DOI QR코드

DOI QR Code

The Importance of Host Factors for the Replication of Plant RNA Viruses

식물 바이러스 증식에 관여하는 기주 요인의 중요성

  • Park Mi-Ri (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Kim Kook-Hyung (School of Agricultural Biotechnology and Center for Plant Molecular Genetics and Breeding Research, Seoul National University)
  • 박미리 (서울대학교 농생명공학부 식물분자유전육종연구센터) ;
  • 김국형 (서울대학교 농생명공학부 식물분자유전육종연구센터)
  • Published : 2005.12.01

Abstract

All viruses have few genes relative to their hosts. Viruses, thus, utilize many host factors for efficient viral replication in host cell. Virus-host interactions are crucial determinations of host range, replication, and pathology. Host factors participate in most steps of positive-strand RNA virus infection, including entry, viral gene expression, virion assembly, and release. Recent data show that host factors play important roles in assembling the viral RNA replication complex, selecting and recruiting viral RNA replication templates, activating the viral complex for RNA synthesis, and the other steps. These virus-host interactions may contribute to the host specificity and/or pathology. Positive-strand RNA viruses encompass over two-thirds of all virus genera and include numerous pathogens. This review focuses on the importance of host factors involved in positive strand plant RNA virus genome replication.

기주 식물체 내에서 식물바이러스의 증식과 이동 여부는 바이러스 게놈과 기주 간의 상호작용에 의해 결정된다. 바이러스는 기주 내에서 바이러스가 증식하고 이동하기 위해서는 기주의 요소들을 이용해야 하며, 이러한 기주 요소들은 바이러스의 기주내 침입(entry),바이러스 유전자의 발현, 그리고 바이러스 입자형성(virion assembly) 등 모든 과정에서 직접적으로 관여를 하거나, 또는 기주 단백질 발현과 저항성을 조절하여 바이러스 증식에 간접적으로 관여를 한다. 기주 요소들과 상호작용을 통해서 바이러스 증식에 관여함으로써, 기주 특이성 및 바이러스의 병 발생에 관여를 할 것으로 보고 있다.

Keywords

References

  1. Brown, D. and Gold, L. 1996. RNA replication by Q beta replicase: a working model. Proc. Natl. Acad. Sci. USA 93: 11558-11562
  2. Cillo, F., Roberts, I. M. and Palukaitis, P. 2002. In situ localization and tissue distribution of the replication-associated proteins of Cucumber mosaic virus in tobacco and cucumber. J. Virol. 76: 10654-10664 https://doi.org/10.1128/JVI.76.21.10654-10664.2002
  3. Diez, J., Ishikawa, M., Kaido, M. and Ahlquist, P. 2000. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl. Acad. Sci. USA 97: 3913-3918
  4. Dreher, T. W 1999. Functions of the 3'-untranslated regions of positive strand RNA viral genomes. Annu. Rev. Phytopathol. 37: 151-174 https://doi.org/10.1146/annurev.phyto.37.1.151
  5. Kim, K. H. and Hemenway, C. 1997. Mutations that alter a conserved element upstream of the Potato virus X triple block and coat protein genes affect subgenomic RNA accumulation. Virology 232: 187-197 https://doi.org/10.1006/viro.1997.8565
  6. Kim, K. H., Kwon, S. J. and Hemenway, C. 2002. Cellular protein binds to sequences near the 5' terminus of Potato virus XRNA that are important for virus replication. Virology 301: 305-312 https://doi.org/10.1006/viro.2002.1559
  7. Kushner, D. B., Lindenbach, B. D., Grdzelishvili, V. Z., Noueiry, A. O., Paul, S. M. and Ahlquist, P. 2003. Systematic, genomewide identification of host genes affecting replication of a positive-strand RNA virus. Proc. Natl. Acad. Sci. USA 100: 15764-15769 https://doi.org/10.1073/pnas.2536857100
  8. Lai, M. M. 1998. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244: 1-12 https://doi.org/10.1006/viro.1998.9098
  9. Lemm, J. A., Rumenapf, T., Strauss, E. G, Strauss, J. H. and Rice, C. M. 1994. Polypeptide requirements for assembly of functional sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J. 13: 2925-2934
  10. Lin, J. W., Chiu, H. N., Chen, I. H., Chen, T. C., Hsu, Y. H. and Tsai, C. H. 2005. Structural and functional analysis of the cisacting elements required for plus-strand RNA synthesis of Bamboo mosaic virus. J. Virol. 79: 9046-9053 https://doi.org/10.1128/JVI.79.14.9046-9053.2005
  11. Miller, W. A. and Koev, G 2000. Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology 273: 1-8 https://doi.org/10.1006/viro.2000.0421
  12. Noueiry, A. O. and Ahlquist, P. 2003. Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annu. Rev. Phytopathol. 41: 77-98 https://doi.org/10.1146/annurev.phyto.41.052002.095717
  13. Noueiry, A. O., Diez, J., Falk, S. P., Chen, J. and Ahlquist, P. 2003. Yeast Lsm1p-7p/Pat1p deadenylation-dependent mRNA-decapping factors are required for Brome mosaic virus genomic RNA translation. Mol. Cell. BioI. 23: 4094-4106 https://doi.org/10.1128/MCB.23.12.4094-4106.2003
  14. Osman, T. A. and Buck, K. W. 1997. The Tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J. Virol. 71: 6075-6082
  15. Panavas, T., Serviene, E., Brasher, J. and Nagy, P. D. 2005. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc. Natl. Acad Sci. USA 102: 7326-7331 https://doi.org/10.1073/pnas.0502604102
  16. Quadt, R. and Jaspars, E. M. 1990. Purification and characterization of Brome mosaic virus RNA-dependent RNA polymerase. Virology 178: 189-194 https://doi.org/10.1016/0042-6822(90)90393-6
  17. Quadt, R., Kao, C. C., Browning, K. S., Hershberger, R. P. and Ahlquist, P. 1993. Characterization of a host protein associated with Brome mosaic virus RNA-dependent RNA polymerase. Proc. Natl. Acad Sci. USA 90: 1498-1502 https://doi.org/10.1073/pnas.90.4.1498
  18. Shirako, Y. and Strauss, J. H. 1994. Regulation of sindbis virus RNA replication: uncleaved P123 and nsP4 function in minusstrand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J. Virol. 68: 1874-1885
  19. Sriskanda, V S., Pruss, G, Ge, X. and Vance, V B. 1996. An eight-nucleotide sequence in the Potato virus X3' untranslated region is required for both host protein binding and viral multiplication. J. Virol. 70: 5266-5271
  20. Sullivan, M. L. and Ahlquist, P. 1997. cis-Acting signals in bromovirus RNA replication and gene expression: networking with viral proteins and host factors. Semin. Virol. 8: 2-1-230
  21. Taylor, D. N. and Carr, J. P. 2000. The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 kDa replicase proteins of Tobacco mosaic virus in the yeast two-hybrid system. J. Gen. Virol. 81: 1587-1591 https://doi.org/10.1099/0022-1317-81-6-1587
  22. van der Heijden, M. W. and Bol, J. F. 2002. Composition of alphavirus-like replication complexes: involvement of virus and host encoded proteins. Arch. Virol. 147: 875-898 https://doi.org/10.1007/s00705-001-0773-3
  23. Wang, X., Ullah, Z. and Grumet, R. 2000. Interaction between Zucchini yellow mosaic potyvirus RNA-dependent RNA polymerase and host poly-(A) binding protein. Virology 275: 433-443 https://doi.org/10.1006/viro.2000.0509
  24. Zeenko, V. V., Ryabova, L. A., Spirin, A. S., Rothnie, H. M., Hess, D., Browning, K. S. and Hohn, T. 2002. Eukaryotic elongation factor 1A interacts with the upstream pseudoknot domain in the 3' untranslated region of Tobacco mosaic virus RNA. J. Virol. 76: 5678-5691 https://doi.org/10.1128/JVI.76.11.5678-5691.2002