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ASYMPTOTIC BEHAVIOR OF AN
ASYMPTOTICALLY NONEXPANSIVE SEMIGROUP
IN BANACH SPACES WITH OPIAL’S CONDITION

JonG Kyu Kim

ABsSTRACT. In this paper, we study the asymptotic behavior of orbits
{S(t)x} of an asymptotically nonexpansive semigroup & = {S(¢) :
t € G} for a right reversible semitopological semigroup G, defined
on a weakly compact convex subset C' of Banac spaces with Opial’s
condition for any = € C.

1. Introduction

Opial ([21]) proved the weak convergence theorem in a Hilbert space:
Let C be a closed convex subset of a Hilbert space H and let T : C — C
be a nonexpansive asymptotically regular mapping for which the set
F(T) of fixed points is nonempty. Then, for any z in C, the sequence
{T™xz} is weakly convergent to an element of F(T') (cf. (2], [22]). Simi-
lar results were also obtained by Bruck ([3]), Emmanuele ([4]), Gornicki
([6]), Hirano ([7]), Kobayashi ([14]) and Miyadera ([19]) in uniformly
convex Banach spaces. Corresponding theorems for asymptotically non-
expansive mappings and asymptotically nonexpansive semigroups were
investigated by many mathematicians ([1], (18], [20], [24], [25], [27])-

And also, Lau-Takahashi ([15]) established the following theorem: Let
C be a closed convex subset of a uniformly convex Banach space X
with Fréchet differentiable norm, G a right reversible semitopological
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semigroup, and § = {S(t) : ¢ € G} a nonexpansive semigroup on C. If
F(S) # @ and W(z) C F(S) for = € C, then the net {S(t)z} converges
weakly to some p € F(S), where W(z) is the set of all weak limits of
subnets of the net {S(¢)z} (see Theorem 2 and 3 in [15]).

Recently, Lin-Tan-Xu ([16]) proved the convergence of {T™z} of an
asymptotically nonexpansive mapping 7' in Banach spaces without the
uniform convexity.

In this paper, we prove the results of Lau-Takahashi ([15]) for an
asymptotically nonexpansive semigroup in a k-uniformly rotund space or
Banach space without the uniform convexity. The results of this paper
are also extensions of Lin-Tan-Xu ([16]) and Kim-Chun-Park (11]).

2. Preliminaries and Notations

Let C be a nonempty closed convex subset of a real Banach space X
and let G be a semitopological semigroup, i.e., G is a semigroup with a
Hausdorff topology such that for each s € G the mappings s — as and
s — sa from G to G are continous. G is called right reversible if any two
closed left ideals of G have nonvoid intersection. In this case, (G,%)isa
directed system when the binary relation “ > ” on G is defined by t = s
if and only if

{t}UGtC {s}UGs, t,scC.

Right reversible semitopological semigroup include all commutative semi-
groups which are right amenable as discrete semigroups ([8]). Left re-
versibility of G is defined similarly. G is called reversible if it is both left
and right reversible.

A family S = {S(t) : ¢t € G} of mappings from € into itself is said to
be a continuous representation of G on C if it satisfies the followings:

(1) S(ts)z = 5(t)S(s)z for all ¢, s € G and z € C.

(2) For every z € C, the mapping (s,z) — S(s)z from G x C into

C is continuous when G x C has the product topology.

A continuous representation S of G on C is said to be an asymptotically
nonezpansive semigroup on C if each ¢t € G, there exists k; > 0 such that

ISz - Sy 1< (L+k) [z —y |
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for all z,y € C, where lim;cq k¢ = 0 (see [5]). Let F(S) denote the set
of all common fixed points of mappings S(t), that is

F(S) =[] F(S®))-

teG

Next recall a generalization of uniform convex Banach spaces which
is due to Sullivan ([26]). Let & > 1 be an integer. Then a Banach space
X is said to be k-uniformly rotund (briefly. k-UR) if for given any ¢ > 0,
there exists a 6(¢) > 0 such that if {z1,22, -, Zx4+1} C Bx (1), the closed

unit ball of X, satisfies V(x1, 22, -+ ,Zp+1) > €, then
] k41

e A< 1 = d(g).

(k+1) ;m’ - ()
Here, V(x1, 22, - ,Zk+1) is the volume enclosed by the set {z;, s, -
')mk-}-l}, i'e'a

1 1
filz1) - fil@esr)
V(z1, - ,Tk+1) = sup , : ;

fk(;ﬁl) fk(x.k+1)

where the supremum is taken over all fy, fo, -, fi € Bx~(1). The mod-
ulus of k-uniform rotundity of X is the function § gﬁ)() defined by

k
5% ()
TR
:1nf{1 - k—H-H;:EL“ 1T € Bx(l), V(.’Ill.x%. . '7wk—§—1) > E}.
Then it is seen that X is k-UR if and only if (5%")(5) > 0 fore > 0. It

is obvious that the modulus of k-uniform rotundity (S()?)(E) is a nonde-

creasing function of ¢ (In fact, it is almost surely the case that 55?) is
also continuous, but this require a detailed argument).
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The norm of X is said to be uniformly Kadec-Kliee if given ¢ > 0
there exists a §(¢) > 0 such that if {4 }ae¢ is a net in Bx (1) converging
weakly to x and that Sep(zq) = Inf{|| zo — 25 ||: @ = B} > ¢, then
| z |I< 1—46(e) (see [9] and [10] for the same notion for a sequence
{z,}). It is immediate that uniformly convex Banach spaces have this
stronger property. It is known that the following implications hold ([13],
[26]).

Uniform convexity &1 -UR=2—-UR= ---= k- UR.

In the sequel, we use the following notations; lim = limsup, lim =
liminf, “ — ” for weak convergence, and “ — ” for strong convergence.
Also, a space X is always understood to be an infinite dimensional Ba-
nach space without Schur’s property, i.e., the weak and strong conver-
gence doesn’t coincide for nets.

A Banach space X is said to satisfy Opial’s condition if for each net
{za}acc in X, the condition z, — z implies that

lim - lim -
lim [} 2o -2 f|< lim || 2o —y ||

for all y # z(see [21] for the same notion for a sequence {z,}). Spaces
possessing that property include the Hilbert spaces and the IP spaces for
1 < p < co. However, L?(p # 2) do not satisfy that property ([17}).

Recently, Prus([23]) introduced the notion of the uniform Opial con-
dition for any sequence {z,} in X. A Banach space X is said to satisfy
the uniform Opial condition if for each ¢ > 0, there exists an r > 0 such
that

147 < lim || 2+, |
aeG

for each z € X with || z ||> ¢ and each net {z,}aec in X such that
To — 0 and lim .. || 24 [|[> 1. We now define Opial’s modulus of X,
denoted by rx (-), as follows

rx(c) = inf{lim || z +zq || -1},
acG

where ¢ > 0 and the infimum is taken over all # € X with || z ||> ¢
and nets {Zs}oec in X such that z, — 0 and lim .. || zo [> 1.
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It is easy to see that the function rx(-) is nondecreasing and that X
satisfies the uniform Opial condition if and only if rx(c) > 0 for all
¢ > 0. Furthermore, we know that the Opial’s modulus rx () of X is
continuous.

We now introduce the notion of the locally uniform Opial condition.
A Banach space X is said to satisfy the locally uniform Opial condition
if for any weak null net {z,}aec in X with lim .. || zo |> 1 and any
¢ > 0, there is an r > 0 such that

1+7 < lim || za +2 ||
ac@G

for all z € X with || z ||> ¢ (see [16] for the same notion for a sequence
{zn} ). We can easily see that each “lim” can be replaced by “lim” in
the definition of the (locally) uniform Opial condition. Clearly, uniform
Opial condition implies locally uniform Opial condition, which in turn
implies Opial’s condition ([16]).

Let W(x) denote the set of all weak limits of subnets {S(ty )z} of the
net {S(t)z} for a semitopological semigroup G.

3. Main Results

In this section, we study the asymptotic behavior of the orbits {S(t)z}
for an asymptotically nonexpansive semigroup S = {S(t) : ¢t € G}, under
the Opial’s condition. In [11] (Proposition 3.3), we proved the demi-
closedness principle at zero for an asymptotically nonexpansive semi-
group in a Banach space with the locally uniform Opial codition. The
demiclosedness principle plays a crucial role in the proofs of our main
theorems in this section. We need the following lemma in order to prove
our main theorems.

LEMMA 3.1. Let X be a Banach space satisfying the locally uniform
Opial condition, C a nonempty weakly compact convex subset of X,
and G a right reversible semitopological semigroup, and § = {S(t) :
t € G} an asymptotically nonexpansive semigroup on C. If S(t) is
asymptotically regular at some x € C, i.e., limye; | S(st)z — S(t)z ||=0
for all s € G, then we have the following conclusions.

(1) F(S) C E(z), where E(z) = {y € C : 3 limyeq || St)z—v | }.
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(2) W(z) C F(S) and W(z) is a singleton.

PROOF. (1). Let t = s for t,s € G. Then t € {s} UGs. We may
assume that ¢t € Gs. So there exists a net {ga} in G such that g,s — ¢
as a € G. Then, for o € G and y € F(S),

I'S(gas)z —y | =1l S(g0)S(s)z — S(ga)y |
< (L4kg) [ S(s)e =yl

Hence, we have

I S@z -y < S(s)z—y |

for all ¢ > s and y € F(S). This proves that F(S) C E(z) as desired.

(2). Let {S(ta)z} be a subnet of {S(t)x} converging weakly to y € C
as @ € G. Letting r, = S(t,)zr. Then, since S(s) is asymptotically
regular, || 2o — S(s)zq || > 0 as a € G for all s € G. Since I — S(s) is
demiclosed at zero, from Proposition 3.3 in [11], (I — S(s))y = 0 for all
s € G. Hence W(x) C F(S). Moreover, let y; and y, be two weak limits
of subnets {S(to)z} and {S(t3)z} of the net {S(t)x}, respectively. Since
W(x) C F(S), there are dy,d> > 0 by (1) such that

di =lim [| S®)z —y1 || and dp = lim || S(t)z —p2 || .

If y1 # y2, then we have

di = lim [ S®)z -y |= lim || Sta)z—u |
< lim || S(ta)e —pe [I= g@, I Stg)z — w2 |
< Im | Sto)e—u = lim | S()z ~ 3 |
= d;.
This is a contradiction. Hence W(z) is a singleton. |

As a direct consequence of Lemma 3.1, we can prove the convergence
theorem of orbits {S(t)x} of an asymptotically nonexpansive semigroup
S = {S(t) : t € G} for a right reversible semitopological semigroup G.
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THEOREM 3.2. (see [11]) Let C' be a nonempty weakly compact con-
vex subset of a Banach space X satisfying the locally uniform Opial con-
dition, G a right reversible semitopological semigroup, and S = {S(t) :
t € G} an asymptotically nonexpansive semigroup on C. If S(t) is asymp-
totically regular at x € C, then {S(t)x} converges weakly to a point p
in F(S).

PRrOOF. From Lemma 3.1, it is easy to show that the orbits {S(t)z}
converges weakly to p in F(S). O

It is not clear whether the asymptotic regularity in Theorem 3.2 can
be weakened to the weakly asymptotic regularity. But we improved the
Theorem 3.2 when the space X is assumed to be satisfying the uniform
Opial condition.

THEOREM 3.3. (see [11]) Let C be a nonempty weakly compact con-
vex subset of a Banach space X satisfying the uniform Opial condition
and let G, S be as in Theorem 3.2. If S(t) is weakly asymptotically reg-
ular at z € C. i.e., w-limeg || S(st)z — S(t)z ||= 0 for all s € G, then
{S(t)x} converges weakly to a point p in F(S).

We don’t know whether the conclusion of Theorem 3.2 is still true if
the locally uniform Opial condition is weakened to Opial’s condition, but
we have the following partial answer. We first establish lemmas which
are of interest in itselves. The following lemma is easily obtained in a
similar way to the that of Proposition 4.2 in [12].

LEMMA 3.4. Let G be a right reversible semitopological semigroup
and let {zo}acc be a bounded net in a Banach space X which has no
strongly convergent subnet. Then given any positive integer k. there
exist p > 0 and a subnet {z,} of {x,} such that if {24, Zay, ", Zay,, } 18
any set of k + 1 distinct points of {za }, then V(2a,, Zas,* * ' Zagy ) = P-

We can get the following proposition from the definition of the mod-
ulus of k - uniform rotundity of X.

ProposITION 3.5. ([13]) Let X be a k - uniformly rotund Banach
space, and r > 0. If for x; € Bx(r)(t = 1,2,-- -,k + 1) and given
€ > O,V(ml,fl?z, v ‘,IL‘k+1) > £, then

Zq

|2 g e (- ).
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where V(x1,22, - -, Zx4+1) is the volume enclosed by the set {z1,z5," -
'71"k+1}-

We have the following interesting result which is concerned with the
minimum of any functional.

LEMMA 3.6. Let C be a nonempty closed convex subset of a k-
uniformly rotund Banach space X for some k > 1, G a right reversible
semitopological semigroup, {z}occ a bounded net in X, and F the
functional on X defined by

Fly)=lm || zo -y ||

for each y € X. Let {yg}scc be the net which satisfies the condition
lim F = inf F(y).
Lim. F(ys) Inf F(y)

Then {yg} has a strongly convergent subnet in C.

PROOF. Let 7 = inf,cc F(y) and {yg} a net in C such that limgeg
F(ys) = r. If r = 0, then for all € > 0 there is a B, € G such that

limeee || 2a — ys |I< % for all 8 > (.. Since for such 3, € G and

/B>7 Z ﬂoa
_ < 1 — i _
lys =y I < lim || 20 —ys [| + Iim || 26—y, |

£ €
< 5 + 5= £,
the whole net {yg} is Cauchy in C. Hence {yg} has a strongly convergent
subnet in C. Next, we suppose that » > 0 and {ys} has no strongly
convergent subnet in C. Then, by Lemma 3.4, there exist p > 0 and
subnet {2g}gecc of {yg} in C such that if {24,,24,,- - -, 28, is any set
of k + 1 distinct points of {z3}, then for {z,} C C

V(-Ta T Z81:Ta T 23, T — Zﬁk+1) 2 p.

Let 5&5) (-) be the modulus of k - uniform rotundity of X. Then we can
choose an € > 0 so small that

(r+é) [1 — &P (Gﬁﬂ <
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Since 7 = limgeg F(yg), there exists a §, € G such that F(yz) <r+¢
for all B » B.. Let {z3,,28,,- - -, 23,,,} be any distinct points such
that 8; %= 3, for 1 < j < k + 1. Then, there is an a, € G such that
| 2o — 23, ||[< 7+ ¢ for all a = a, and 1 < j < k - 1. From Proposition

3.5,
et 25 - | i

=4

k+1

=
k+1

)

28, 23,
which shows that F (Ef;rll 5 fjl) < 7. Since Zf_:ll : fl eC itisa

contradiction. This completes the proof. [

Finally, we need the following lemma in order to prove the Theorem
3.8. The following lemma is more beautiful than the Theorem 3.5 in
[16].

LEMMA 3.7. If X is a k-uniformly rotund Banach space for some
k > 1 and satisfies the Opial’s condition, then it satisfies the uniform
Opial condition.

PROOF. Let {z4}acc be a net in X such that z, — 0 and limaeg ||
Zo ||= 1. For the functional

Fly) = T 2a -yl
for y € X, it suffices to show that
fim || za [1< inf{F(y) |y |2 ¢ ¢ >0},

in order to get the goal of this lemma. Let {ys}ge be a net in X with
l'ys =z ¢ and

lim F = inf{F(y) : > > 0}.

lim F(ys) = inf{F(y) :| y |2 ¢;c > 0}

Then {yz} is bounded, so there exists an M > 0 such that supgs ||
y3 ||< M. Suppose that we can choose ¢ > 0 such that

inf(Fy) il y |2 ¢, ¢ >0} = Tm |l 2a ||
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Then, since X satisfies the Opial’s condition, we have

lim F(yg) = inf F
lim (y) e (),

where Bx (M) = {z € X :|| z ||< M}. Hence.by Lemma 3.6, there
exists a subnet {yg_ } of {ys} and z € Bx (M) such that lim,eq yg, = 2.
Clearly, || z ||> ¢(> 0), and also we have

lm || oa -2 || = F(2) = lim F(ys,) = inf{F(y) | y |2 ¢, > 0}

= lim :
I || za |

This is a contradiction for the Opial’s condition. Hence, for all ¢ > 0,

lim || 2 |< inf{F(y) || y [|> ¢,c > 0}.

Hence, for z, = 0 and |y ||> ¢, ¢ > 0,

< Iim lim -y Il -
1< lim || 2o |I< Lim, || 20 + (<) |

Therefore, there is an r > 0 such that

1 < lim
+r_i1€rxg: | o + ||

for all || z ||> ¢,¢ > 0. This completes the proof. O

We are now in a position to prove the Theorem 3.8.

THEOREM 3.8. Let X be a k-uniformly rotund Banach space for some
k > 1 with the Opial’s condition and let C, G, S be as in Theorem 3.2. If
S(t) is weakly asymptotically regular at z € C, then {S(t)z} converges
weakly to a point p in F(S).

PROOF. We know that X satisfies the uniform Opial condition from
the Lemma 3.7. And hence, by Theorem 3.3, {S(¢)z} converges weakly
to a point p in F(S). O

Clearly, V(21,z2) =| 1 — z2 || and thus the 1-UR space simply the
uniformly convex Banach space. So, we have the next corollary.
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COROLLARY 3.9. (cf. [4],[6] and [15]) Let X be a uniformly convex
Banach space with the Opial’s condition, and let C,G,S and S(t) be as
in Theorem 3.3. Then the conclusion of Theorem 3.8 holds.

And also, we have another convergence theorem in a Banach space X
with uniformly Kadec-Klee norm and satisfying the Opial’s condition.

THEOREM 3.10. Let X be a Banach space satisfying the Opial’s con-
dition with a uniformly Kadec-Klee norm and let C,G,S be as in Theo-
rem 3.3. If S(t) is weakly asymptotically regular at z € C, then {S(t)z}
converges weakly to a point p in F(S).

PROOF. We must prove the results of Lemma 3.1 under the assump-
sions of this theorem. We can easily prove the result (1) of Lemma 3.1.
And so, we have to show only (2). For our purpose, it suffices to show
that I — S(t) is demiclosed at zero. Let {z4}acc be a net in C such that
To — z and x4 — S(t)ze — 0 for all t € G. By Lemma 3.2 in [11], we
have S(t)z — z, as t € G. Now let

r= }16_18 | S(t)x — z || and r(s) = gr—nc_ | S(t)x — S(s)z || -

Since S(t) is weakly asymptotically regular at z, r < r(s) < (14 k,)r
from the Opial’s condition. Hence we have lim,c g r(s) = r. Now, we
must prove that r = 0. Suppose that r > 0, then {S(¢)z} has no strongly
convergent subnet. Therefore, there exists a subnet {S(t )z} of {S(t)x}
such that

Sep(S(ta)z) > 0.

Let e, = %Sep(S(ta)x) and §,(e,) the number satisfying the definition
r

of uniformly Kadec-Klee norm corresponding to €,. Then we can choose
an >0 with 0 < n < 1 sosmall that (1 4+ 7)(1 — d,(e5)) < 1. Since
limge g ks = 0, there is an s, € G such that ks < n for all s = s,. Fix
S = 8,. Since

r(s) = Enc— | S(t)x — S(s)z |[< 1+ ks)r < (1+n)r

there is an a, = ao(s,n) such that

| S(ta)z — Ss)z | < (L+m)r
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S(ta)z — S(s)

o Z for all & » ao. Then || ye ||< 1,

for all a > . Let y, =

= 8(s8)z
(1+n)r

a

and
Sep(S(ty)x)
(1+4+n)r >

Since the norm of X is uniformly Kadec-Klee, it follows that

Sep(yYa) = Ee.

[z —S(s)z ||

Ty =17 %)

for all s = s,. Hence, we have

r= ?EEG | 2= 8S(s)z |< 1 +n)(1—do(e))r <

This is a contradiction. Therefore, 7 = 0 and so limge ¢ S(s)z = z. From
the continuity of S(t), S(t)z = z for all t € G. This completes the proof.
O

PROPOSITION 3.11. (Theorem 1 in [13]) If X is a k- uniformly rotund
Banach space for some k > 1, then X has a uniformly Kadec-Klee norm.

REMARK. Using the Proposition 3.11, then the Theorem 3.8 can be
easily proved as corollary of Theorem 3.10. And also, since uniformly
convex Banach space X has a uniformly Kadec-Klee norm, the Corollary
3.9 is obvious as corollary of Theorem 3.10.
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