototype foamy virus integrase. J. Gen. Virol. 89: 1680-1684. https://doi.org/10.1099/vir.0.83689-0
  93. Hossain MA, Ali MK, Shin CG. 2014. Nuclear localization signals in prototype foamy viral integrase for successive infection and replication in dividing cells. Mol. Cells 37: 140-148. https://doi.org/10.14348/molcells.2014.2331
  94. Hamid FB, Kim J, Shin CG. 2017. Characterization of prototype foamy virus infectivity in transportin 3 knockdown human 293T cell line. J. Microbiol. Biotechnol. 27: 380-387. https://doi.org/10.4014/jmb.1606.06011
  95. Ali MK, Kim J, Hamid FB, Shin CG. 2015. Knockdown of the host cellular protein transportin 3 attenuates prototype foamy virus infection. Biosci. Biotechnol. Biochem. 79: 943-951. https://doi.org/10.1080/09168451.2015.1008973
  96. Bodem J. 2011. Regulation of foamy viral transcription and RNA export. Adv. Virus Res. 81: 1-31. https://doi.org/10.1016/B978-0-12-385885-6.00006-7
  97. Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML. 1996. Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271: 1579-1582. https://doi.org/10.1126/science.271.5255.1579
  98. Bodem J, Lochelt M, Winkler I, Flower RP, Delius H, Flugel RM. 1996. Characterization of the spliced pol transcript of feline foamy virus: the splice acceptor site of the pol transcript is located in gag of foamy viruses. J. Virol. 70: 9024-9027. https://doi.org/10.1128/JVI.70.12.9024-9027.1996
  99. Lochelt M, Muranyi W, Flugel RM. 1993. Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc. Natl. Acad. Sci. USA 90: 7317-7321. https://doi.org/10.1073/pnas.90.15.7317
  100. Lochelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB, et al. 2005. The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc. Natl. Acad. Sci. USA 102: 7982-7987. https://doi.org/10.1073/pnas.0501445102
  101. Lochelt M. 2003. Foamy virus transactivation and gene expression, pp. 27-61. In Rethwilm A (ed.), Foamy Viruses. Springer, New York, NY.
  102. Peters K, Barg N, Gärtner K, Rethwilm A. 2008. Complex effects of foamy virus central purine-rich regions on viral replication. Virology 373: 51-60. https://doi.org/10.1016/j.virol.2007.10.037
  103. Hartl MJ, Bodem J, Jochheim F, Rethwilm A, Rosch P, Wohrl BM. 2011. Regulation of foamy virus protease activity by viral RNA: a novel and unique mechanism among retroviruses. J. Virol. 85: 4462-4469. https://doi.org/10.1128/JVI.02211-10
  104. Moschall R, Denk S, Erkelenz S, Schenk C, Schaal H, Boden J. 2017. A purine-rich element in foamy virus pol regulates env splicing and gag/pol expression. Retrovirology 14: 10. https://doi.org/10.1186/s12977-017-0337-6
  105. Lee EG, Roy J, Jackson D, Clark P, Boyer PL, Hughes SH, et al. 2011. Foamy retrovirus integrase contains a Pol dimerization domain required for protease activation. J. Virol. 85: 1655-1661. https://doi.org/10.1128/JVI.01873-09
  106. Spannaus R, Hartl MJ, Wohrl BM, Rethwilm A, Bodem J. 2012. The prototype foamy virus protease is active independently of the integrase domain. Retrovirology 9: 41. https://doi.org/10.1186/1742-4690-9-41
  107. Pahl A, Flügel RM. 1993. Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J. Virol. 67: 5426-5434. https://doi.org/10.1128/JVI.67.9.5426-5434.1993
  108. Sinha S, Grandgenett DP. 2005. Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells. J. Virol. 79: 8208-8216. https://doi.org/10.1128/JVI.79.13.8208-8216.2005
  109. Li M, Craigie R. 2005. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration. J. Biol. Chem. 280: 29334-29339. https://doi.org/10.1074/jbc.M505367200
  110. Knyazhanskaya ES, Smolov MA, Kondrashina OV, Gottikh MB. 2009. Relative comparison of catalytic characteristics of human foamy virus and HIV-1 integrases. Acta Naturae 1: 78-80. https://doi.org/10.32607/20758251-2009-1-2-78-80
  111. Smolov M, Gottikh M, Tashlitskii V, Korolev S, Demidyuk I, Brochon JC, et al. 2006. Kinetic study of the HIV-1 DNA 3‐end processing. FEBS J. 273: 1137-1151. https://doi.org/10.1111/j.1742-4658.2006.05139.x
  112. Kang SY, Ahn DG, Lee C, Lee YS, Shin CG. 2008. Functional nucleotides of U5 LTR determining substrate specificity of prototype foamy virus integrase. J. Microbiol. Biotechnol. 18: 1044-1049.
  113. Oh YT, Shin CG. 1999. Comparison of enzymatic activities of the HIV‐1 and HFV integrases to their U5 LTR substrates. IUBMB Life 47: 621-629. https://doi.org/10.1080/15216549900201673
  114. Aiyer S, Rossi P, Malani N, Schneider WM, Chandar A, Bushman FD, et al. 2015. Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Res. 43: 5647-5663. https://doi.org/10.1093/nar/gkv410
  115. Mackler RM, Lopez MA, Osterhage MJ, Yoder KE. 2018. Prototype foamy virus integrase is promiscuous for target choice. Biochem. Biophys. Res. Commun. 503: 1241-1246. https://doi.org/10.1016/j.bbrc.2018.07.031
  116. Cavazza A, Moiani A, Mavilio F. 2013. Mechanisms of retroviral integration and mutagenesis. Hum. Gene Ther. 24: 119-131. https://doi.org/10.1089/hum.2012.203
  117. Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW. 2002. Improved foamy virus vectors with minimal viral sequences. Mol. Ther. 6: 321-328. https://doi.org/10.1006/mthe.2002.0672
  118. Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J, et al. 2002. Improved primate foamy virus vectors and packaging constructs. J. Virol. 76: 3774-3783. https://doi.org/10.1128/JVI.76.8.3774-3783.2002
  119. Wiktorowicz T, Peters K, Armbruster N, Steinert AF, Rethwilm A. 2009. Generation of an improved foamy virus vector by dissection of cis-acting sequences. J. Gen. Virol. 90: 481-487. https://doi.org/10.1099/vir.0.006312-0
  120. Mullers E, Uhlig T, Stirnnagel K, Fiebig U, Zentgraf H, Lindemann D. 2011. Novel functions of prototype foamy virus Gag glycine-arginine-rich boxes in reverse transcription and particle morphogenesis. J. Virol. 85: 1452-1463. https://doi.org/10.1128/JVI.01731-10
  121. Bauer Jr TR, Allen JM, Hai M, Tuschong LM, Khan IF, Olson EM, et al. 2008. Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors. Nat. Med. 14: 93-97. https://doi.org/10.1038/nm1695
  122. Bauer Jr TR, Tuschong LM, Calvo KR, Shive HR, Burkholder TH, Karlsson EK, et al. 2013. Long-term follow-up of foamy viral vector-mediated gene therapy for canine leukocyte adhesion deficiency. Mol. Ther. 21: 964-972. https://doi.org/10.1038/mt.2013.34
  123. Hocum JD, Linde I, Rae DT, Collins CP, Matern LK, Trobridge GD. 2016. Retargeted foamy virus vectors integrate less frequently near proto-oncogenes. Sci. Rep. 6: 36610. https://doi.org/10.1038/srep36610
  124. Deyle DR, Li Y, Olson EM, Russell DW. 2010. Nonintegrating foamy virus vectors. J. Virol. 84: 9341-9349. https://doi.org/10.1128/JVI.00394-10
  125. Nasimuzzaman M, Lynn D, Ernst R, Beuerlein M, Smith RH, Shrestha A, et al. 2016. Production and purification of high-titer foamy virus vector for the treatment of leukocyte adhesion deficiency. Mol. Ther. Methods Clin. Dev. 3: 16004. https://doi.org/10.1038/mtm.2016.4
  126. Merten OW, Hebben M, Bovolenta C. 2016. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 3: 16017. https://doi.org/10.1038/mtm.2016.17
  127. Sweeney NP, Meng J, Patterson H, Morgan JE, McClure M. 2017. Delivery of large transgene cassettes by foamy virus vector. Sci. Rep. 7: 8085. https://doi.org/10.1038/s41598-017-08312-3
  128. Sweeney NP, Regan C, Liu J, Galleu A, Dazzi F, Lindemann D, et al. 2016. Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector. Mol. Ther. 24: 1227-1236. https://doi.org/10.1038/mt.2016.91