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ITERATIVE ALGORITHMS WITH ERRORS FOR
NONEXPANSIVE MAPPINGS IN BANACH SPACES

JoNG Soo JunNG

ABSTRACT. The iterative algorithms with errors for nonexpansive
mappings are investigated in Banach spaces. Strong convergence
theoremrs for these algorithms are obtained. Our results improve
the corresponding results in [5, 13-15, 23, 27-29, 32] as well as
those in [1, 16, 19, 26] in framework of a Hilbert space.

1. Introduction

Let E be a real Banach space, ¢ a nonempty closed convex subset
of E, and T1, ... ,Tn nonexpansive mappings from C into itself (recall
that a mappirg T : C — C is nonezpansive if | Tz — Ty| < ||z — y|| for
all z, y € C).

We consider the iterative algorithm: for a positive integer N, nonex-
pansive mappings 11, Tb, ... ,Tn, u,x¢ € C, and A\, € (0,1),

(1) Tntl = >\nu + (1 - An)Tn—lena n2 07

where T}, := T, mod N, IN > 1. The convergence of the iterative al-
gorithm (1) has been investigated by many author see, for example,
Browder [2], Cho et al. [5], Halpern [12], Lions [16], Reich [20, 21], Sh-
ioji and Takakashi [23], Wittmann [26], Xu [27-29] in the case of N = 1
and Bauschke [1], Jung [13], Jung and Kim [15], Jung et al. [14], O’Hara
et al. [19], Shimizu and Takahashi [22], Zhou et al. [32] in the case of
N > 1, respectively. The authors above showed that the sequence {z,}
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generated by (1) converges strongly to a point in the fixed point set
F = F(T) for N = 1 and to a point in the common fixed point set

F = ﬂfvzl F(T;) for N > 1 under the following respective conditions in
either Hilbert spaces or certain Banach spaces:

(C1) lim A, =0; (Halpern [12])

(C2) Z An = 00 or equivalently, H (1-X,) =0; (Halpern [12])
n=0 n=0
(C3) lim An = Ant1 0; (Lions [16])

T,

(C4) i [An+1 — An| < o0;  (Wittmann [26])

n=0

(C5) Z IAn — Anan| < o00;  (Bauschke [1])

n=0

A — A
(C6) lim =1 or equivalently, lim In _ ZndN
e Xt D W

(O’Hara et al. [19], Xu [30])

=0.

Vert recently, Jung et al. [14] considered the perturbed control condition

(CnN IAntN — Anl < o(AntnN) + On, Zan < 0

n=0

to obtain the strong convergence of iterative algorithm (1) in uniformly
smooth Banach spaces.

On the other hand, using the condition (C1) and (C2), Xu [27] inves-
tigated the strong convergence of the iterative algorithm: for nonexpan-
sive mapping T and u, z1 € C,

(2) Tpa1 = At + (1 = Ap)Spzn, n>1,

where

1n—1
Snx:z—ZTkx, n>1, xze€C.
L

In this paper, we consider the iterative algorithms (1) and (2) with
errors in the case when C = F in Banach spaces. First, we introduce the
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iterative algorithm (1) with errors: for N > 1, Ty, ... , Ty nonexpansive
mappings from E into itself, and u,zq € F,

(IA1) Zrt1 = AU+ (1 = X)) pi1%n + €n, 1 >0,

where {\,} C (0,1) and {e,} C E, and prove a strong convergence
of the iterative algorithm (IA1) under the perturbed control condition
(C7) with conditions (C1) and (C2) in a reflexive Banach space having
a uniformly Gateaux differentiable norm and a weakly sequentially con-
tinuous duality mapping. Second, we consider the iterative algorithm
(2) with errors: for T': E — E nonexpansive mapping and u, z; € E,

(IA2) Tnt+1 = At + (1 — Ap)Snzn +€,, n>1,

and show that the sequence {x,} generated by (IA2) converges strongly
to a fixed point of T under conditions (C1) and (C2) in a uniformly
convex Banach space with a Fréchet differentiable norm. By using the
perturbed control condition (C7) together with errors {e,} in the case
when C' = E, our results improve the corresponding results in {1, 13-15,
19, 32] for N >> 1 and [5, 16, 23, 26-29] for N = 1 among others.

2. Preliminaries and lemmas

First, as in [14], we mention the relations between conditions (C1)—
(C6) and give an example satisfying the perturbed control condition
(C7).

In general, the control conditions (C5) and (C6) are not comparable
(coupled with the conditions (C1) and (C2)), that is, neither of them
implies the others as in the following examples:

EXAMPLE _. Consider the control sequence {ay,} defined by

= if n is odd,
an = 1 1 . .
s+t or  ifniseven,

with 2 < s <t < 1. Then {a,} satisfies the conditions (C1), (C2) and
(C6), but it fails to satisfy the condition (C5), where N is odd.

EXAMPLE 2. Take two sequences {my} and {ng} of positive integers
such that:
(i) m1 =1, mg < ng and max{dng,nx + N} < mgsq for k > 1,
(i) Y%, 7z >1for k> 1.

T=my,
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Define a sequence {p,,} by

1

{\% ifme <i<ng, k>1,
i =
2/nk

ifnk<i<mk+1, k>1.

Then {pn} is decreasing and i, — 0 as n — oo. Hence the conditions
(C1) and (C5) are satisfied. Noting that

o 0 Nk
Z Pn = Z Z Hi = OQ,
n=1 k=li=my

then we see that the condition (C2) is also satisfied. On the other hand,

we have
_Mn_k_ =2, k> 1,
Hnp+N

which shows that the condition (C6) is not satisfied.
ExXAMPLE 3. (Xu [30]) Consider the control sequence {a,,} defined

by .

an:{ Tn if n is odd,

751?1 if n is even.
Then {a,} satisfies (C6), but it fails to satisfy (C5).
ExAMPLE 4. Take {a,} and {y,} as in the above Examples 1 and
2. Define a sequence {\,} by
An = Qp + lin
for all n > 1. Then {\,} satisfies the conditions (C1), (C2) and
(C7) [Ansn = Anl £ 0(Angn) + o,
where Y >° | 0, < 00, but it fails to satisfy both the conditions (C5) and

(C6). For the case N = 1, we also refer to [5].

EXAMPLE 5. Let {ay} satisfy (C1), (C2), not (C5), (C6) and let
{sn} be (C1), (C2), (C5), not (C6). Assume that

. Qp
lim — =0,
n—00 [y
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and define a sequence {A,} by
An = Qp + pin

for all n > 1. Then {\,} satisfies the conditions (C1), (C2), not (C5),
(C6), (CT).

Let E be a real Banach space with norm | - || and let E* be its dual.
The value of f € E* at z € E will be denoted by (z, f). When {z,} is a
sequence in E, then z,, — x (resp. z, — z, T, A x) will denote strong
(resp. weak, weak*) convergence of the sequence {z,} to .

The modulus of convexity of E is defined by

. z+y
o) = ntf1- M oy <1 gt <1, ool 2 e}

for every ¢ with 0 < ¢ < 2. A Banach space FE is said to uniformly
convex if §(¢) > 0 for every € > 0. If F is uniformly convex, then

T (1-9(3))

for every z, y € E with |z|| < r, |ly]| < r and ||z — y|| > . We also
know that if C is a closed convex subset of a uniformly convex Banach
space E, then for each x € F, there exist a unique element u = Px € C
with ||z — || = inf{||z — y|| : y € C}. Such a P is called the metric
projection of F onto C.

Let ¢ : [0,00) — [0,00) be a continuous strictly increasing function
such that ¢(0) = 0 and ¢(t) — oo as ¢ — co. This function ¢ is called
gauge function. The duality mapping J, : E — E* associated with a
gauge function ¢ is defined by Browder [3] as follows

Jo(@) ={f € E" : (z, f) = ll=lle(ll=])), [fI = ()}, =€ FE.

In the case of ¢(t) = t, we have J, = J, the normalized duality mapping.
Notice the relation

Jo(x) = (pfllﬁln)‘](x)’ x #0.

The norm o7 E is said to be Géteauzx differentiable (and E is said to
be smooth) if

" e+t~ el
t—0 t
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exists for each z, y in its unit sphere U = {x € E : ||z]| = 1}. It is
said to be Fréchet differentiable if for each x € U, this limit is obtained
uniformly for y € U. The norm is said to be uniformly Gateauz differ-
entiable if for y € U, the limit is attained uniformly for £ € U. The
space E is said to have a uniformly Fréchet differentiable norm (and E
is said to be uniformly smooth) if the limit in (3) is attained uniformly
for (z,y) € UxU. It is known that F is smooth if and only if each dual-
ity mapping J,, is single-valued, and that E is uniformly smooth if and
only if each duality mapping J,, is norm to norm uniformly continuous
on bounded subsets of F. It is also well-known that if F has a uniformly
Géateaux differentiable norm, J,, is uniformly norm to weak* continuous
on each bounded subsets of £ ([7]).

It is relevant to the main theorems of this paper to note that while
every uniformly smooth Banach space is a reflexive Banach space with
a uniformly Gateaux differentiable norm, the converse does not hold.
Indeed there are reflexive spaces with a uniformly Gateaux differentiable
norm that are not even isomorphic to a uniformly smooth space. To
see this consider E to be the direct sum [2(IP»), the class of all those
sequences ¢ = {2, } with z, € (P and ||z[| = (3, <o |znlI?)1/? (see [6]).
Now, if 1 < p, < oo for all n > 1, where either limsup,, ,., pn = 00 or
liminf,_,. pn = 1, then E is a reflexive Banach space with a uniformly
Géateaux differentiable norm, but is not uniformly smooth (see [6, 31]).
We also observe that spaces with enjoy the fixed point property for
nonexpansive self-mappings are not necessarily spaces with a uniformly
Géateaux differentiable norm. On the other hand, the converse of this
fact appears to be unknown as well. For these facts, see also [18].

Following Browder [3], we say that a Banach space E has a weakly
sequentially continuous duolity mapping if there exists a gauge ¢ such
that J,, is single-valued and weak to weak* sequentially continuous (that
is, if for each {x,} € E with 2, = x, J,(2,) = J,(z). Tt is known that
[? (1 < p < 00) has a weakly sequentially continuous duality mapping
with gauge ¢(t) = tP~1. Setting

one sees that ® is a convex function and

Jo(z) = 00(|z])), =zeE,
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where 0 denotes the subdifferential in the sense of convex analysis. The
subdifferential inequality is such as

o(lz+yl) < 2(lzl) + (W, Joty), @, YEE, Jory € Jo(x +y).
If E is smooth, then we have
(4) O(llz +yll) < 2(llzll) + (v, Jo(x +v)), =, y€E.
or considering the normalized duality mapping J, we have
lz +yll* < lz))* +2(y, J(z +y)), =z, ye€E.

Recall that a mapping T defined on a subset C of a Banach space
E (and taking values in E) is said to be demiclosed if for any sequence
{un} in C the following implication holds:

Uy, = u and lim |[Tu, —w| =0
n—00

imply
ueC and Tu=w.

The following lemma can be found in [9, p. 108].

LEMMA 1. Let E be a reflexive Banach space with a weakly sequen-
tially continuous duality mapping. Let C be a nonempty closed convex
subset of E and T : C — E a nonexpansive mapping. Then the mapping
I — T is demiclosed on C, where I is the identity mapping.

Let C be a nonempty closed convex subset of E. C is said to have
the fized point property for nonexpansive mappings if every nonexpansive
mapping of a bounded closed convex subset D of C' has a fixed point. It
is well-known (cf. [10, p.45]) that every weakly compact convex subset
of a uniformly smooth Banach space has the fixed point property for
nonexpansive mappings.

A mapping @ of C into C is said to be a retraction if Q* = Q. If
a mapping @ of C into itself is a retraction, then Qz = z for every
z € R(Q), where R(Q) is range of . Let D be a subset of C' and let
@ be a mapping of C into D. Then @ is said to be sunny if each point
on the ray {Qx + t(x — Qz) :t > 0} is mapped by @ back onto Qz, in
other words,

Q(Qz +t(z — Q) = Qz
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for all t > 0 and x € C. A subset D of C is said to be a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction
of C onto D; for more details, see [10]. In a smooth Banach space F, it
is known (cf. [10, p.48]) that @ is a sunny nonexpansive retraction of C
onto D if and only if the following condition holds:

(5) (¢ —Qx,Jy,(2—Qx)) £0, ze€C, z€D.

It is also known [20, Theorem 1] (see also [10, pp.49-50] [11, Corollary 3],
[24, Theorem 1]) that if F is a reflexive Banach space with a uniformly
Gateaux differentiable norm, every weakly compact convex subset of F
has the fixed point property for nonexpansive mappings, and D is the
fixed point set of a nonexpansive self-mapping of a closed convex subset
C of E, then there exists a (unique) sunny nonexpansive retraction of
C onto D. We denote the set of all fixed points of the mapping T by
F(T).

Finally, we need the following lemma, which is essentially Lemma 2
of Liu [17] (see also [27, Lemma 2.5]).

LEMMA 2. Let {s,} be a sequence of non-negative real numbers sat-
isfying
l Spt1 < (1 - )\n)sn + /\nﬂn +Yn, N2> 0,
where {\.}, {Bn} and {yn} satisfying the condition:
(i) {M} C[0,1] and ¥ oo 4 A = 00 or equivalently, [[7 o (1=Xy) ==
limn_,oo HZ:O(I — /\k) = 0;
(ii) limsup,,_, . On < 0; or
(iii) Zzo:o AnBn < 00;
(iv) Yn >0 (n > 0)7 Z;.Lo_—.o Tn < OO.
Then lim,_,« Sn, = 0.

3. Main results

First we study the strong convergence of sequence {z, } generated by
the following algorithm with errors: for u,xy € E,

(IA1) Trt1 = A+ (1L = Ap)Tpt1Zn + €, n >0,

where {\,} C [0,1] and the computational errors {e,} C E.
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We consider N mappings T3,7%,...,Tny. For n > N, set T,, :=
Ty mod N, Where n mod N is defined as follows: if n = kN +1, 0 <1 <
N, then

[ if I #0,
n mod N := .
N ifl=0.

PRrROPOSITION 1. Let E be a reflexive Banach space. Suppose that
E has a weakly sequentially continuous duality mapping J, with gauge
¢. Let Ty,...,Tn be nonexpansive mappings from E into itself with
F:= ﬂ;’vzl F(T;) nonempty and .

‘FIZF(TNT]_):F(T:[TN'TE}TQ): -
=F(Tn-1Tn_2---TWTN).

Assume that the sequence {e,} C E satisfies the 3 .-, |len|| < c0. Let
{\n} be a sequence in (0, 1) which satisfies the conditions (C1), (C2) and
(C7). Let u, z¢c € E be chosen arbitrarily and let {x,} be generated by

(IA1) Znt1 = At + (1 = X)) Thi1Zn + €4, 1 2>0.

If there exists a sunny nonexpansive retraction Q of E onto F', then
{z,,} converges strongly to Qru.

Proof. As in [1, 14-16, 21], we divide the proof into several steps.
Step 1: {z,} is bounded. Indeed, let z € F,

o0
d = max{|lzo — 2|}, Ju— 2|} and M =d+>_ |en|.
n=0
Then by the ncnexpansivity of 1,41, n > 0

o1 — 2| = [[Aow + (1 — Ao)T1zo — 2| + [leol|
<Ad+ (1= Ar)d + Jleof|
= d + |leol|-

Using an induction, we obtain

n
[ns1 =2l Sd+ 3 llexll < M, n>o0.
k=0
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Hence, it follows from Y -, |len|| < oo that {z,} is bounded, and so is
{Tn+1$n}.
Step 2: limy, 00 ||Znt1 — Tnt1Zn|| = 0. Since
[Zn+1 = Tns1Zall < Anllu — Tng1zall + [lenll
S An(llull + [ Togazall) + llenl
< AR+ len]]
for R = |Jul|+sup,>¢ [ Ta+12nl|, we have limy, oo [|Znt1—Tnt12n| = 0.

Step 3: lim, oo |Zntn — Zn|| = 0. By Step 2 above, there exists a
constant L > 0 such that for all n > 1,

|lu — Tn—}—lan S L.
Since for all n > 1, T,y = T, by (C7) we have

| Zntn — zn
< NAntn-1 = An—1)(t = Ty NZnyn—1)]]
1A = At v-1)(TnZntv-1 = Tnn-a)l| + llentv—1 — en-l|
(6) < LPnan—1—An—a]l + (1 = Ay n—1)|Tnsen—1 — Tn-1]|
+ llen+n—1ll + [len—1]]
= (1= AnsN-DlZnrn-1 = Tn-1]l + (6(Anyn-1) + 0n)L
+ lensN-1ll + [len—1]-

By taking an = Antn—1, Sn+1 = [|[Zn+n — Tnll, @nfn = o(an)L and
Yn = 0nL + |lentn-1]| + |len—1]|, from (6) we have

Sny1 < (1 = an)sn + anfn + Tn,
and so by Lemma 2,
lim ||2p+n — z,]| = 0.
n—oo

Step 4: limp—oo [|Zn — TN - - - Tht1Zn]] = 0. Step 4 coincides with
Claim (6) in the proof of {1. Theorem 3.1] (or [15, Lemma 3]), in which
Steps 2 and 3 were used.

Step 5: limsup,, . (4 — Qru, Jo(z, —Qru)) < 0. Let a subsequence
{zn,} of {z,} be such that

Jlggo@ - Qru, Jip(mnj—i—l — Qru)) = limsup(u — Qru, J<p(xn+1 - Qru))

n—oo
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and z,;, — p for some p € E. We assume (after passing to another
subsequence if necessary) that n;+1 mod N =i for somes € {1,... ,N}
and that z,,,. — p. From Step 4, it follows that lim; o [|Tn,+1 —
Tiyn - Tiy12r, 41| = 0. Hence, by Lemma 2, we have p € F(Tyyn - --
Ti+1) = F. On the other hand, we know that F' is a sunny nonexpansive
retract of E ([10, 11, 20, 24]). Thus, by weak continuity of duality
mapping J, and (5), we have

limsup(u — Qru, Jo(Tny1 — Qru))

n—oo

= ]Ergo(u - Qru, J<P($nj+1 — Qru))
= (u— Qru, Jo(p— Qru)) <0

Step 6: lim, o ||zn — Qru|| = 0. Since (zny1 — Qru) = (1 —
M) (Tr41Zn — Qru) + Ap(u— Qru)+ey, by the subdifferential inequality
(4), we have

P([|znt1 — Qrull)
= &([|(1 = M) (Tns12n — Qru) + An(u — Qru) + eal))
S((1 = M) Tns12n — Qrull)
+ (A (u — Qru) + en, Jo(Tny1 — QFu))
< (1= )2(llzn — Qrul)
+ Ml — QFu, Jy(Tni1 — Qru)) + Kllen|l,

where K = sup,,>o{¢(l|lzn — @rul)}. An application of Lemma 2 to-
gether with Step 5 yields that lim, o ®(||z, — Q@Ful|) = 0. This com-
pletes the proof. O

From Proposition 1, we have the following result.

THEOREM 1. Let E be a reflexive Banach space with a uniformly
Gateaux differentiable norm. Suppose that every weakly compact con-
vex subset of E' has the fixed point property for nonexpansive mappings
and E has a Weakly sequentially continuous duality mapping J, with
gauge . Let T1,...,Tn be nonexpansive mappings from E into itself
with F := ﬂ ( ) nonempty and

=F(Iy--T)=FTNTIn- -T3Tz)= -
= F(Tn-1Ty-2---ThTN).
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Assume that the sequence {e,} C E satisfies the > o |len|| < co. Let
{An} be a sequence in (0, 1) which satisfies the conditions (C1), (C2) and
(C7). Let u, zg € E be chosen arbitrarily and let {z,,} be generated
by (IA1). Then {z,} converges strongly to Qpu, where Q is a sunny
nonexpansive retraction of E onto F.

Proof. Tt follows from [20, Theorem 1] (also [11, Corollary] and [24,
Theorem 1]) that there exists a sunny nonexpansive retraction of E onto
F. Thus the result follows from Proposition 1. O

As immediate consequences of Theorem 1, we have the following re-
sults.

COROLLARY 1. Let E be a uniformly smooth Banach space with a
weakly sequentially continuous duality mapping J, with gauge ¢. Let
Ty,...,Ty be nonexpansive mappings from E into itself with F :=
ﬂﬁvzl F(T;) nonempty and

F=FTyn--T\)=FTNOTIyn--TsTh)= ---
=F(ITn-1Tn—2---ThTN).

Assume that the sequences {\,} C (0,1) and {e,} C E are the same
as in Theorem 1. Let u, o € E be chosen arbitrarily and let {x,} be
generated by (IA1). Then {x,} converges strongly to Qru, where Q is
a sunny nonexpansive retraction of £ onto F'.

COROLLARY 2. Let H be a Hilbert space and Ty, ... , Ty nonexpan-
sive mappings from E into itself with F := ﬂfvzl F(T;) nonempty and

F=F(Ty-T\)=FTTy - TsTy) = -
= F(Tn_1Tn—2-- T1TN).

Assume that the sequences {\,} C (0,1) and {e,} C H are the same
as in Theorem 1. Let u, xo € H be chosen arbitrarily and let {z,} be
generated by (IA1). Then {z,} converges strongly to Pru, where P is
the nearest point projection of H onto F.

Proof. Note that the metric projection P of H onto F(T') is a sunny

nonexpansive retraction. Thus the result follows from Theorem 1. [

As direct consequences of Theorem 1, we also have the following re-
sults for N = 1.
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COROLLARY 3. Let E be a reflexive Banach space with a uniformly
Gateaux differentiable norm. Suppose that every weakly compact con-
vex subset of E has the fixed point property for nonexpansive mappings
and F has a weakly sequentially continuous duality mapping J, with
gauge ¢. Let T : E — E be a nonexpansive mapping with F(T) # 0.
Assume that the sequences {\,} C (0,1) and {e,} C E are the same
as in Theorem 1. Let u, o € E be chosen arbitrarily and let {x,} be
generated by

Tt = A+ (1= 2)Tx, + €5, n>0.

Then {x,} converges strongly to Qu, where @ Is a sunny nonexpansive
retraction of E onto F(T).

COROLLARY 4. Let H be a Hilbert space and T : H — H a nonex-
pansive mapping with F(T) # 0. Assume that the sequences {\,} C
(0,1) and {e,} C H are the same as in Theorem 1. Let u, xg € H be
chosen arbitrarily and let {x,} be generated by

g1 = AU+ (1 — Ap)T2p + €y, n>0.

Then {z,} converges strongly to Ppu, where P is the nearest point
projection of H onto F.

REMARK 1. Even though the domain of nonexpansive mappings is
whole space F as a closed convex subset of E, our results improves the
results of authors mentioned in Introduction 1 as follows:

(1) Theorem 1 extends Theorem 1 of [14] to general Banach space
setting together with the computational errors {e,}.

(2) By using the condition (C7) together with errors {e, }, Theorem 1
(Corollary 1) also improves Theorem 1 of [15] and Theorem 4.1 of [19].

(3) Even for N = 1, our proof lines of Theorem 1 are different from
those of Cho et al. [5], Xu [27-29], Zhou et al [32], in which, as in [23],
Reich’s result [19] was utilized to prove their main results.

(4) Corollary 3 generalizes Theorem of [23], Theorem 3.1 of [27], The-
orem 2.3 of [28], and Theorem 3.2 of [29].

(5) Corollary 4 is also a complementary one of the result of Wittmann
[26] together with the condition (C7) and errors {e,}.

Let D be a subset of a Banach space E. Recall that a mapping
T :D — E is said to be firmly nonexpansive if for each z and y in D,
the convex function ¢ : [0,1] — [0, 00) defined by

o(s) =||(1 = 8)z + sTx — ((1 — s)y + sTy)||
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is nonincreasing. Since ¢ is convex, it is easy to check that a mapping
T : D — FE is firmly nonexpansive if and only if

1Tz — Tyl < (1 —t)(z —y) + Tz - Ty)|

for each z and y in D and ¢t € [0,1]. It is clear that every firmly
nonexpansive mapping is nonexpansive (cf. [9, 10]).

The following result extends a Lions-type iterative algorithm [16] to-
gether with the condition (C7) to a Banach space setting.

COROLLARY 5. Let E be a uniformly smooth Banach space with a
weakly sequentially continuous duality mapping J, with gauge ¢. Let
Ti,...,Tn be firmly nonexpansive mappings from E into itself with
F .= ﬂivzl F(T;) nonempty and

F=FTn--T\)=FT\Ty --T3Ty) = ---
= F(TN_lTN_2 s TlTN).

Assume that the sequences {\,} C (0,1) and {e,} C E are the same
as in Theorem 1. Let u, xo € E be chosen arbitrarily and let {z,} be
generated by (IA1). Then {x,} converges strongly to Qpu, where @ is
a sunny nonexpansive retraction of E onto F'.

REMARK 2. (1) In Hilbert space, Lions [16, Théorém 4] had used

(L1) limy,—y00 Ap, = 0,

(L2) Zz__l/\]d\{_}_i = oo for all 4 :0, ,N* ].,
which is more restrictive than (C2), and

(L3)/ limy, SN MeNti=Ak—1) Nl -0

e (2l Aenvi)?

in place of (C5).

(2) In general, (C5) and (L3)" are independent, even when N = 1.
For examples and more details, see [1].

(3) Corollary 5 also improves Corollary 13 of [14] and Théorém 4 of
[16].

Now, we consider iterative algorithm (IA1) with the mean S,z, in
place of Tp, 12y, where

1n——1
Sn:c:=—ZTka:, n>1 cze k.
" =0

In this case, we do have strong convergence under conditions (C1) and
(C2).

We need Bruck’s result on the asymptotic behavior of nonexpansive
mappings.
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LEMMA 3 ([4]). Let E be a uniformly convex Banach space and let K
be a nonemprty bounded subset of E. Let T : E — E be nonexpansive.
Then

lim sup | T(Spz) — Spz| =0

n-—+00 reK

THEOREM 2. Let E be a uniformly convex Banach space with a uni-
formly Gateaux differentiable norm. Suppose that E has a weakly con-
tinuous duality mapping J, with gauge ¢. Let T : E — E be a non-
expansive mapping. Assume that the sequence {e,} C E satisfies the
oo i llenll < 0o. Let {\,} be a sequence in (0,1) which satisfies the
conditions (C1) and (C2). Let u,zqy € E and let {z,} be a sequence
generated by

(IA2) Tnt1 = Au~+ (1 = Ap)Sn2n +€n, n>1.

If F(T) # 0, then {z,} converges strongly to Qu, where Q is a sunny
nonexpansive retraction of E onto F(T').

Proof. Let yn := Spxy. Then Eq. (IA2) can be re-written as
Tnt1 =Au+ (1 =A\p)yn+en, n>1

Now, we proceed with several steps.
Step 1: {z,,} is bounded and so is {y,}. Indeed, let z € F(T) and

d = max{|lu—z[|, Jz1 — 2}, M =d+_ |lenll
n=1

Then we have
|22 = 2[| < Arllu— 2]l + (1 = A)llzy — 2] + el
< hd+ (1= A)d + |les]|
=d+ el

By induction, we obtain
n
Tt — 2 Sd+ ) llexll <M, n>1.
k=1

Hence, it follows from > - | |len|| < oo that {z,} is bounded, and so is

{yn}-
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Step 2: lim, oo [TYn — yn|| = 0 by Lemma 3.
Step 3: limsup,_, (v — Qu, J,(yn — Qu)) < 0. To prove this, we
take a subsequence {yn,} of {y,} be such that

lim (u — Qu, Jy(yn; — Qu)) = limsup(u — Qu, J,(yn — Qu))

J— 0 n—00

and z,, — p for some p € E. It follows from Step 2 and Lemma 1 that
p € F(T). We know that F(T') is sunny nonexpansive retract of E ([10,
p. 49]). Thus, by weak continuity of duality mapping J, and (5), we
have

lim sup(u — Qu, Jo(yn — Qu)) = lim {u — Qu, Jo (yn; — Qu))
= (u—Qu, Jo(p—Qu)) <0
Step 4: limy, o0 |25, — Qul| = 0. Indeed, Since (2,41 — Qu) = (1 —

An) (Yn — Qu) + An(u — Qu) + e, by using the subdifferential inequality
(4), we have

B([lznt1 — Qull)
< (1 = An)(yn — Qu))) + (Anlu — Qu) + €n, Jo(Tns1 — Qu))

< @((1 = An)llyn — Qull) + An(u — Qu, Jp(Tni1 — Qu))
+ (ens Jp(Tnt1 — Qu))
< (1= An)®([lzn — Qull) + Anfu — Qu, Jyp(zni1 — Qu)) + Kllenl|
= (1 = M\)®(||lzn — Qull) + ABr + Yn,

where B, = (u—Qu, Jo(yn—Qu)), K = sup,,>o{¢(|lxn—Qu|)} and v, =
Kllen||. Now, applying Lemma 2 with Step 3, we have limy, o, ®(||z, —

Qull) = 0. This completes the proof. O

As a direct consequence of Theorem 2, we have the following result.

COROLLARY 6. Let E be a uniformly convex and uniformly smooth
Banach space. Suppose that E has a weakly continuous duality mapping
Jo with gauge ¢. Let T : E — E be a nonexpansive mapping. Assume
that the sequences {\,} C [0,1] and {en,} C E are the same as in
Theorem 2. Let u,z0 € E and let {z,} be a sequence generated by
(IA2). If F(T) # 0, then {x,} converges strongly to Qu, where Q is a
sunny nonexpansive retraction of E onto F(T).
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COROLLARY 7. Let H be a Hilbert space and T : H — H be a
nonexpansive mapping. Assume that the sequences {\,} C [0,1] and
{en} C H are the same as in Theorem 2. Let u,zo € H and let {z,}
be a sequence generated by (IA2). If F(T) # 0, then {z,} converges
strongly to Pu, where P is the metric projection of H onto F(T).

REMARK 3. (1) Theorem 2 (and Corollary 6) improves Theorem 3.2
of [27] with gauge ¢(t) = ¢ to the case of the iterative algorithm with
errors.

(2) Our proof lines of Theorem 2 are different from those of Xu [27], in
which he also utilized the Reich’s result [20] and the equation (d/dt)||z+

tyl* = 2(y, J (= + ty)).

4. Applications to contraction semigroups

As in [27], we consider iterative algorithm for contraction semigroup.

Let E be a 3anach space and C be a nonempty closed convex subset of
E. Let &= {S(t) : t > 0} be a family of self-mappings of C. Recall that
3 is said to be a contraction semigroup on C if the following conditions
hold:

(a) SOz =2z, z€C
(b) S(tl -+ tg)iB = S(tl)S(tz), t1, 1220, x € C,;
(c) for each z € C, the function S(t)z is continuous in ¢ € (0, 00);

(d) for each t > 0, S(t) : C — C is a nonexpansive mapping.

We shall use () to denote the set of common fixed points of S; that
is,

LEMMA 5 ([25]). Let E be a uniformly convex Banach space, C be
a closed convex subset of E, and & be a contraction semigroup on C.
Assume that F() # 0. Then there is a family {r; : t > 0} of non-
negative numbers such that

lim sup ||S(r)o(z) — or(x)]| =0, >0,
t—o0 zeC

where

oi(x) = %/0 S(ry + 7)dt.
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Now we define iterative algorithm with errors: take u,z; € E arbi-
trarily and define

ZTnt+1 = A+ (1 = Ap)oy, (zn) + €, n>1

By employing similar arguments to the discrete cases (Theorem 2 and
Corollary 7), we can prove the following results.

THEOREM 3. Let E be a uniformly convex Banach space with a uni-
formly Gateaux differentiable norm. Suppose E has a weakly continu-
ous duality mapping J, with gauge ¢. Let {\,} be a sequence in (0,1)
which satisfies the conditions (C1) and (C2). Let & = {S(¢) : t > 0}
be a contraction semigroup on E such that F(3) # (. Assume that the
sequences t,, € [0,00) and {e,} C E satisfy the following conditions:

(1) limp—eo tn = 00;
(i) 3ont llenll < co.
Let u,z, € E and let {z,} be a sequence generated by

(IA3) Tpt1 = A+ (1= Ap)oy, (zn) + €0, n>1.

Then {z,} converges strongly to a point of F(S).

COROLLARY 8. Let H be a Hilbert space. Let {A,} be a sequence in
(0,1) which satisfies the conditions (C1) and (C2). Let S = {S(¢) : ¢t >
0} be a contraction semigroup on E such that F(S) # (0. Assume that
the sequences t,, € [0,00) and {e,} C E satisfy the following conditions:

(1) limp—oo tn = 005

(i) 2onZy llenll < co.
Let u,z1 € H and let {z,} be a sequence generated by (IA3). Then
{z,} converges strongly to a point of F(S).

REMARK 6. Even though C = E, Theorem 3 and Corollary 8 are
new results.
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