• Title/Summary/Keyword: Uniformly convex

Search Result 118, Processing Time 0.02 seconds

WEAK CONVERGENCE TO COMMON FIXED POINTS OF COUNTABLE NONEXPANSIVE MAPPINGS AND ITS APPLICATIONS

  • Kimura, Yasunori;Takahashi, Wataru
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1275-1284
    • /
    • 2001
  • In this paper, we introduce an iteration generated by countable nonexpansive mappings and prove a weak convergence theorem which is connected with the feasibility problem. This result is used to solve the problem of finding a solution of the countable convex inequality system and the problem of finding a common fixed point for a commuting countable family of nonexpansive mappings.

  • PDF

Confluent Hypergeometric Distribution and Its Applications on Certain Classes of Univalent Functions of Conic Regions

  • Porwal, Saurabh
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.495-505
    • /
    • 2018
  • The purpose of the present paper is to investigate Confluent hypergeometric distribution. We obtain some basic properties of this distribution. It is worthy to note that the Poisson distribution is a particular case of this distribution. Finally, we give a nice application of this distribution on certain classes of univalent functions of the conic regions.

THE SHRINKING PROJECTION METHODS FOR HEMI-RELATIVELY NONEXPANSIVE MAPPINGS, VARIATIONAL INEQUALITIES AND EQUILIBRIUM PROBLEMS

  • Wang, Zi-Ming;Kang, Mi Kwang;Cho, Yeol Je
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.191-207
    • /
    • 2013
  • In this paper, we introduce the shrinking projection method for hemi-relatively nonexpansive mappings to find a common solution of variational inequality problems and equilibrium problems in uniformly convex and uniformly smooth Banach spaces and prove some strong convergence theorems to the common solution by using the proposed method.

ITERATIVE ALGORITHMS WITH ERRORS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.771-790
    • /
    • 2006
  • The iterative algorithms with errors for nonexpansive mappings are investigated in Banach spaces. Strong convergence theorems for these algorithms are obtained. Our results improve the corresponding results in [5, 13-15, 23, 27-29, 32] as well as those in [1, 16, 19, 26] in framework of a Hilbert space.

MAJORIZATION PROBLEMS FOR UNIFORMLY STARLIKE FUNCTIONS BASED ON RUSCHEWEYH q-DIFFERENTIAL OPERATOR RELATED WITH EXPONENTIAL FUNCTION

  • Vijaya, K.;Murugusundaramoorthy, G.;Cho, N.E.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2021
  • The main object of this present paper is to study some majorization problems for certain classes of analytic functions defined by means of q-calculus operator associated with exponential function.

Nonlinear semigroups on locally convex spaces

  • Hyeon, Son-Kuk
    • East Asian mathematical journal
    • /
    • v.6 no.1
    • /
    • pp.111-121
    • /
    • 1990
  • Let E be a locally convex Hausdorff space and let $\Gamma$ be a calibration for E. In this note we proved that if E is sequentially complete and a multi-vaiued operaturA in E is $\Gamma$-accretive such that $D(A){\subset}Re$ (I+$\lambda$A) for all sufficiently small positive $\lambda$, then A generates a nonlinear $\Gamma$-contraction semiproup {T(t) ; t>0}. We also proved that if E is complete, $Gamma$ is a dually uniformly convex calibration, and an operator A is m-$\Gamma$-accretive, then the initial value problem $$\{{\frac{d}{dt}u(t)+Au(t)\;\ni\;0,\;t >0,\atop u(0)=x}\.$$ has a solution $u:[0,\infty){\rightarrow}E$ given by $u(t)=T(t)x={lim}\limit_{n\rightarrow\infty}(I+\frac{t}{n}A)^{-n}x$ each $x{\varepsilon}D(A)$.

  • PDF

Convergence of an Iterative Algorithm for Systems of Variational Inequalities and Nonlinear Mappings in Banach Spaces

  • JEONG, JAE UG
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.933-951
    • /
    • 2015
  • In this paper, we consider the problem of convergence of an iterative algorithm for a general system of variational inequalities, a nonexpansive mapping and an ${\eta}$-strictly pseudo-contractive mapping. Strong convergence theorems are established in the framework of real Banach spaces.